CN109385622A - A kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus - Google Patents

A kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus Download PDF

Info

Publication number
CN109385622A
CN109385622A CN201811587863.8A CN201811587863A CN109385622A CN 109385622 A CN109385622 A CN 109385622A CN 201811587863 A CN201811587863 A CN 201811587863A CN 109385622 A CN109385622 A CN 109385622A
Authority
CN
China
Prior art keywords
carrier
side plate
tonnage
tooth socket
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811587863.8A
Other languages
Chinese (zh)
Inventor
余伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Aitong Intelligent Technology Co Ltd
Original Assignee
Nanjing Aitong Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Aitong Intelligent Technology Co Ltd filed Critical Nanjing Aitong Intelligent Technology Co Ltd
Priority to CN201811587863.8A priority Critical patent/CN109385622A/en
Publication of CN109385622A publication Critical patent/CN109385622A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate

Abstract

The present invention discloses a kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus, carrier group including several groups laid out in parallel, carrier group described in every group is made of multiple carriers, end to end with the bottom plate and side plate for organizing each carrier in carrier group, surrounds hollow column structure;It is spliced to form entirety with two wafers on each carrier in group carrier group with position, the space above and below the position wafer is respectively communicated with to form airflow channel.Due to not having excessive gas free air space, all gas (containing raw material) all necessarily flows through the airflow channel being made of wafer (silicon wafer), and then handles wafer (silicon wafer), utilizes raw material to greatest extent;The structure customer service low problem of raw material availability, raw material availability from principle can be promoted to 95% or more.

