CN109384908B - 主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用 - Google Patents

主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用 Download PDF

Info

Publication number
CN109384908B
CN109384908B CN201811314917.3A CN201811314917A CN109384908B CN 109384908 B CN109384908 B CN 109384908B CN 201811314917 A CN201811314917 A CN 201811314917A CN 109384908 B CN109384908 B CN 109384908B
Authority
CN
China
Prior art keywords
polymer
main chain
anion exchange
exchange membrane
bromoalkylfluorene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811314917.3A
Other languages
English (en)
Other versions
CN109384908A (zh
Inventor
和庆钢
任荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201811314917.3A priority Critical patent/CN109384908B/zh
Publication of CN109384908A publication Critical patent/CN109384908A/zh
Application granted granted Critical
Publication of CN109384908B publication Critical patent/CN109384908B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)
  • Polyethers (AREA)

Abstract

本发明公开了一种主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用,该主链含溴代烷基芴的聚合物是以二溴烷基取代的芴为原料,采用超酸催化Friedel–Crafts聚合的方法得到高分子量的均聚物或共聚物。该聚合物可以与叔胺反应,得到季铵盐阳离子聚合物,并对其进行成膜,得到具有较高碱稳定性的阴离子交换膜。本发明的聚合物主链中不含醚、酮等其他活性基团,对碱有非常好的耐受性。

Description

主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用
技术领域
本发明属于高分子材料合成领域,涉及一种主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用。
背景技术
燃料电池作为一种清洁、高效、安全绿色的能量转换装置,有望成为新能源应用中最突出的一种新技术。其中,碱性阴离子交换膜燃料电池具有比功率高、发电效率高、环境友好性的优点,同时避免了质子交换膜燃料电池贵金属催化剂成本较高,甲醇透过率高的劣势,从而成为备受关注的新能源技术。阴离子交换膜的性质很大程度上决定着碱性燃料电池的最终性能,因此,开发综合性能优异的阴离子交换膜材料一直是科学家努力的目标。
相比质子交换膜,阴离子交换膜传导的是氢氧根,但因为氢氧根在水中的扩散系数只有氢离子的四分之一,所以电导率普遍较低。最常用的解决方法是提高季铵盐的含量,并进行适当的交联,从而提高离子交换容量并限制膜的溶胀实现电导率的提升。现阶段报道的阴离子交换膜的电导率已经能与商业化的质子交换膜Nafion(83mS/cm,25℃)相当,稳定性成为制约阴离子交换膜应用的决定性因素。
目前研究最多的阴离子交换膜都是基于聚苯醚,聚砜等聚合物的后修饰,但是近来研究发现季铵化多芳烃中的芳基醚基团在高pH条件下是化学不稳定的。为了避免这种降解,不同研究者已经通过Diels-Alder反应,酸催化的Friedel-Craft缩聚反应,金属催化的偶联反应和环缩聚反应制备了主链不含芳基醚的季铵化多芳烃。这些不含芳基醚的季铵化多芳烃表现出优异的碱稳定性。但是由于复杂的单体分子合成和贵催化剂的限制,此类阴离子交换膜的研究较少。
此外,通过柔性烷基间隔单元将碱性阳离子连接到聚合物主链上可减轻水的吸收,促进相分离以增强阴离子传导性,并显着提高碱稳定性。芴的9位可以很方便的修饰上两个烷基,所以聚芴基的阴离子交换膜已经有很多研究报道。分别通过Suzuki偶联和镍催化缩聚反应在聚芴(PF)骨架上制备了具有长烷基阳离子的官能化PF主链AEM。以上研究证明含有芴基的AEM不仅具有良好的化学稳定性,热稳定性和化学稳定性,而且还显示这些类型的AEM具有高的氢氧根离子传导性。尽管观察到增强的离子电导率和化学稳定性,但聚芴聚合物的复杂处理和昂贵的金属催化剂用于聚合反应也限制了材料的实际应用。
本发明公开了一种主链含溴代烷基芴的聚合物。首先得到二溴烷基取代的芴,采用超酸催化聚合的方法得到高分子量的均聚物或共聚物。该聚合物可以与叔胺反应,得到季铵盐阳离子聚合物,并对其进行成膜,得到具有较高碱稳定性的阴离子交换膜。本发明的聚合物主链中不含醚、酮等其他活性基团,对碱有非常好的耐受性。
发明内容
碱性聚合物电解质燃料电池体系的制约因素是阴离子交换膜的稳定性问题。本发明的目的在于针对现有技术的不足提供一种主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用。
一种主链含溴代烷基芴的聚合物,其主链含有溴代烷基芴,即芴的9号位被溴代烷基取代,所述聚合物的结构式为:
Figure GDA0002458007090000021
其中,x=2-10,m、n表示聚合度,且m≠0,n≠0,R选自:
Figure GDA0002458007090000031
该聚合物的合成方法,是以三氟甲磺酸为催化剂,将二溴烷基芴、芳烃与三氟丙酮在二氯甲烷中聚合反应得到。所述的芳烃优选采用联苯、或三联苯。所述的二溴烷基芴、芳烃与三氟丙酮的摩尔比为m:n:1.1(m+n)。
一种主链含芴基团的阳离子聚合物,含有上述的聚合物主体,该阳离子聚合物的结构式如下:
Figure GDA0002458007090000032
其中,x=2-10,m、n表示聚合度,且m≠0,R选自:
Figure GDA0002458007090000033
R1选自:
Figure GDA0002458007090000041
该阳离子聚合物是将上述主链含溴代烷基芴的聚合物溶于N-甲基吡咯烷酮中,浓度为5-10wt%,加入叔胺,使得叔胺与溴代烷基的摩尔比为5,50℃反应24小时制得。所述的叔胺优选采用三甲胺、N-甲基哌啶、或N-甲基咪唑。将该阳离子聚合物溶于甲醇、二甲基甲酰胺、或N-甲基吡咯烷酮等后,60℃加热除去溶剂即可获得阴离子交换膜。
本发明的有益效果是:
本发明所述聚合物及阴离子交换膜材料都是通过快捷高效的酸催化Friedel–Crafts缩合反应得到,避免了贵金属催化剂的使用,是一种简单方便成本低廉的合成主链含溴代烷基芴聚合物的方法。此外该聚合物可以与叔胺反应,得到季铵盐阳离子聚合物,并对其进行成膜。因该主链中不含醚、酮等其他活性基团,对碱有非常好的耐受性,得到具有较高碱稳定性的阴离子交换膜。
附图说明
图1为9,9-二溴己烷基芴的1H NMR图。
图2为均聚物(PF)的1H NMR图。
图3为PBF的19F NMR图。
图4为共聚物(PBF)的1H NMR图。
图5为PBF的19F NMR图。
图6为PBF-mPip的结构及所成的膜。
图7PBF-OH为吸水率和电导率。
图8为阳离子聚合物PBF1的AFM图。
图9为阳离子聚合物PBF1的热失重图。
具体实施方式
仪器与材料
芴,1,4-二溴丁烷,1,6-二溴己烷,1,8-二溴辛烷,联苯,三联苯,三氟丙酮,三氟甲磺酸,N-甲基哌啶等购于百灵威试剂公司。无水甲醇,无水乙醚,二氯甲烷,N-甲基吡咯烷酮,氢氧化钠等均购于国药化学试剂有限公司。
实施例1
9,9-二溴己烷基芴的合成
本实例中二溴烷基芴以9,9-二溴己烷基芴为例说明,其他凡是满足本发明结构式要求的二溴烷基芴均属于本发明范围内。
根据已有报道的合成路线,通过在水性条件下通过直接C-H烷基化将芴烷基化来实现9,9-二溴己烷基芴的合成。将芴(3.3g,20mmol),15mL 50%NaOH水溶液,1,6-二溴己烷(34g,140mmol)和催化量的四丁基碘化铵(0.74g,10mol%)加入烧瓶中。通过应用冷冻循环抽气的方法将烧瓶脱气三次。将反应混合物在70℃下连续加热4小时,冷却至室温并用氯仿萃取。用水洗涤有机层并用无水硫酸钠干燥。在真空下除去溶剂,粗产物通过柱色谱法在小硅胶垫上纯化,用10%氯仿的己烷溶液作为洗脱剂,得到所需产物。(产率:70%)
实施例2
主链含溴代烷基芴均聚物(PF)的合成
将二溴代烷基芴和三氟丙酮(摩尔比1:1.1)溶于二氯甲烷中,冰浴冷却到零度,加入三氟甲磺酸,低温反应30min后撤掉冰浴,室温反应两小时后加二氯甲烷稀释,在甲醇中沉淀析出。抽滤,用甲醇冲洗得到最终产物。(产率97%)
实施例3
主链含溴代烷基芴共聚物(PBF)的合成
将二溴代烷基芴,联苯和三氟丙酮(摩尔比1:1:2.2)溶于二氯甲烷中,冰浴冷却到零度,加入三氟甲磺酸,低温反应30min后撤掉冰浴,室温反应两小时后加二氯甲烷稀释,在甲醇中沉淀析出。抽滤,用甲醇冲洗得到最终产物。(产率95%)
实施例4
主链含溴代烷基芴阳离子聚合物(PBF-mpip)的制备及成膜
将实施例2或例3中的聚合物溶于N-甲基吡咯烷酮中,得到5wt%的溶液,加入N-甲基哌啶,50℃反应24小时后,再倒入平板玻璃模具中,置于60℃烘箱中烘干可以得到透明均一的阴离子交换膜,如图6所示。
将阴离子交换膜在1molL的NaOH中浸泡24h后取出,放入去离子水中反复清洗,得到PBF-OH,图7为相应PBF-OH的吸水率和电导率,其中PBF1-OH为m:n为1制得的产物,PBF2-OH为m:n为2制得的产物。

Claims (2)

1.一种主链含溴代烷基芴的聚合物的合成方法,其特征在于,所述聚合物的主链含有溴代烷基芴,即芴的9号位被溴代烷基取代,所述聚合物的结构式为:
Figure FDA0002458007080000011
其中,x=2-10,m、n表示聚合度,且m≠0,n≠0,R选自:
Figure FDA0002458007080000012
所述的主链含溴代烷基芴的聚合物的合成方法是以三氟甲磺酸为催化剂,二溴烷基芴、芳烃与三氟丙酮在二氯甲烷中聚合反应得到;
所述的二溴烷基芴、芳烃与三氟丙酮的摩尔比为m:n:1.1(m+n)。
2.根据权利要求1所述的主链含溴代烷基芴的聚合物的合成方法,其特征在于,所述的芳烃采用联苯、或三联苯。
CN201811314917.3A 2018-11-06 2018-11-06 主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用 Active CN109384908B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811314917.3A CN109384908B (zh) 2018-11-06 2018-11-06 主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811314917.3A CN109384908B (zh) 2018-11-06 2018-11-06 主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用

Publications (2)

Publication Number Publication Date
CN109384908A CN109384908A (zh) 2019-02-26
CN109384908B true CN109384908B (zh) 2020-06-16

Family

ID=65428448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811314917.3A Active CN109384908B (zh) 2018-11-06 2018-11-06 主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用

Country Status (1)

Country Link
CN (1) CN109384908B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11827743B2 (en) * 2019-03-28 2023-11-28 University Of Delaware Polymers having stable cationic pendant groups for use as anion exchange membranes
CN110862516B (zh) * 2019-12-02 2022-11-18 大连理工大学 一种含Cardo结构靛红芳烃共聚物、制备方法及应用
WO2021112420A1 (ko) * 2019-12-06 2021-06-10 한양대학교 산학협력단 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법
CN111269401B (zh) * 2020-01-21 2023-12-05 惠州市亿纬新能源研究院 一种含哌啶叔胺基团的聚合物、阴离子交换聚合物及其制备方法和应用
CN111871222A (zh) * 2020-07-16 2020-11-03 福州大学 一种基于柱[5]芳烃的季铵盐功能化含氟聚芴醚阴离子交换膜的制备方法
CN111848520B (zh) * 2020-08-10 2022-02-22 中国科学院长春应用化学研究所 一种咪唑鎓盐单体及其制备方法和聚合物电解质材料及其制备方法和应用
WO2022087784A1 (zh) * 2020-10-26 2022-05-05 浙江大学 一种均相催化剂及阴离子交换膜燃料电池催化层
CN112563520B (zh) * 2020-10-27 2021-11-02 浙江大学 一种均相催化剂及阴离子交换膜燃料电池催化层
US11980879B2 (en) 2021-09-14 2024-05-14 Uop Llc Anion exchange polymers and membranes for electrolysis
CN113621131B (zh) * 2021-09-15 2022-10-28 中国科学技术大学 一种聚电解质材料、其制备方法与聚电解质膜
US20230365744A1 (en) * 2022-05-10 2023-11-16 Uop Llc Anion exchange polymers and membranes for electrolysis
CN115044048A (zh) * 2022-06-29 2022-09-13 中国科学院长春应用化学研究所 一种嵌段式无醚键聚合物及其制备方法和离子交换膜、燃料电池或液流电池
WO2024080321A1 (ja) * 2022-10-13 2024-04-18 国立大学法人東京工業大学 化合物、ポリマー、電解質膜、燃料電池、及び電解装置
KR20240063769A (ko) 2022-11-01 2024-05-13 한양대학교 산학협력단 프로파길기가 그라프트된 폴리(아릴 피페리디늄) 공중합체 이오노머, 가교된 음이온교환막 및 그 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320692A (zh) * 2018-09-21 2019-02-12 中国科学院长春应用化学研究所 一种含阳离子基团无醚键聚芴烷撑、其制备方法和阴离子交换膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644069B2 (en) * 2015-07-07 2017-05-09 National Sun Yat-Sen University Polymer of fluorine-containing sulfonated poly(arylene ether)s and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320692A (zh) * 2018-09-21 2019-02-12 中国科学院长春应用化学研究所 一种含阳离子基团无醚键聚芴烷撑、其制备方法和阴离子交换膜

Also Published As

Publication number Publication date
CN109384908A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
CN109384908B (zh) 主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用
CN109762190B (zh) 侧链含n-螺环季铵盐基团的聚芳醚类阴离子交换膜材料及其制备方法
Hou et al. Wittig reaction constructed an alkaline stable anion exchange membrane
CN110690486A (zh) 一种基于柔性长侧链多阳离子结构的交联型碱性阴离子膜的制备方法
CN113150344B (zh) 一种聚合物主链为芳环结构的质子交换膜及其制备方法
CN109546191B (zh) 一种混合基质型阴离子膜及其制备方法
CN108530660B (zh) 一种局部密集季铵化聚芴醚酮化合物及其制备方法
CN113621131B (zh) 一种聚电解质材料、其制备方法与聚电解质膜
CN111793230A (zh) 一种含密集离子串嵌段型阴离子交换膜及其制备方法
WO2023217050A1 (zh) 聚合物及其制备方法以及阴离子交换膜
CN112898539A (zh) 一种燃料电池用长侧链型聚芳烃靛红碱性膜及制备方法
CN103012772B (zh) 具有微相分离结构的碱性聚芳醚离聚物材料及其制备与应用
CN107573501A (zh) 一种可交联含氟磺化聚芳醚化合物及其制备方法
CN113782761B (zh) 一种亲疏水刚性大体积共调节的阴离子交换膜及其制备方法
CN103788365B (zh) 一种含季铵侧基的聚芳醚和阴离子交换膜及其制备方法
CN109232881B (zh) 一种含有磺酸侧链的含氟聚芳醚化合物及其制备方法
CN103709379A (zh) 芳香磺化聚酮及其制备方法
CN113773472A (zh) 一种基于聚芴的侧链型阴离子交换膜及其制备方法
CN114835935B (zh) 一种肟基辅助无醚氧键型聚合物阴离子交换膜及其制备方法
CN114524912B (zh) 一种侧链哌啶阳离子接枝型聚联苯碱性膜及其制备方法
CN113307966B (zh) 含四甲基哌啶氧化物季铵盐的共聚物及其制备方法和应用
CN114672147A (zh) 含金刚烷无规阴离子交换膜及其制备方法
CN111530298B (zh) 一种含酞菁水解离催化基团单片型聚芳醚砜酮双极膜的制备方法
CN103113588A (zh) 一种侧链含季铵基团的聚砜及其制备方法
CN109232936B (zh) 一种全钒液流电池用阴离子交换膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant