CN109382142B - 一种酸性离子液体的再生方法 - Google Patents

一种酸性离子液体的再生方法 Download PDF

Info

Publication number
CN109382142B
CN109382142B CN201811544407.5A CN201811544407A CN109382142B CN 109382142 B CN109382142 B CN 109382142B CN 201811544407 A CN201811544407 A CN 201811544407A CN 109382142 B CN109382142 B CN 109382142B
Authority
CN
China
Prior art keywords
ionic liquid
temperature
acid
phase
acidic ionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811544407.5A
Other languages
English (en)
Other versions
CN109382142A (zh
Inventor
唐晓东
李晶晶
卿大咏
张晓普
王治宇
冷曼希
张洪宇
王春
杨柳
张术峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201811544407.5A priority Critical patent/CN109382142B/zh
Publication of CN109382142A publication Critical patent/CN109382142A/zh
Application granted granted Critical
Publication of CN109382142B publication Critical patent/CN109382142B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0279Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the cationic portion being acyclic or nitrogen being a substituent on a ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0287Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing atoms other than nitrogen as cationic centre
    • B01J31/0288Phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0298Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature the ionic liquids being characterised by the counter-anions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种用于炼油化工和精细化工领域的酸性离子液体的再生方法。该方法包括以下步骤:(1)有机溶剂对废离子液体进行预处理;(2)向预处理后的离子液体中按不同摩尔比加入碱液反应后,常压蒸馏得到固相混合物;(3)向固相混合物中加入有机溶剂进行萃取,收集萃取液,进行常压蒸馏,得到有机盐固体;(4)向有机盐固体中按不同摩尔比加入HCl溶液进行反应后,常压蒸馏得到目标产品,最后将产品在温度为100~110℃下干燥12~24h,即得到阳离子中间体;(5)向中间体中加入目标阴离子置换出卤素离子或加入Lewis酸、或

Description

一种酸性离子液体的再生方法
技术领域
本发明涉及一种用于炼油化工和精细化工领域的酸性离子液体的再生方法。
背景技术
离子液体(ILs)是由有机阳离子和无机或有机阴离子组成的,在常温下呈液态的一种熔融盐。由于其独特的理化性质,如蒸气压低、热稳定性好和结构可设计性等特点,它的出现为开创清洁新工艺提供了新思路和发展机遇,并已广泛应用于众多研究领域。特别地,酸性离子液体不仅具有液体酸和固体酸的双重优势,如活性高、挥发性低、环境友好等优点,而且可以通过调节阴阳离子的结构及大小来调控其物化性能,如酸强度、溶解度、界面特性、氢负离子转移速度等,因而在酸催化过程发展十分迅速,可用于烷基化、酰化、齐聚、酯化、缩合、醚化、酯交换等多种反应,特别地,在催化汽油烷基化脱硫技术和C4烷基化反应制备烷基化汽油技术中都表现出了很好的应用前景。
离子液体用于催化反应后,结构和性质会逐渐发生改变,如活性组分流失、酸强度下降,从而影响反应效率。由于合成ILs的有机配体原料昂贵且合成条件复杂苛刻,导致ILs合成成本高,难以实现工业应用。同时,ILs作为一种含氮、硫、氯等的有机物质,虽不易挥发到空气中,但是可释放进入水环境中,造成环境污染。因此,无论从经济上、还是从环境保护角度考虑,ILs的回收与再生循环研究都具有重要的实际意义。
ILs的失活原因主要有物理失活和化学失活两种。物理失活,即反应后ILs的化学结构不会发生变化,如常见的杂质混入ILs引起的失活(水、溶剂、产物等溶入到ILs)、积炭失活等,通过物理分离的方法可实现循环利用;化学失活,即反应后ILs的化学结构发生变化,如常见的碱性物质引起的中毒失活、遇水分解等,ILs的化学结构破坏,从而导致ILs的永久失活,不能通过物理方法进行再生循环。
目前已报道的ILs回收再生方法主要有:①高温和减压蒸馏:中国专利CN1910124A和韩国专利KR20050114213都报道了采用蒸馏的方法纯化离子液体的技术,美国专利US2007095645也报公开了一种在60~350℃下采用常压或减压蒸馏的方法纯化离子液体的方法,但此种纯化方法蒸馏需要的能耗较高,存在回收成本高、回收率低、回收液体纯度低等问题;②超临界CO2萃取:Lynnette A.Blanchard等使用超临界CO2,研究了从离子液体中分离有机溶质(醇、酰胺和酮)的可行性(And L AB,Brennecke J F.Recovery of OrganicProducts from Ionic Liquids Using Supercritical Carbon Dioxide[J].Ind.Eng.Chem.Res.2001,40(11):287-292.),该方法回收离子液体的效果较好,但对技术及设备的要求较高;③吸附分离:中国专利CN 103147169A公开了一种采用活性炭进行纺丝离子液体回收的方法,该方法包括过滤除杂、吸附脱色、絮凝除杂、蒸发浓缩等步骤;④超滤、纳滤、反渗透过滤等方法用于ILs的富集:中国专利CN 101219840A公开了一种从纺丝废水中回收离子液体的方法,通过预处理后采用纳滤或反渗透工艺后经减压蒸馏得到浓缩离子液体水溶液,此方法对设备要求较高;⑤有机溶剂萃取:中国专利CN 1944357A公开了一种离子液体的回收方法,确定了亲水性离子液体经溶剂萃取、水洗、脱水工艺处理,可以循环利用。该方法操作条件为常温常压,能耗低,但所用溶剂中部分溶剂(如烷基咪唑六氟磷酸盐、烷基吡啶六氟磷酸盐、CHCl3、苯、甲苯等)价格昂贵且对环境不友好。⑥无机盐与离子液体形成双水相体系富集离子液体:中国专利CN 101748515A公开的一种离子液体回收方法,采用过滤除杂、浓缩处理、盐析分离、蒸发分离等步骤回收离子液体。此外,中国专利(CN102580342A)公开了一种离子液体再生及吸收物分离回收的工艺方法,该方法包括使离子液体与蒸汽在再生塔中相接触,以吹扫离子液体中吸收物,吹扫出的气体通过冷凝将蒸汽与吸收物分离,从而实现离子液体再生及吸收物分离回收。美国专利US 20170197994 Al公开了一种离子液体的回收方法,通过将废旧离子液体与含有至少一种配位剂的化合物接触,以获得包含加合物的混合物,将混合物进行过滤,得到过滤的加合物,加热获得回收的离子液体。通过以上专利和文献中的方法均能进行ILs的浓缩或回收,但是它们均只适用于遇水稳定不分解和物理失活后的ILs的再生。而化学失活的ILs仅通过以上物理分离的方法却难以实现循环再生。因此,寻找化学失活的ILs的再生方法,对ILs的工业应用具有重要的意义。
中国专利CN 1944357A公开了一种经过碱化(或酸化)回收疏水离子液体的方法,该方法通过向萃取酸性抗生素后的疏水性离子液体溶液中加入碱化剂水溶液,使离子液体pH≥7;或向萃取碱性抗生素后的疏水性离子液体溶液中加入酸化剂水溶液,使溶液的pH≤5;室温下搅拌混合液,使碱化或酸化反应完全;静置分层,取离子液体相加水,水洗至中性;静置分层,在离子液体相中加入活性炭脱色,搅拌,过滤;用加热常压蒸馏或加热减压蒸馏使疏水性离子液体进行脱水至水份合格。该方法虽能实现ILs再生,但再生过程中引入了多种试剂,还需要水洗、脱色、脱水等后续处理步骤,流程长,成本高。该方法采用碱化剂或酸化剂是为了中和回收离子液体中的萃取产物(酸性抗生素或碱性抗生素),同样该方法只适用遇水稳定不分解的ILs再生,对遇水水解的ILs无法再生,不适用于化学失活和结构破坏的ILs的再生。
综上所述,现有的ILs再生方法皆属于物理再生方法,且适用的ILs类型都是遇水稳定不分解的,而对于化学失活且遇水分解后的ILs,通过物理分离的方法不能实现再生循环利用。目前有关化学失活ILs的再生方法尚未有报道。
发明内容:
本发明的目的是提供一种酸性离子液体的再生方法,适用于化学失活且遇水分解的酸性ILs的回收再生。
为实现上述目的,本发明采用以下技术方案:一种酸性离子液体的再生方法,其特征在于:该酸性离子液体的再生方法包括如下步骤:
(1)称取20g~50g失效的离子液体放入分液漏斗中,再向分液漏斗中加入20~50ml正庚烷或正辛烷对其进行预处理,在温度为20~40℃下振荡混合10~30min,然后在温度为20~40℃下静置分相20~60min,收集下相离子液体,回收上相溶剂;
(2)用NaOH、或KOH、或氨为溶质,用蒸馏水为溶剂,配制摩尔浓度为2mol/L~5mol/L的碱液,按照碱液与离子液体的摩尔比为1.5:1.0~1.0:1.0向离子液体中加入上述碱液中的一种,在温度为40~50℃下搅拌反应10~30min,反应完后,在温度为105~120℃下常压蒸馏30~60min脱水,脱除水供循环使用,得到固相混合物;
(3)往上述常压蒸馏脱水后的固相混合物中加入20~30ml有机溶剂,如丙酮、或乙酸乙酯、或甲基叔丁基醚、或乙醇中的一种,在温度为20~40℃下振荡混合10~30min,然后在温度为20~40℃下静置分相20~60min,收集上层萃取液,重复萃取操作2~5次,收集合并萃取液,在温度为60~80℃下进行常压蒸馏30~60min除去并回收有机溶剂,得到有机盐固体;
(4)配制摩尔浓度为1mol/L~2mol/L的HCl溶液,按酸碱摩尔比为1.0:1.0~1.5:1.0向上述有机盐固体中加入HCl溶液,在温度为40℃~50℃下搅拌反应10~30min,然后在温度为105~120℃下常压蒸馏30~60min脱除水分及过量HCl(供循环利用),最后在温度为100~110℃下干燥12~24h,得到干燥的阳离子中间体,如咪唑类、吡啶类、季铵盐类、季磷盐;
(5)向上述再生中间体中加入目标阴离子(HSO4 -、SbF6 -、BF4 -、PF6 -等)置换出卤素离子,或加入Lewis酸、或
Figure BDA0001908993730000031
酸、或杂多酸,得到目标酸性离子液体(参考文献见具体实施例)。
所述目标酸性离子液体包括Lewis酸性离子液体和
Figure BDA0001908993730000032
酸性离子液体。适用的离子液体阳离子类型为烷基咪唑类、烷基吡啶类、季铵盐类、季磷盐类中的一种或1~3种,阴离子类型有Lewis酸,如:AlCl3、ZnCl2、FeCl3、CuCl2
Figure BDA0001908993730000033
酸,如:HSO4 -、PTSA-、H2PO4 -、SbF6 -、BF4 -、PF6 -、CF3SO3 -、OTf-、Tf2N-;以及杂多酸,如磷钨酸、硅钨酸、磷钼酸、硅钼酸,或掺杂其他原子的杂多酸。
本发明具有以下有益效果:(1)本发明是一种针对化学失活的ILs再生方法,目前针对化学失活ILs的再生方法尚未有报道;(2)本发明的再生过程中可以回收ILs中昂贵的有机阳离子配体并进行有效再生,解决了ILs制备成本较高的问题;(3)本发明再生方法简单,操作容易,不需要真空减压系统,降低了再生过程中的能耗;(4)本发明适用范围广,适用于遇水不稳定分解、遇碱中毒等化学结构被破坏的ILs再生,无废水排放,减少了环境污染,能够真正实现绿色化工。
具体实施方式
为了更好地理解本发明,结合实施例对本发明所述方法作进一步说明,但不能理解为对本发明具体实施范围的限定。
实施例1
称取20.0g废离子液体[BMIM]BF4(M=226.02g/mol)放入分液漏斗中,再向分液漏斗中加入20ml正庚烷,在温度为20℃下振荡混合10min,然后在温度为20℃下静置分相20min,收集下相离子液体,回收上相溶剂;按碱液与离子液体的摩尔比为1.0:1.0向离子液体中加入摩尔浓度为2.0mol/L的NaOH溶液45ml,在温度为40℃下冷凝回流搅拌反应10min,反应完后,在温度为105℃下常压蒸馏30min脱水(脱除水供循环使用),得到固相混合物;向固相混合物中加入30ml丙酮,在温度为20℃下振荡混合10min,然后在温度为20℃下静置分相30min,收集上层萃取液,重复萃取操作2次,收集合并萃取液,在温度为60℃下对萃取液进行常压蒸馏30min,回收丙酮,得到有机盐固体12.1g;向有机盐固体中按酸碱摩尔比为1.0:1.0加入摩尔浓度为1.0mol/L的HCl溶液78ml,在温度为40℃下搅拌反应30min,得到[BMIM]Cl(M=174.5g/mol)溶液,然后在温度为105℃下对溶液进行常压蒸馏30min脱除水分及过量HCl(供循环利用),最后将产品在温度为100℃下真空干燥12h,得到干燥的中间体[BMIM]Cl 12.9g;参考文献方法(Joseph T,Sahoo S,Halligudi S B.
Figure BDA0001908993730000041
acidicionic liquids:A green,efficient and reusable catalyst system and reactionmedium for Fischer esterification[J].Journal of Molecular Catalysis AChemical,2005,234(1-2):107-110.),向干燥的中间体[BMIM]Cl中按摩尔比为1.0:1.0加入8.2g NaBF4(109.81),加入10ml丙酮作溶剂,在室温下搅拌反应24h。反应结束后过滤,收集滤液,在温度为60℃下旋蒸30min,得到再生离子液体[BMIM]BF4 16.2g。
实施例2
称取30.0g废离子液体[BMIM]PTSA(M=310.41g/mol)放入分液漏斗中,再向分液漏斗中加入30ml正辛烷,在温度为30℃下振荡混合20min,然后在温度为30℃下静置分相30min,收集下相离子液体,回收上相溶剂;按碱液与离子液体的摩尔比为1.2:1.0向离子液体中加入摩尔浓度为3.0mol/L的NaOH溶液39ml,在温度为45℃下冷凝回流搅拌反应20min,反应完后,在温度为110℃下常压蒸馏45min脱水(脱除水供循环使用),得到固相混合物;向固相混合物中加入30ml乙酸乙酯,在温度为30℃下振荡混合20min,然后在温度为30℃下静置分相45min,收集上层萃取液,重复萃取操作3次,收集合并萃取液,在温度为80℃下对萃取液进行常压蒸馏45min,回收乙酸乙酯,得到有机盐固体14.4g;向有机盐固体中按酸碱摩尔比为1.2:1.0加入摩尔浓度为1.5mol/L的HCl溶液74ml,在温度为45℃下搅拌反应20min,得到[BMIM]Cl(M=174.5g/mol)溶液,然后在温度为110℃下对溶液进行常压蒸馏45min脱除水分及过量HCl(供循环利用),最后将产品在温度为100℃下真空干燥18h,得到干燥的中间体[BMIM]Cl 15.6g;参考文献方法(Joseph T,Sahoo S,Halligudi S B.
Figure BDA0001908993730000051
acidic ionic liquids:A green,efficient and reusable catalyst system andreaction medium for Fischer esterification[J].Journal of Molecular CatalysisA Chemical,2005,234(1-2):107-110.),向干燥的[BMIM]Cl中按摩尔比为1.0:1.0加入15.4g PTSA,加入10ml蒸馏水做溶剂,在温度为50℃下冷凝回流搅拌反应2h,反应完成后旋蒸脱水,得到再生离子液体[BMIM]PTSA 27.2g。
实施例3
称取30.0g废离子液体[BMIM]Cl/xAlCl3(x=0.6,M=219.0g/mol)放入分液漏斗中,再向分液漏斗中加入30ml正庚烷,在温度为40℃下振荡混合30min,然后在温度为40℃下静置分相45min,收集下相离子液体,回收上相溶剂;按碱液与离子液体的摩尔比为1.5:1.0加入摩尔浓度为4.0mol/L的KOH溶液52ml,在温度为50℃下冷凝回流搅拌反应30min,反应完后,在温度为115℃下常压蒸馏60min脱水(脱除水供循环使用),得到固相混合物;向固相混合物中加入25ml甲基叔丁基醚,在温度为40℃下振荡混合30min,然后在温度为40℃下静置分相60min,收集上层萃取液,重复萃取操作4次,收集合并萃取液,在温度为60℃下对萃取液进行常压蒸馏60min,回收甲基叔丁基醚,得到有机盐固体20.6g;向有机盐固体中按酸碱摩尔比为1.2:1.0加入摩尔浓度为2.0mol/L的HCl溶液79ml,在温度为50℃下搅拌反应20min,得到[BMIM]Cl(M=174.5g/mol)溶液,然后在温度为115℃下对溶液进行常压蒸馏60min脱除水分及过量HCl(供循环利用),最后将产品在温度为110℃下干燥24h,得到干燥的中间体[BMIM]Cl 22.1g;参考文献方法(杨雅立,王晓化,寇元.离子液体的酸性测定及其催化的异丁烷/丁烯烷基化反应[J].催化学报,2004,25(1):60-64.),在氮气保护下,将10.2g无水AlCl3缓慢地加入到含有干燥的[BMIM]Cl(22.1g)的圆底烧瓶中,在温度为0℃下搅拌反应3h,得[BMIM]Cl/xAlCl3(x=0.6)离子液体27.1g。
实施例4
称取50.0g废离子液体[BMIM]3PW12O40(M=3345.05g/mol)放入分液漏斗中,再向分液漏斗中加入50ml正庚烷,在温度为40℃下振荡混合30min,然后在温度为40℃下静置分相60min,收集下相离子液体,回收上相溶剂;按碱液与离子液体的摩尔比为1.5:1.0向离子液体中加入摩尔浓度为2.0mol/L的NaOH溶液12ml,在温度为50℃下冷凝回流搅拌反应30min,反应完后,在温度为110℃下常压蒸馏30min脱水(脱除水供循环使用),得到固相混合物;向固相混合物中加入20ml丙酮,在温度为40℃下振荡混合30min,然后在温度为40℃下静置分相60min,收集萃取液,重复萃取操作5次,收集合并萃取液,在温度为60℃下对萃取液进行常压蒸馏60min,回收丙酮,得到有机盐固体6.7g;向有机盐固体中按酸碱摩尔比为1.5:1.0加入摩尔浓度为2.0mol/L的HCl溶液33ml,在温度为50℃下搅拌反应30min,得到[BMIM]Cl(M=174.5g/mol)溶液,然后在温度为120℃下对溶液进行常压蒸馏60min脱除水分及过量HCl(供循环利用),最后将产品在温度为120℃下干燥24h,得到干燥的中间体[BMIM]Cl7.2g;参考文献方法(施介华,潘高.1-丁基-3-甲基咪唑磷钨酸盐的制备及其对酯化反应的催化性能[J].催化学报,2008,29(7):629-632.),向干燥的中间体[BMIM]Cl中,加入磷钨酸(0.001mol/L)水溶液14ml,在室温下搅拌反应12h,得到白色沉淀,经过滤、水洗至滤液中无溴离子存在,所得固体在温度为80℃干燥24h,即制得再生[BMIM]3PW12O40 45.8g。
实施例5
称取30.0g废离子液体[BPY]HSO4(M=247.05g/mol)放入分液漏斗中,再向分液漏斗中加入30ml正辛烷,在温度为30℃下振荡混合20min,然后在温度为30℃下静置分相30min,收集下相离子液体,回收上相溶剂;按碱液与离子液体的摩尔比为1.2:1.0向离子液体中加入摩尔浓度为3.0mol/L的氨水溶液44ml,在温度为45℃下冷凝回流搅拌反应20min,反应完后,在温度为110℃下常压蒸馏45min脱水(脱除水供循环使用),得到固相混合物;向固相混合物中加入25ml丙酮,在温度为30℃下振荡混合20min,然后在温度为30℃下静置分相45min,收集上层萃取液,重复萃取操作4次,收集合并萃取液,在温度为60℃下对萃取液进行常压蒸馏45min,回收丙酮,得到有机盐固体19.6g;向有机盐固体中按酸碱摩尔比为1.2:1.0加入摩尔浓度为2mol/L的HCl溶液71ml,在温度为45℃下搅拌反应20min,得到[BPY]Cl(M=185.55g/mol)溶液,然后在温度为110℃下对溶液进行常压蒸馏45min脱除水分及过量HCl(供循环利用),最后将产品在温度为100℃下真空干燥18h,得到干燥的中间体[BPY]Cl 21.3g;参考文献方法(唐晓东,袁娇阳,李晶晶,等.吡啶离子液体催化作用下的FCC汽油烷基化脱硫[J].燃料化学学报,2015,43(4):442-448.),向干燥的[BPY]Cl中按摩尔比1.0:1.0加入13.8g NaHSO4,加入10ml丙酮作溶剂,在温度为50℃下冷凝回流搅拌反应24h。反应结束后过滤,收集滤液,旋转蒸发、真空干燥,得再生离子液体[BPY]HSO4 27.8g。
实施例6
称取30.0g废离子液体[BPY]PF6(M=295.2g/mol)放入分液漏斗中,再向分液漏斗中加入30ml正辛烷,在温度为30℃下振荡混合20min,然后在温度为30℃下静置分相30min,收集下相离子液体,回收上相溶剂;按碱液与离子液体的摩尔比为1.2:1.0向离子液体中加入摩尔浓度为5.0mol/L的KOH溶液25ml,在温度为45℃下冷凝回流搅拌反应20min,反应完后,在温度为110℃下常压蒸馏45min脱水(脱除水供循环使用),得到固相混合物;向固相混合物中加入20ml乙酸乙酯,在温度为30℃下振荡混合20min,然后在温度为30℃下静置分相45min,收集上层萃取液,重复萃取操作4次,收集合并萃取液,在温度为80℃下对萃取液进行常压蒸馏45min,回收乙酸乙酯,得到有机盐固体16.3g;向有机盐固体中按酸碱摩尔比为1.2:1.0加入摩尔浓度为1.5mol/L的HCl溶液78ml,在温度为45℃下搅拌反应20min,得到[BPY]Cl(M=185.55g/mol)溶液,然后在温度为110℃下对溶液进行常压蒸馏45min脱除水分及过量HCl(供循环利用),最后将产品在温度为100℃下真空干燥18h,得到干燥的中间体[BPY]Cl 17.4g;参考文献方法(Joseph T,Sahoo S,Halligudi S B.
Figure BDA0001908993730000071
acidicionic liquids:A green,efficient and reusable catalyst system and reactionmedium for Fischer esterification[J].Journal of Molecular Catalysis AChemical,2005,234(1-2):107-110.),向干燥的[BPY]Cl中按摩尔比1.0:1.0加入17.3gKPF6,加入10ml丙酮作溶剂,在温度为50℃下冷凝回流搅拌反应24h。反应结束后过滤,收集滤液,旋转蒸发、真空干燥,得再生离子液体[BPY]PF6 27.2g。
实施例7
称取40.0g废离子液体Et3NHCl-2AlCl3(M=404.33g/mol)放入分液漏斗中,再向分液漏斗中加入40ml正庚烷,在温度为40℃下振荡混合30min,然后在温度为40℃下静置分相45min,收集下相离子液体,回收上相溶剂;按碱液与离子液体的摩尔比为1.5:1.0向离子液体中加入摩尔浓度为4.0mol/L的NaOH溶液37ml,在温度为50℃下冷凝回流搅拌反应30min,反应完后,在温度为115℃下常压蒸馏60min脱水(脱除水供循环使用),得到固相混合物;向固相混合物中加入30ml乙醇,在温度为40℃下振荡混合30min,然后在温度为40℃下静置分相60min,收集萃取液,重复萃取操作4次,收集合并萃取液,在温度为80℃下对萃取液进行常压蒸馏60min,回收乙醇,得到有机盐固体11.2g;向有机盐固体中按酸碱摩尔比为1.2:1.0加入摩尔浓度为2.0mol/L的HCl溶液57ml,在温度为50℃下搅拌反应20min,得到Et3NHCl(M=137.65g/mol)溶液,然后在温度为115℃下对溶液进行常压蒸馏60min,脱除水分及过量HCl(供循环利用),最后将产品在温度为110℃下干燥24h,得到干燥的中间体Et3NHCl 12.5g;参考文献方法(刘鹰,刘植昌,黄崇品,等.氯铝酸离子液体催化异丁烷/丁烯烷基化反应[J].化学反应工程与工艺,2004,20(3):229-234.),在氮气保护下,在室温下将Et3NHCl与20ml正庚烷在洁净的三口烧瓶中混合并搅拌,搅拌过程中按摩尔比为1.0:2.0缓慢加入24.2g无水AlCl3,然后升温至80℃,冷凝回流搅拌反应3h,得再生离子液体Et3NHCl-2AlCl3 36.1g。
实施例8
称取50.0g废离子液体[(C4H9)3P(C14H29)]Cl/ZnCl2(M=534.54g/mol)放入分液漏斗中,再向分液漏斗中加入50ml正庚烷,在温度为40℃下振荡混合30min,然后在温度为40℃下静置分相60min,收集下相离子液体,回收上相溶剂;按碱液与离子液体的摩尔比为1.2:1.0向离子液体中加入摩尔浓度为3.0mol/L的NaOH溶液38ml,在温度为50℃下冷凝回流搅拌反应30min,反应完后,在温度为120℃下常压蒸馏60min脱水(脱除水供循环使用),得到固相混合物;向固相混合物中反应完成后加入20ml丙酮,在温度为40℃下振荡混合30min,然后在温度为40℃下静置分相60min,收集萃取液,重复萃取操作5次,收集合并萃取液,在温度为60℃下对萃取液进行常压蒸馏60min,回收丙酮,得到有机盐固体37.4g;向有机盐固体中按酸碱摩尔比为1.2:1.0加入摩尔浓度为2.0mol/L的HCl溶液53ml,在温度为50℃下搅拌反应30min,得到[(C4H9)3P(C14H29)]Cl(M=435.15g/mol)溶液,然后在温度为120℃下对溶液进行常压蒸馏60min脱除水分及过量HCl(供循环利用),最后将产品在温度为120℃下干燥24h,得到干燥的中间体[(C4H9)3P(C14H29)]Cl 38.0g;参考文献方法(章小林,王果果,殷冬媛,等.路易斯酸性季鏻盐离子液体催化合成苄基甲苯[J].绝缘材料,2016(12):28-31.),将[(C4H9)3P(C14H29)]Cl加入圆底烧瓶中,搅拌下按摩尔比为1.0:1.0加入11.9g ZnCl2,在温度为120℃下冷凝回流搅拌反应2h,冷却至室温,得到再生[(C4H9)3P(C14H29)]Cl/ZnCl2 45.9g。
由实施例1~8得到的离子液体再生率如表1所示。
表1不同实施例下的离子液体再生率及再生结果
Figure BDA0001908993730000091
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域的技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (2)

1.一种酸性离子液体的再生方法,其特征在于,该酸性离子液体的再生方法包括以下步骤:
(1)称取20g~50g失效的离子液体放入分液漏斗中,再向分液漏斗中加入20~50ml正庚烷或正辛烷对其进行预处理,在温度为20~40℃下振荡混合10~30min,然后在温度为20~40℃下静置分相20~60min,收集下相离子液体,回收上相溶剂;
(2)用NaOH、或KOH、或氨为溶质,用蒸馏水为溶剂,配制摩尔浓度为2mol/L~5mol/L的碱液,按照碱液与离子液体的摩尔比为1.5:1.0~1.0:1.0向离子液体中加入上述碱液中的一种,在温度为40~50℃下搅拌反应10~30min,反应完后,在温度为105~120℃下常压蒸馏30~60min脱水,脱除水供循环使用,得到固相混合物;
(3)往上述常压蒸馏脱水后的固相混合物中加入20~30ml有机溶剂,如丙酮、或乙酸乙酯、或甲基叔丁基醚、或乙醇中的一种,在温度为20~40℃下振荡混合10~30min,然后在温度为20~40℃下静置分相20~60min,收集上层萃取液,重复萃取操作2~5次,收集合并萃取液,在温度为60~80℃下进行常压蒸馏30~60min除去并回收有机溶剂,得到有机盐固体;
(4)配制摩尔浓度为1mol/L~2mol/L的HCl溶液,按酸碱摩尔比为1.0:1.0~1.5:1.0向上述有机盐固体中加入HCl溶液,在温度为40℃~50℃下搅拌反应10~30min,然后在温度为105~120℃下常压蒸馏30~60min脱除水分及过量HCl,以供循环利用,最后在温度为100~110℃下干燥12~24h,得到干燥的阳离子中间体,所述阳离子中间体为咪唑类、吡啶类、季铵盐类、季磷盐;
(5)向再生中间体中加入目标阴离子得到目标酸性离子液体。
2.根据权利要求1所述的酸性离子液体的再生方法,其特征在于,所述目标酸性离子液体包括Lewis酸性离子液体和
Figure FDA0002992190710000011
酸性离子液体;所述的离子液体阳离子类型为烷基咪唑类、烷基吡啶类、季铵盐类、季膦盐类中的1~3种;阴离子类型有Lewis酸,所述Lewis酸为AlCl3、ZnCl2、FeCl3、CuCl2中的一种或多种;
Figure FDA0002992190710000012
酸,所述
Figure FDA0002992190710000013
酸为HSO4 -、PTSA-、H2PO4 -、SbF6 -、BF4 -、PF6 -、CF3SO3 -、OTf-、Tf2N-中的一种或多种;以及杂多酸,所述杂多酸为包括磷钨酸、硅钨酸、磷钼酸、硅钼酸,或掺杂其他原子的杂多酸中的一种或多种。
CN201811544407.5A 2018-12-17 2018-12-17 一种酸性离子液体的再生方法 Expired - Fee Related CN109382142B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811544407.5A CN109382142B (zh) 2018-12-17 2018-12-17 一种酸性离子液体的再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811544407.5A CN109382142B (zh) 2018-12-17 2018-12-17 一种酸性离子液体的再生方法

Publications (2)

Publication Number Publication Date
CN109382142A CN109382142A (zh) 2019-02-26
CN109382142B true CN109382142B (zh) 2021-06-15

Family

ID=65430580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811544407.5A Expired - Fee Related CN109382142B (zh) 2018-12-17 2018-12-17 一种酸性离子液体的再生方法

Country Status (1)

Country Link
CN (1) CN109382142B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112691703B (zh) * 2020-12-29 2022-08-30 天津大学 乙酸甲酯水解反应的复盐离子液体催化剂及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1944357A (zh) * 2005-10-09 2007-04-11 中国科学院过程工程研究所 离子液体的回收方法
CN101748515A (zh) * 2010-01-21 2010-06-23 山东海龙股份有限公司 离子液体的回收方法
US20110215052A1 (en) * 2010-03-05 2011-09-08 Instituto Mexicano Del Petroleo Process of recovery of exhausted ionic liquids used in the extractive desulfurization of naphthas
CN102516177A (zh) * 2011-11-24 2012-06-27 南京大学 一种高纯度离子液体的制备方法
CN103147169A (zh) * 2013-03-26 2013-06-12 宏远纺织科技(泉州)有限公司 一种采用活性炭进行纺丝离子液体回收的方法
CN205436572U (zh) * 2015-12-23 2016-08-10 中国石油大学(北京) 一种对氯铝酸类离子液体废催化剂进行处理的处理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1944357A (zh) * 2005-10-09 2007-04-11 中国科学院过程工程研究所 离子液体的回收方法
CN101748515A (zh) * 2010-01-21 2010-06-23 山东海龙股份有限公司 离子液体的回收方法
US20110215052A1 (en) * 2010-03-05 2011-09-08 Instituto Mexicano Del Petroleo Process of recovery of exhausted ionic liquids used in the extractive desulfurization of naphthas
CN102516177A (zh) * 2011-11-24 2012-06-27 南京大学 一种高纯度离子液体的制备方法
CN103147169A (zh) * 2013-03-26 2013-06-12 宏远纺织科技(泉州)有限公司 一种采用活性炭进行纺丝离子液体回收的方法
CN205436572U (zh) * 2015-12-23 2016-08-10 中国石油大学(北京) 一种对氯铝酸类离子液体废催化剂进行处理的处理系统

Also Published As

Publication number Publication date
CN109382142A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
Hasan et al. Sulfonic acid-functionalized MIL-101 (Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol
CN102399201B (zh) 一种固体酸催化制备5-羟甲基糠醛的方法
CN107899371B (zh) 一种离子型低共熔溶剂高效可逆吸收氨气的方法
CN104071940B (zh) 一种丁辛醇废碱液的处理方法
CN101664700B (zh) 一种负载型离子液体催化剂及其制备方法和应用
CN102408309B (zh) 一种甘油废液的纯化方法
CN103012104B (zh) 一种处理丁辛醇废碱液回收丁酸的方法
CN110790636B (zh) 一种脱除1,3-丙二醇中微量醛基的精制方法
CN105315164A (zh) 一类环境友好的胆碱离子液体及其制备方法
CN109382142B (zh) 一种酸性离子液体的再生方法
WO2012088951A1 (zh) 一种制药工业溶媒回收的工艺
JP5582812B2 (ja) 層分離方法
CN101664608A (zh) 提纯亲水性离子液体的方法
CN107188849A (zh) 用于苯羟基化反应的介孔离子液体杂多酸盐催化剂及其制备方法和应用
CN101891591A (zh) 一种从发酵液中分离提取1,3-丙二醇的方法
CN101974109B (zh) 一种马来酰化半纤维素的制备方法
Wang et al. Enhancing esterification of small molecular acids with alcohols by molten salt hydrates
CN101450898B (zh) 一种反应器耦合模拟移动床uv光固化单体清洁生产工艺
CN105152447B (zh) 一种治理丙烯酸废水及回收乙酸钠的方法
CN110483678B (zh) 一种用于山梨醇脱水制备异山梨醇的催化剂及其制备方法和应用
CN104119225A (zh) 一种以混合离子液体为催化剂的反应精馏生产乙酸乙酯新工艺
CN101664612A (zh) 提纯分离离子液体和水的方法
WO2008110071A1 (fr) Procédé d'absorption de méthacroléine par un liquide ionique
CN102627551B (zh) 一种固体超强酸促进的松香树脂酸的异构化方法
CN102659572B (zh) 一种脱氢松香酸的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210615

Termination date: 20211217

CF01 Termination of patent right due to non-payment of annual fee