Description

A kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus
Technical field
The invention belongs to field of semiconductor manufacture, and in particular to photovoltaic cell manufacturing field, by atomic layer deposition (ALD) skill Art is applied to photovoltaic art, the equipment for producing ultra-large product.
Background technique
ALD equipment raw material availability currently used for crystal silicon solar batteries manufacture is lower (30-50%).ALD raw material is often (or reaction) (such as TMA) is decomposed before vacuum pump or in vacuum pump and generates powder, and vacuum pump is damaged.Low raw material utilizes Rate not only means the increase of production cost, and reduces the service life of vacuum pump.Batch enter batch go out formula ALD equipment (or when Between type ALD equipment) gas flow design to improve raw material availability it is very crucial.
Applied to the ALD equipment of silicon solar cell manufacture, its runner is mostly rectangular duct, and the carrier of wafer (silicon wafer) is Rectangular parallelepiped structure.Carrier is placed in runner, and carrier and runner are unable to perfect combination, and air-flow (including raw material) can be outside carrier Space flow in tail gas, fail to be formed in the plated film on product, cause to waste.
In addition, the raw material of waste generates powder in tail gas, cause the vacuum pump maintenance period of photovoltaic ALD equipment most The no more than 3 moon.Runner locating for this structure wafer (silicon wafer) is unevenly distributed, and air-flow environment is also just different, eventually leads to plating Film uniformity is poor.Firstly, runner upper space is larger, and lower part is smaller for the ease of removing to put carrier, it is asymmetric up and down.Secondly, The small space that two panels adjacent wafers (silicon wafer) are formed is stingy circulation road one by one, and it is empty that annular is formed between carrier and rectangular duct Between be also big airflow channel, these airflow channels all directly or indirectly influence the air-flow environment (i.e. flow field) of every wafer, most Cause air-flow unevenness and plating film uniformity poor eventually.
Summary of the invention
Goal of the invention: a kind of suitable for super large-tonnage original present invention aims in view of the deficiencies of the prior art, providing The flow passage structure of sublayer depositing device improves the raw material availability of ALD equipment, reduces production cost.
Technical solution: the flow passage structure of the present invention suitable for super large-tonnage atomic layer deposition apparatus, including it is several The carrier group of group laid out in parallel, carrier group described in every group are made of multiple carriers, and the carrier includes that two bottom plates and both side plate enclose At carrier frame, with organize carrier group in each carrier bottom plate and side plate it is end to end, surround hollow column structure;
Several tooth sockets are from top to bottom evenly equipped on the both side plate opposite side of each carrier, the tooth socket on both side plate corresponds, and Corresponding two tooth is generally aligned in the same plane, and corresponding two tooth socket carries two wafers on both side plate, two wafers it is to be coated Side is laterally outer, and the other side is bonded to each other;It is spliced to form entirety with two wafers on each carrier in group carrier group with position, it should Space above and below the wafer of position is respectively communicated with to form airflow channel.
Further preferably technical solution is the present invention, and carrier group described in every group is made of 3 ~ 10 carriers.
Preferably, carrier group described in every group is made of 6 carriers.
Preferably, at least one rack gear is additionally provided between two bottom plate, on the tooth socket and both side plate on rack gear Tooth socket corresponds, and any corresponding two tooth is generally aligned in the same plane;Described in tooth socket carries jointly on the rack gear and both side plate Wafer, and limit the " loaded " position of the wafer.
Preferably, the rack gear is two, and two rack gears are located at carrier frame facet, and upper and lower ends are solid with two bottom plates respectively Fixed connection.
Preferably, tooth socket quantity is 200 ~ 250 on the side plate of side, and the spacing between adjacent two tooth socket is 2 ~ 3 mm.
Preferably, tooth socket quantity is 200 on the side plate of side, and the spacing between adjacent two tooth socket is 2.38 mm.
Preferably, the angle for two flank profils of tooth socket being constituted on the side plate is 5 ~ 20 °.
Preferably, the angle for two flank profils of tooth socket being constituted on the side plate is 6 °.
Preferably, the bottom plate and side plate are made of aluminium alloy or U.S. aluminum alloy materials, and each carrier weight is 5 ~ 7 Kg, the thermal capacity of each carrier are 4 ~ 6 kJ/ DEG C.
The utility model has the advantages that (1) flow passage structure of the invention is made of carrier and wafer (silicon wafer), wherein wafer (silicon wafer) is Product processed, carrier close-packed arrays form airflow channel, and every ALD equipment can be made of multiple airflow channels, wafer (silicon Piece) it is evenly distributed in carrier, each airflow channel is uniformly divided into several small airflow channels, is circulated without excessive gas Space, all gas (contain raw material) all necessarily flow through the airflow channel being made of wafer (silicon wafer), so to wafer (silicon wafer) into Row processing, utilizes raw material to greatest extent;The structure customer service low problem of raw material availability, raw material availability from principle can mention It is raised to 95% or more;And because of the raising of raw material availability, decline Dust Capacity in tail gas, effectively protect vacuum pump, improves true The service life of sky pump;This flow passage structure can be such that the vacuum pump maintenance period that is averaged increases to 1 year in conjunction with air filter Left and right;Every wafer (silicon wafer) is all in upper and lower two stingy circulation roads, therefore these little airflow channel shapes are identical, Air-flow environment locating for every wafer (silicon wafer) is identical, be eventually exhibited as in piece and piece between plated film indifference (or difference infinitely becomes It is small), and then improve plating film uniformity;
(2) carrier structure of the invention is simple, surrounds carrier frame by two bottom plates and both side plate, convenient for production, loads and is easy; In addition tooth socket is set on both side plate in the present invention, each tooth socket carries two wafers, and the side to be coated of two wafers is lateral Outside, carrier places (or slightly inclination angle < 30 °) vertically, and wafer is fit together by gravity, reduces reactant and non-ald plating The contact in film process face, and then reduce around plating, improve the transformation efficiency and service life of photovoltaic cell;
(3) rack gear is set between two bottom plates in the present invention, the tooth socket of rack gear is corresponding with the tooth socket on both side plate, not only can be with Wafer is carried jointly with tooth socket on both side plate, can also be limited the " loaded " position of wafer as blend stop, be prevented the wafer in loading It falls off from carrier;
(4) tooth socket quantity is 200 ~ 250 on the side plate of side in the present invention, and the spacing between adjacent two tooth socket is 2 ~ 3 mm, Preferably, tooth socket quantity is 200 on the side plate of side, and the spacing between adjacent two tooth socket is 2.38 mm, every tooth socket carrying two Wafer (silicon wafer), carrier volume are generally 0.015m3, and theory density 27000/m3 of > realizes ultra-large dress It carries, improve the useful load of ALD equipment and then improves production efficiency, reduce production cost;
(5) angle of two flank profils of tooth socket is constituted on latus inframedium of the present invention is 6 °, guarantees that wafer (silicon wafer) and carrier connect in line Touching state avoids scuffing of the carrier to wafer (silicon wafer), improves product qualification rate;
(6) insole board of the present invention and side plate are made of aluminium alloy or U.S. aluminum alloy materials, and each carrier weight is 5 ~ 7 kg, often The thermal capacity of a carrier is 4 ~ 6 kJ/ DEG C, and the stainless steel weight of same size are as follows: 10 ~ 15 kg, the thermal capacity of each carrier It is 5 ~ 7.5 kJ/ DEG C, reduces 20% using carrier weight saving half, the thermal capacity of aluminium alloy or almag, reducing Carrier weight and thermal capacity reduce carrier cost while increasing product transhipment and the efficiency heated.
Detailed description of the invention
Fig. 1 is the structural schematic diagram of carrier group of the present invention;
Fig. 2 is the structural schematic diagram of carrier of the present invention;
In figure, 1- carrier, 2- bottom plate, 3- side plate, 4- rack gear.
Specific embodiment
Technical solution of the present invention is described in detail below by attached drawing, but protection scope of the present invention is not limited to The embodiment.
Embodiment: a kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus, including several groups are arranged side by side The carrier group of cloth, every group of carrier group are made of 8 carriers 1, and carrier 1 includes the carrier frame that two bottom plates and both side plate surround, together The bottom plate and side plate of each carrier 1 in group carrier group are end to end, surround hollow column structure.
The bottom plate 2 and side plate 3 of each carrier 1 are made of aluminium alloy or U.S. aluminum alloy materials, and each 1 weight of carrier is 5 ~ 7 kg, the thermal capacity of each carrier 1 are 4 ~ 6 kJ/ DEG C.
Several tooth sockets are respectively arranged on the opposite side of both side plate 3, the tooth socket on both side plate 3 corresponds, and corresponding Two teeth be generally aligned in the same plane;Tooth socket quantity is 200 on the side plate 3 of side, and the spacing between adjacent two tooth socket is 2.38 mm.It is 6 ° that the angle of two flank profils of tooth socket is constituted on side plate 3.
It is also set up between two bottom plates 2 there are two rack gear 4, two rack gears 4 are located at carrier frame facet, upper and lower ends difference Be fixedly connected with two bottom plates 2, the tooth socket on the tooth socket on rack gear 4 and both side plate 3 corresponds, and any corresponding two tooth position in Same plane.
When loading wafer, two wafers are put into the same tooth socket of side plate 3, the side to be coated of two wafers is lateral Outside, the other side is bonded to each other under gravity.Tooth socket carries wafer jointly on rack gear 4 and both side plate 3, and limits the loading position of wafer It sets.It is spliced to form entirety with two wafers on each carrier 1 in group carrier group with position, the space difference above and below the position wafer Connection forms airflow channel.Every wafer (silicon wafer) is all in upper and lower two stingy circulation roads, all these stingy circulation roads Shape is identical, and all gas (containing raw material) all necessarily flows through the airflow channel being made of wafer (silicon wafer), and then to wafer (silicon wafer) is handled, and utilizes raw material to greatest extent.
As described above, must not be explained although the present invention has been indicated and described referring to specific preferred embodiment For the limitation to invention itself.It without prejudice to the spirit and scope of the invention as defined in the appended claims, can be right Various changes can be made in the form and details for it.

Claims (10)

1. a kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus, which is characterized in that arranged side by side including several groups The carrier group of arrangement, carrier group described in every group are made of multiple carriers, and the carrier includes the load that two bottom plates and both side plate surround Have frame, it is end to end with the bottom plate and side plate for organizing each carrier in carrier group, surround hollow column structure;
Several tooth sockets are from top to bottom evenly equipped on the both side plate opposite side of each carrier, the tooth socket on both side plate corresponds, and Corresponding two tooth is generally aligned in the same plane, and corresponding two tooth socket carries two wafers on both side plate, two wafers it is to be coated Side is laterally outer, and the other side is bonded to each other;It is spliced to form entirety with two wafers on each carrier in group carrier group with position, it should Space above and below the wafer of position is respectively communicated with to form airflow channel.
2. the flow passage structure according to claim 1 suitable for super large-tonnage atomic layer deposition apparatus, which is characterized in that Carrier group described in every group is made of 3 ~ 10 carriers.
3. the flow passage structure according to claim 2 suitable for super large-tonnage atomic layer deposition apparatus, which is characterized in that Carrier group described in every group is made of 6 carriers.
4. the flow passage structure according to claim 1 suitable for super large-tonnage atomic layer deposition apparatus, which is characterized in that At least one rack gear is additionally provided between two bottom plate, the tooth socket on the tooth socket and both side plate on rack gear corresponds, and Any corresponding two tooth is generally aligned in the same plane;Tooth socket carries the wafer jointly on the rack gear and both side plate, and described in limitation The " loaded " position of wafer.
5. the flow passage structure according to claim 4 suitable for super large-tonnage atomic layer deposition apparatus, which is characterized in that The rack gear is two, and two rack gears are located at carrier frame facet, and upper and lower ends are fixedly connected with two bottom plates respectively.
6. the flow passage structure according to claim 1 suitable for super large-tonnage atomic layer deposition apparatus, which is characterized in that Tooth socket quantity is 200 ~ 250 on the side plate of side, and the spacing between adjacent two tooth socket is 2 ~ 3 mm.
7. the flow passage structure according to claim 1 suitable for super large-tonnage atomic layer deposition apparatus, which is characterized in that Tooth socket quantity is 200 on the side plate of side, and the spacing between adjacent two tooth socket is 2.38 mm.
8. the flow passage structure according to claim 1 suitable for super large-tonnage atomic layer deposition apparatus, which is characterized in that It is 5 ~ 20 ° that the angle of two flank profils of tooth socket is constituted on the side plate.
9. the flow passage structure according to claim 1 suitable for super large-tonnage atomic layer deposition apparatus, which is characterized in that It is 6 ° that the angle of two flank profils of tooth socket is constituted on the side plate.
10. the flow passage structure according to claim 1 suitable for super large-tonnage atomic layer deposition apparatus, feature exist In the bottom plate and side plate are made of aluminium alloy or U.S. aluminum alloy materials, and each carrier weight is 5 ~ 7 kg, each carrier Thermal capacity is 4 ~ 6 kJ/ DEG C.
CN201811587863.8A 2018-12-25 2018-12-25 A kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus Pending CN109385622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811587863.8A CN109385622A (en) 2018-12-25 2018-12-25 A kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811587863.8A CN109385622A (en) 2018-12-25 2018-12-25 A kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus

Publications (1)

Publication Number Publication Date
CN109385622A true CN109385622A (en) 2019-02-26

Family

ID=65430631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811587863.8A Pending CN109385622A (en) 2018-12-25 2018-12-25 A kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus

Country Status (1)

Country Link
CN (1) CN109385622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109371383A (en) * 2018-12-25 2019-02-22 南京爱通智能科技有限公司 A kind of carrier suitable for ultra-large atomic layer deposition apparatus

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821845A (en) * 2007-08-31 2010-09-01 约纳斯雷德曼自动化技术有限公司 The clamping device that is used for the disk-shaped substrates such as solar wafer
CN102244142A (en) * 2011-06-24 2011-11-16 苏州凯西石英电子有限公司 Quartz boat for manufacturing solar cell, method for inserting silicon wafers in quartz boat and method for transferring silicon wafers
CN106119810A (en) * 2016-08-22 2016-11-16 江苏微导纳米装备科技有限公司 A kind of spring clip and the carrier device of elastic clamping silicon chip
CN107256898A (en) * 2017-05-18 2017-10-17 广东爱康太阳能科技有限公司 Tubular type PERC double-sided solar batteries and preparation method thereof and special equipment
CN207398100U (en) * 2017-11-09 2018-05-22 润峰电力有限公司 A kind of back-to-back diffusing quartz boat of novel silicon slice
CN108615692A (en) * 2016-12-12 2018-10-02 北京北方华创微电子装备有限公司 Film magazine, reaction chamber and semiconductor equipment
CN108624867A (en) * 2018-05-11 2018-10-09 睿力集成电路有限公司 Improve the method for the atomic layer deposition film thickness uniformity and the cassette for carrying wafer
CN209443082U (en) * 2018-12-25 2019-09-27 南京爱通智能科技有限公司 A kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus
CN210925970U (en) * 2019-11-05 2020-07-03 苏州阿特斯阳光电力科技有限公司 Silicon wafer deposition device and quartz boat
CN111640825A (en) * 2020-06-16 2020-09-08 东方日升(常州)新能源有限公司 Manufacturing method of N-type contact passivation solar cell and method for improving yield
CN112735996A (en) * 2020-08-31 2021-04-30 赛姆柯(苏州)智能科技有限公司 Quartz boat for silicon wafer and silicon wafer placing mode
CN215869312U (en) * 2020-12-15 2022-02-18 泰州隆基乐叶光伏科技有限公司 Carrier for photovoltaic
CN115094396A (en) * 2022-06-15 2022-09-23 北方夜视技术股份有限公司 Anti-wraping plating method for atomic layer deposition coating

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821845A (en) * 2007-08-31 2010-09-01 约纳斯雷德曼自动化技术有限公司 The clamping device that is used for the disk-shaped substrates such as solar wafer
CN102244142A (en) * 2011-06-24 2011-11-16 苏州凯西石英电子有限公司 Quartz boat for manufacturing solar cell, method for inserting silicon wafers in quartz boat and method for transferring silicon wafers
CN106119810A (en) * 2016-08-22 2016-11-16 江苏微导纳米装备科技有限公司 A kind of spring clip and the carrier device of elastic clamping silicon chip
CN108615692A (en) * 2016-12-12 2018-10-02 北京北方华创微电子装备有限公司 Film magazine, reaction chamber and semiconductor equipment
CN107256898A (en) * 2017-05-18 2017-10-17 广东爱康太阳能科技有限公司 Tubular type PERC double-sided solar batteries and preparation method thereof and special equipment
CN207398100U (en) * 2017-11-09 2018-05-22 润峰电力有限公司 A kind of back-to-back diffusing quartz boat of novel silicon slice
CN108624867A (en) * 2018-05-11 2018-10-09 睿力集成电路有限公司 Improve the method for the atomic layer deposition film thickness uniformity and the cassette for carrying wafer
CN209443082U (en) * 2018-12-25 2019-09-27 南京爱通智能科技有限公司 A kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus
CN210925970U (en) * 2019-11-05 2020-07-03 苏州阿特斯阳光电力科技有限公司 Silicon wafer deposition device and quartz boat
CN111640825A (en) * 2020-06-16 2020-09-08 东方日升(常州)新能源有限公司 Manufacturing method of N-type contact passivation solar cell and method for improving yield
CN112735996A (en) * 2020-08-31 2021-04-30 赛姆柯(苏州)智能科技有限公司 Quartz boat for silicon wafer and silicon wafer placing mode
CN215869312U (en) * 2020-12-15 2022-02-18 泰州隆基乐叶光伏科技有限公司 Carrier for photovoltaic
CN115094396A (en) * 2022-06-15 2022-09-23 北方夜视技术股份有限公司 Anti-wraping plating method for atomic layer deposition coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109371383A (en) * 2018-12-25 2019-02-22 南京爱通智能科技有限公司 A kind of carrier suitable for ultra-large atomic layer deposition apparatus

Similar Documents

Publication Publication Date Title
KR101369282B1 (en) High productivity thin film deposition method and system
CN206505899U (en) A kind of tubular film plating Horizontal graphite boat
CN211929454U (en) Slide boat in photovoltaic cell process furnace
CN209443082U (en) A kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus
CN101736317A (en) Atomic layer deposition equipment
CN109371383A (en) A kind of carrier suitable for ultra-large atomic layer deposition apparatus
KR20110139079A (en) Thin film deposition apparatus
CN109385622A (en) A kind of flow passage structure suitable for super large-tonnage atomic layer deposition apparatus
CN209443083U (en) A kind of carrier suitable for ultra-large atomic layer deposition apparatus
CN106716649A (en) Parallel plate inline substrate processing tool
WO2021227478A1 (en) Photovoltaic trough machine and compatible design method for photovoltaic trough machine
CN205821452U (en) A kind of sectional wafer carrier
CN103361633B (en) Gas inlet device, reaction cavity and plasma processing equipment
CN109536927A (en) A kind of feeding system suitable for ultra-large atomic layer deposition
CN202022979U (en) Large-capacity graphite wafer carrier
CN111152036A (en) Battery piece series welding equipment
CN108091722B (en) Automatic feeding and discharging and automatic sheet turning system and working method thereof
WO2023093541A1 (en) Boat structure
CN209652421U (en) A kind of feeding system suitable for ultra-large atomic layer deposition
CN206742216U (en) Base plate transfer device and the base plate processing system comprising the base plate transfer device
CN206814841U (en) The graphite carrying plate structure of above and below board-like PECVD plated film equipment integratings
CN212517147U (en) Carrier-plate-free silicon wafer conveying mechanism of PECVD (plasma enhanced chemical vapor deposition) equipment and process chamber matched with conveying mechanism
CN104282604A (en) Graphite boat piece for double-faced film coating and graphite boat
CN211719602U (en) Silicon chip, photovoltaic cell assembly and carrier
CN211889844U (en) Battery piece series welding equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination