CN109390559A - 一种柔性电极的制备及基于该电极的柔性储能器件 - Google Patents

一种柔性电极的制备及基于该电极的柔性储能器件 Download PDF

Info

Publication number
CN109390559A
CN109390559A CN201811227189.2A CN201811227189A CN109390559A CN 109390559 A CN109390559 A CN 109390559A CN 201811227189 A CN201811227189 A CN 201811227189A CN 109390559 A CN109390559 A CN 109390559A
Authority
CN
China
Prior art keywords
flexible
electrode
mno
elastic rubber
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811227189.2A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Shengbei Electronic Technology Co Ltd
Original Assignee
Changzhou Shengbei Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Shengbei Electronic Technology Co Ltd filed Critical Changzhou Shengbei Electronic Technology Co Ltd
Priority to CN201811227189.2A priority Critical patent/CN109390559A/zh
Publication of CN109390559A publication Critical patent/CN109390559A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

一种柔性电极的制备及基于该电极的柔性储能器件,将高取向的碳纳米管阵列与弹性橡胶在拉伸状态下结合在一起,释放形变后,形成了表面具有多级褶皱结构的橡胶基底,该多级褶皱结构使得橡胶基底在反复拉伸、弯折中保持导电性能稳定,并基于该橡胶基底材料制备了柔性Zn‑MnO2电池和柔性Zn‑MnO2超级电容器。

Description

一种柔性电极的制备及基于该电极的柔性储能器件
技术领域
本发明属于电化学储能器件技术领域,更具体地,涉及一种柔性电极的制备以及基于该电极的柔性储能器件。
背景技术
近年来,随着智能设备的快速发展和技术的不断进步,人们对柔性、可穿戴电子设备的需求也越来越迫切。这些轻质、可弯折、可扭转、可拉伸的特性利于贴合人体设计,在可穿戴设备、仿真机器人等众多领域中具有良好的应用前景。相应的,对于服务于这些柔性设备的柔性储能器件的要求也越来越高,除具备反复拉伸、可弯折的特性还需保持较高的功率密度和能量密度,而这都有赖于获得合适的高性能柔性电极。
有研究报道将石墨烯、碳纳米管等导电好的柔性碳材料与有机高分子导电材料通过原位聚合方式制备柔性电极,但由于导电高分子材料的断裂伸长率较低,使得制备的电极可耐受的形变范围有限。也有采用拉伸性能较好的弹性材料制备的柔性储能器件,如复旦大学彭胜慧课题组发明的可拉伸线状锂离子电池和全固态的柔性可拉伸的铝空气电池,他们在一定程度上满足了人们对柔性电子器件的需求,然而由于铝空气电池的不可充电性以及锂电池在反复折弯中存在的安全隐患的缺点也限制了其发展。因此寻找一种能量密度高、可反复充放电的电极材料再结合柔性基底,制备成可反复拉伸弯折、循环寿命长的柔性电极至关重要。
高取向碳纳米管(CNT)阵列因其取向基本一致,可以充分发挥碳纳米管沿轴向优异的导热和电荷传输性能,使其在电极材料、超级电容、传感器等方面具有较好的应用前景。此外, Zn-MnO2电极材料因其具有成本低,能量密度高,安全无毒,环境友好的优点,可作为柔性能量存储装置的理想选择。二者的结合为制备更高要求的柔性储能器件提供更多选择。
发明内容
本发明提供了一种制备柔性电极基底的方法,即在预拉伸的弹性橡胶体基底铺上高取向CNT阵列,再在此基础上构建电极材料。所述CNT阵列是采用热化学气相沉积(CVD)制备,再辅以溶剂浸渍-蒸干方法提高致密化及取向,得到高取向高强度的阵列牵伸CNT薄膜。制备得到的CNT阵列具有优良的力学性能和可压缩性,经过1000次的压缩后阵列仍可复原为原高度的85%,像是一个超级弹簧。而弹性橡胶则优选泊松比和应变范围较大(V=0.49,形变≥1000%)的热塑性橡胶,能够在较小的外力下橡胶的分子链由原来的蜷缩状态变为伸展状态,当外力去除后形变又可恢复到初态。当弹性橡胶处于伸展状态时,在其表面铺设高取向CNT阵列,释放弹性橡胶使其恢复至自然状态,预拉伸的弹性橡胶会压缩碳纳米管在横向和纵向形成大小周期的多级褶皱结构(如图1所示),这种波浪形的褶皱结构保证了柔性电极在反复拉伸、弯折过程的性能的稳定。
此外,本发明还提供了一种包含该柔性基底的柔性Zn-MnO2电池和柔性Zn-MnO2超级电容器。
所述柔性Zn-MnO2电池,如图2所示,包括正极材料21,负极材料22,填充于正负极材料之间的电解质23和隔膜24,集流体25,以及支撑正负极材料的橡胶基底26,其中,正极材料和负极材料分别为MnO2@PEDOT纳米材料和锌纳米层,可以通过恒电压电沉积和EDOT原位氧化制得,即在其中一片集电极上含碳纳米管薄膜一侧采用恒电压电沉积法制备得到MnO2纳米膜,然后通过EDOT原位氧化,在MnO2纳米膜上复合PEDOT得到MnO2@PEDOT纳米材料;所述Zn负极纳米材料采用恒电流电沉积方法制备,所用电解液为硫酸锌,硫酸钠和硼酸的混合水溶液,在低恒电流下沉积。此外,也可以通过溅射或原子层沉积法制得,所述电解质为LiCl/ZnCl2/MnSO4/木质纤维素/PVA(聚乙烯醇)混合制备的准固态凝胶状复合物。该柔性电池可以在反复实现拉伸、弯折条件下正常运转,并可以实现反复充放电。
所述柔性Zn-MnO2超级电容器,如图3所示,包括柔性橡胶基底31、集流体32、电极材料33、隔膜35和电解质34。所述电极材料是用溶胶-凝胶化学方法制备Zn掺杂的MnO2材料,与导电剂、粘结剂按照一定比例混匀,再均匀涂覆于柔性橡胶基底上制备而成。所述Zn掺杂的MnO2材料是将一定量的硝酸锌、醋酸锰、乙酸锌、柠檬酸溶于冰醋酸中,氨水调pH值为8,于烘箱脱水后,再置于马弗炉中高温煅烧。所述电解质是由KOH与聚乙烯醇、木质纤维素制成凝胶状复合物。
所述橡胶基底,是将弹性橡胶与白油以一定比例混合,高温熔融制备所得;白油可以是工业级白油、食品级白油、化妆级白油等,可优先选择工业级白油;弹性橡胶可以是天然橡胶、合成天然橡胶、丁腈橡胶 (NBR)、乙烯丙烯橡胶 (EPDM)、丁二烯橡胶 (BR)、氯丁橡胶 (CR)、硅橡胶、聚氨酯橡胶等或者他们某一种或多种的聚合物,可优先选择热塑性橡胶SEBS(苯乙烯-乙烯-丁烯-苯乙烯橡胶)。
所述隔膜,是普通商用隔膜,由聚乙烯或聚丙烯制成。
所述集流体,是将电极活性物质产生的电流汇集起来形成更大的电流输出,作为一种优选方案,本发明所述集流体为高取向的碳纳米管阵列。
附图说明
图1 是柔性电极基底的示意图。
图2是柔性Zn-MnO2电池的截面图。
图3是柔性Zn-MnO2超级电容器截面图。
具体实施方式
实施例1:柔性Zn-MnO2电池的制备
(1)弹性橡胶基底的制备:所述的高性能基底橡胶(片状)为白油和弹性橡胶按一定比例混合,经高温融化后,再通过空气喷涂泵喷涂或挤压机挤压成型。根据白油和弹性橡胶种类不同,一般选用1:1-8:1(质量比),本实施例选用15#工业白油与热塑性橡胶SEBS按照5:1比例混合热熔,选用空气泵喷涂而成,其厚度约为50-500μm,厚度太大影响实际应用,厚度太小不利于橡胶的回弹,本实施例选择厚度为100μm。
(2)集电极的制备:裁剪出两块长3cm、宽1.5cm的橡胶基底,预拉伸至原长的1-6倍,本实施例选取倍数为5倍,为降低橡胶表面张力,利于后续碳纳米管能紧密粘附在弹性橡胶上,滴少许乙醇于弹性橡胶基底上,再将碳纳米管薄膜覆盖在橡胶表面上,铺设方向采用碳纳米管取向平行于橡胶拉伸方向,碳管可选层数为1-30层,本实施例选取层数为10。
(3)正极材料的制备:MnO2的电沉积溶液为0.1M乙酸锰和0.1M硫酸钠水溶液,电沉积电压为1V,时间为15min。PEDOT聚合物是通过EDOT原位氧化得到,电沉积溶液为0.1M高氯酸锂,0.03M EDOT,0.07M十二烷基硫酸钠,电沉积是在CHI电化学工作站上进行的,电镀电压为1V,时间为15min。
(4)负极材料的制备:采用恒电流电沉积法在另一片集电极上含碳纳米管薄膜一侧制备锌负极材料,电沉积溶液为125g/L硫酸锌,125g/L硫酸钠,20g/L硼酸水溶液,电流0.005mA,沉积时间20min,对电极为Pt电极。
(5)电解质的制备:将LiCl,ZnCl2,MnSO4,木质纤维素和PVA以一定比例混合,溶于去离子水中,加热搅拌制得。制备过程中通过控制电解液中MnSO4浓度,可以极大地抑制MnO2电极的溶解,从而改善Zn-MnO2 电池的循环稳定性。经过优化,本实施例选用2.54gLiCl、5.45gZnCl2、5.45gMnSO4、0.05g木质纤维素和2gPVA,溶于20mL去离子水中,强烈搅拌下85℃加热1h,室温冷却成凝胶态电解质。
(6)电池的组装:将凝胶状态的电解质均匀涂覆于正负极电极材料以及隔膜上,隔膜为聚乙烯普通商用隔膜,本实施例选取厚度为25μm,涂覆后静置10分钟,以移除多余的水分。将隔膜贴于正负极材料中间,释放预拉伸基底,待电解质干燥后,封装电池,完成组装。
实施例2:柔性Zn-MnO2超级电容器的制备
(1)弹性橡胶基底的制备:将10#工业级白油与热塑性橡胶SEBS按照3:1比例,经高温熔化混合均匀,再通过挤压机挤压成型,厚度为300μm。
(2)集电极的制备:裁剪两片直径为2.0cm橡胶基底圆片,反复拉伸-回缩橡胶片,以增加橡胶内部分子链柔性;再将其直径拉伸至原长的2倍,滴少许乙醇于弹性橡胶基底上,最后将高取向CNT阵列覆盖在橡胶表面上,铺设层数为20。
(3)片状电极的制备:将20mg掺杂锌的二氧化锰材料与乙炔黑导电剂、聚四氟乙烯按照20:5:0.15比例混合均匀,分散在异丙醇中,搅拌成膏状均匀涂布到集电极上,置于真空烘箱中,烘干至电极片恒重。
(4)电容器的封装:以6mol/L KOH作为电解液,加入0.5%木质纤维素和10%聚乙烯醇,95℃加热搅拌均匀,冷却至凝胶状态;组装时,将凝胶态电解质均匀涂于拉伸状态的片状电极上,静置10分钟,除去多余水分,释放电极,以聚丙烯膜作为隔膜,完成封装。

Claims (10)

1.一种柔性电极,包括弹性橡胶、碳纳米管和电极材料,其特征在于,将弹性橡胶拉伸至伸展状态,在其表面铺设碳纳米管,释放弹性橡胶,碳纳米管在弹性橡胶上形成多级褶皱结构,再将电极材料置于褶皱结构上。
2.如权利要求1所述的柔性电极,其特征在于,所述弹性橡胶是热塑性橡胶SEBS,其成分为苯乙烯-乙烯-丁烯-苯乙烯橡胶。
3.如权利要求1所述的柔性电极,其特征在于,所述碳纳米管是高取向碳纳米管阵列。
4.一种包含如权利要求1-3所述柔性电极的柔性电池,包括柔性正电极、柔性负电极、电解质、隔膜。
5.如权利要求4所述的柔性电池,其特征在于,所述柔性正电极的电极材料为MnO2@PEDOT纳米材料,柔性负电极的电极材料为锌纳米层。
6.如权利要求5所述的柔性电池,其特征在于,所述MnO2@PEDOT纳米材料是通过恒电压电沉积和EDOT原位氧化制备。
7.如权利要求5所述的柔性电池,其特征在于,所述锌纳米层是通过恒电流沉积、溅射或原子层沉积法制备。
8.如权利要求4所述的柔性电池,其特征在于,所述电解质为LiCl/ZnCl2/MnSO4/木质纤维素/PVA混合制备。
9.一种包含权利要求1-3所述的柔性电极的超级电容器,包括柔性电极、电解质、隔膜。
10.如权利要求9所述的超级电容器,其特征在于,所述柔性电极的电极材料是Zn掺杂的MnO2材料。
CN201811227189.2A 2018-10-22 2018-10-22 一种柔性电极的制备及基于该电极的柔性储能器件 Pending CN109390559A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811227189.2A CN109390559A (zh) 2018-10-22 2018-10-22 一种柔性电极的制备及基于该电极的柔性储能器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811227189.2A CN109390559A (zh) 2018-10-22 2018-10-22 一种柔性电极的制备及基于该电极的柔性储能器件

Publications (1)

Publication Number Publication Date
CN109390559A true CN109390559A (zh) 2019-02-26

Family

ID=65426766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811227189.2A Pending CN109390559A (zh) 2018-10-22 2018-10-22 一种柔性电极的制备及基于该电极的柔性储能器件

Country Status (1)

Country Link
CN (1) CN109390559A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110441945A (zh) * 2019-08-01 2019-11-12 深圳市华星光电技术有限公司 在显示面板中制备褶皱结构的方法、褶皱结构及显示面板
CN111155242A (zh) * 2019-11-29 2020-05-15 青岛农业大学 高弹性导电纳米纤维膜及其制备方法和应用
CN111564635A (zh) * 2020-04-22 2020-08-21 北京科技大学 一种柔性可拉伸锌聚合物电池及其制备方法
TWI703754B (zh) * 2019-03-06 2020-09-01 鴻海精密工業股份有限公司 自充電儲能裝置
CN112435860A (zh) * 2020-05-14 2021-03-02 北京理工大学 一种轴向异质结构纳米阵列、制备方法和应用
CN113328060A (zh) * 2021-06-11 2021-08-31 电子科技大学 一种纳米针锥镍基底上制备柔性电极的方法
CN115512978A (zh) * 2022-09-27 2022-12-23 武汉工程大学 一种柔性电化学储能器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1672285A (zh) * 2002-07-31 2005-09-21 吉莱特公司 具有聚合物电解质的碱性电池
CN103903870A (zh) * 2014-03-09 2014-07-02 复旦大学 一种可变色和可拉伸的超级电容器及其制备方法
CN106229160A (zh) * 2016-09-26 2016-12-14 常州大学 一种高功率的可拉伸超级电容器及其制备方法
CN106571461A (zh) * 2016-09-29 2017-04-19 中山大学 一种长寿命、可充放的Zn‑MnO2电池及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1672285A (zh) * 2002-07-31 2005-09-21 吉莱特公司 具有聚合物电解质的碱性电池
CN103903870A (zh) * 2014-03-09 2014-07-02 复旦大学 一种可变色和可拉伸的超级电容器及其制备方法
CN106229160A (zh) * 2016-09-26 2016-12-14 常州大学 一种高功率的可拉伸超级电容器及其制备方法
CN106571461A (zh) * 2016-09-29 2017-04-19 中山大学 一种长寿命、可充放的Zn‑MnO2电池及其应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI703754B (zh) * 2019-03-06 2020-09-01 鴻海精密工業股份有限公司 自充電儲能裝置
CN110441945A (zh) * 2019-08-01 2019-11-12 深圳市华星光电技术有限公司 在显示面板中制备褶皱结构的方法、褶皱结构及显示面板
CN111155242A (zh) * 2019-11-29 2020-05-15 青岛农业大学 高弹性导电纳米纤维膜及其制备方法和应用
CN111564635A (zh) * 2020-04-22 2020-08-21 北京科技大学 一种柔性可拉伸锌聚合物电池及其制备方法
CN111564635B (zh) * 2020-04-22 2021-10-22 北京科技大学 一种柔性可拉伸锌聚合物电池及其制备方法
CN112435860A (zh) * 2020-05-14 2021-03-02 北京理工大学 一种轴向异质结构纳米阵列、制备方法和应用
CN113328060A (zh) * 2021-06-11 2021-08-31 电子科技大学 一种纳米针锥镍基底上制备柔性电极的方法
CN115512978A (zh) * 2022-09-27 2022-12-23 武汉工程大学 一种柔性电化学储能器件及其制备方法

Similar Documents

Publication Publication Date Title
CN109390559A (zh) 一种柔性电极的制备及基于该电极的柔性储能器件
Chen et al. Recent advances in fiber supercapacitors: materials, device configurations, and applications
Zhang et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery
Yu et al. Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance
Li et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte
Senthilkumar et al. Advances and prospects of fiber supercapacitors
Zong et al. Facile synthesis of Na-doped MnO2 nanosheets on carbon nanotube fibers for ultrahigh-energy-density all-solid-state wearable asymmetric supercapacitors
Lee et al. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries
Dai et al. Nanohybridization of Ni–Co–S nanosheets with ZnCo2O4 nanowires as supercapacitor electrodes with long cycling stabilities
Bavio et al. Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline-carbon nanotubes
Cai et al. Flexible planar/fiber-architectured supercapacitors for wearable energy storage
Liu et al. Resist-dyed textile alkaline Zn microbatteries with significantly suppressed Zn dendrite growth
Liu et al. Optimized core–shell polypyrrole-coated NiCo 2 O 4 nanowires as binder-free electrode for high-energy and durable aqueous asymmetric supercapacitor
CN101894682B (zh) 一种高能量超级电容器
Lu et al. The advance of fiber-shaped lithium ion batteries
CN110176591A (zh) 一种水系锌离子二次电池及其基于有机电极材料的正极的制备方法
CN103700798A (zh) 一种纤维化学储能电源及其制备方法
CN110060885A (zh) 一种柔性织物电极及其制备方法与应用
CN108389730A (zh) 柔性可拉伸活性电极及其制备方法和应用
Li et al. Observably boosted electrochemical performances of roughened graphite sheet/polyaniline electrodes for use in flexible supercapacitors
Wang et al. A wearable supercapacitor engaged with gold leaf gilding cloth toward enhanced practicability
Wu et al. The applications of carbon nanomaterials in fiber-shaped energy storage devices
Mu et al. Fully integrated design of intrinsically stretchable electrodes for stretchable supercapacitors
CN104993150A (zh) 一种柔性器件及其制备方法
CN110136994B (zh) 一种高能量密度的纤维状超级电容器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190226