CN109369343B - 一种和厚朴酚纳晶的制备方法 - Google Patents

一种和厚朴酚纳晶的制备方法 Download PDF

Info

Publication number
CN109369343B
CN109369343B CN201811266427.0A CN201811266427A CN109369343B CN 109369343 B CN109369343 B CN 109369343B CN 201811266427 A CN201811266427 A CN 201811266427A CN 109369343 B CN109369343 B CN 109369343B
Authority
CN
China
Prior art keywords
honokiol
poloxamer
found
pdi
nanocrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811266427.0A
Other languages
English (en)
Other versions
CN109369343A (zh
Inventor
吕慧侠
张振海
陆新月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN201811266427.0A priority Critical patent/CN109369343B/zh
Publication of CN109369343A publication Critical patent/CN109369343A/zh
Application granted granted Critical
Publication of CN109369343B publication Critical patent/CN109369343B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种和厚朴酚纳晶的制备方法,和厚朴酚纳晶由和厚朴酚和泊洛沙姆407组成,其制备方法为加热使和厚朴酚与泊洛沙姆407熔融,在上述熔融物中加水,气体保护下搅拌,高压均质处理,即得和厚朴酚纳晶。本发明的和厚朴酚纳晶制备方法简单,无需有机溶剂,有利于工业化生产,解决了和厚朴酚水溶性差的问题。

Description

一种和厚朴酚纳晶的制备方法
技术领域
本发明属于药物制剂领域,具体的说,涉及一种和厚朴酚纳晶的制备方法。
背景技术
和厚朴酚(Honokiol)是从于木兰科植物厚朴或凹叶厚朴中分离得到的一种联苯二酚类化合物,具有抗炎、抗菌、抗氧化、抗焦虑及抑郁、抗肿瘤、中枢性肌肉松弛、降低胆固醇、抗血小板凝聚等多种生物学活性。转录因子NF-κB可调控炎症反应各阶段的相关分子,目前普遍认为和厚朴酚通过抑制NF-κB的转录活性来发挥抗炎作用。
和厚朴酚水溶性差,生物利用度低,极大地限制了其在临床的应用。现有文献报道在制备和厚朴酚制剂时,大多把和厚朴酚溶在丙酮、甲醇和乙醇等有机溶剂中,存在有机溶剂不易彻底除去的问题。因此,临床上需要一种能增加和厚朴酚水溶性,改善生物利用度,制备工艺简单、安全的制剂。
纳晶也称纳米混悬液,即以表面活性剂或聚合物为稳定剂,将纳米尺度的药物粒子分散在水中形成的稳定胶体分散体系。体系中的药物粒径极小,一般在10-1000nm,这是纳晶与普通制剂最大的区别之一。常用的稳定剂有聚乙二醇、聚乙烯吡咯烷酮、环糊精、纤维素衍生物、表面活性剂如泊洛沙姆和聚山梨醇酯等。根据Ostwald-Freundlich方程,药物粒径降至纳米级别时,其饱和溶解度显著提高。根据Noyes-Whitney方程,药物的溶出速率会随着饱和溶解度的增加而增加。因此纳晶能够显著提高药物的饱和溶解度,增加药物的溶出速率,从而提高难溶性药物的口服生物利用度,具有广泛的工业应用前景。目前已成功运用纳晶技术上市的产品有
Figure BDA0001844984040000011
Figure BDA0001844984040000012
Figure BDA0001844984040000013
Figure BDA0001844984040000014
ES等。
发明内容
本发明的目的是解决和厚朴酚水溶性差,现有研究中制备工艺复杂、成本高和有机溶剂难除去等问题,提供一种制备过程简单、安全,利于工业化生产、具有良好抗炎活性的和厚朴酚纳晶;进一步来说本发明提供一种和厚朴酚纳晶,粒径小,且PDI小,稳定性高的纳晶。
发明人选用泊洛沙姆407作为稳定剂,并考察了和厚朴酚和泊洛沙姆407在不同质量比时所制备纳晶的粒径及其分布。制备发现,和厚朴酚与泊洛沙姆407的质量比为1:5-1:7时,和厚朴酚纳晶的粒径范围为30-90nm,多分散系数(PDI)较低,稳定性高。当和厚朴酚和泊洛沙姆407的质量比为1:5时效果最佳。
发明人在90℃-100℃加热使和厚朴酚与泊洛沙姆407熔融,并考察了不同加热温度所制备纳晶的粒径及其分布。制备发现,加热温度在90℃-100℃时,和厚朴酚纳晶的粒径范围为30-60nm,PDI较低,稳定性高。当加热温度为90℃时效果最佳。
发明人选用二氧化碳、氮气或惰性气体作为保护气体,并考察保护气体不同时所制备纳晶的静置稳定性。制备发现,保护气体为二氧化碳时,所制备纳晶4℃静置稳定性和粒径分布显著优于保护气体为氮气或惰性气体时。
因此,本发明采用的技术方案是:一种和厚朴酚纳晶,由和厚朴酚和泊洛沙姆407组成,和厚朴酚和泊洛沙姆407的质量比为1:5,加热熔融温度90℃,制备时通入二氧化碳作为保护气体。
本发明的和厚朴酚纳晶可以以液体状态存在,也可以是冻干粉,如果制备冻干粉,需要在制剂中加入冻干保护剂,和厚朴酚与冻干保护剂的质量比为1:4。所述的冻干保护剂为甘露醇。
本发明公开了一种和厚朴酚纳晶的制备方法,包括如下步骤:
a.加热使和厚朴酚与泊洛沙姆407熔融;
b.在上述熔融物中加水,搅拌;
c.高压均质处理,即得和厚朴酚纳晶;
d.和厚朴酚纳晶与冻干保护剂混合,经冷冻干燥,得到和厚朴酚纳晶冻干粉。
所述加热温度优选为90℃-100℃,更优选为90℃。和厚朴酚与泊洛沙姆407的质量比优选为1:5-1:7,更优选为1:5。在气体保护下,在上述熔融物中加水,搅拌。所述保护气体优选为二氧化碳、氮气或惰性气体,更优选为二氧化碳。
本发明所述的和厚朴酚纳晶有如下优点:
(1)本发明使用熔融法处理和厚朴酚,避免了有机溶剂的使用,无需解决有机溶剂残留问题,提高了制剂安全性。
(2)在应用气体保护,特别是使用二氧化碳时,意外发现纳晶的粒径分布特别均匀,稳定性也好。
(3)本发明使用高压均质法,操作简便,易于工业化生产。
(4)本发明使用的泊洛沙姆407为药用辅料,具有良好的安全性。
(5)本发明的和厚朴酚纳晶能明显抑制二甲苯所致小鼠耳肿胀,具有良好的抗炎活性,可应用于炎症等的治疗。
附图说明
图1是实例1制备的和厚朴酚纳晶的粒径分布图
图2是实例1制备的和厚朴酚纳晶的透射电镜图
具体实施方式
实施例1
称取200mg和厚朴酚,1000mg泊洛沙姆407,90℃加热使熔融。向熔融物中加入80mL水,二氧化碳保护下于90℃磁力搅拌1h。将磁力搅拌得到的药物溶液高压均质,条件为400bar循环20次,制得和厚朴酚纳晶溶液。测得平均粒径为30.1nm,PDI为0.12。本实施例的粒径分布图如图1所示。本实施例的透射电镜图如图2所示。和厚朴酚纳晶外形圆整,粒径分布较为均匀。4℃静置30天后测得平均粒径为31.7nm,PDI为0.27。
实施例2
称取200mg和厚朴酚,800mg泊洛沙姆407,90℃加热使熔融。向熔融物中加入80mL水,二氧化碳保护下于90℃磁力搅拌1h。将磁力搅拌得到的药物溶液高压均质,条件为400bar循环20次,制得和厚朴酚纳晶溶液。测得平均粒径为102.6nm,PDI为0.38。4℃静置30天后测得平均粒径为117.3nm,PDI为0.46。
实施例3
称取200mg和厚朴酚,1200mg泊洛沙姆407,90℃加热使熔融。向熔融物中加入80mL水,二氧化碳保护下于90℃磁力搅拌1h。将磁力搅拌得到的药物溶液高压均质,条件为400bar循环20次,制得和厚朴酚纳晶溶液。测得平均粒径为65.2nm,PDI为0.23。4℃静置30天后测得平均粒径为78.1nm,PDI为0.35。
实施例4
称取200mg和厚朴酚,1400mg泊洛沙姆407,90℃加热使熔融。向熔融物中加入80mL水,二氧化碳保护下于90℃磁力搅拌1h。将磁力搅拌得到的药物溶液高压均质,条件为400bar循环20次,制得和厚朴酚纳晶溶液。测得平均粒径为84.6nm,PDI为0.28。4℃静置30天后测得平均粒径为100.2nm,PDI为0.40
实施例5
称取200mg和厚朴酚,1600mg泊洛沙姆407,90℃加热使熔融。向熔融物中加入80mL水,二氧化碳保护下于90℃磁力搅拌1h。将磁力搅拌得到的药物溶液高压均质,条件为400bar循环20次,制得和厚朴酚纳晶溶液。测得平均粒径为92.4nm,PDI为0.37。4℃静置30天后测得平均粒径为109.6nm,PDI为0.42。
上述实施例1-5,结果显示:和厚朴酚和泊洛沙姆407在不同质量比时所制备纳晶的粒径及其分布。制备发现,在二氧化碳保护下,和厚朴酚与泊洛沙姆407的质量比为1:5-1:7时,和厚朴酚纳晶的粒径范围为30-90nm,多分散系数(PDI)较低,稳定性高。具体为当和厚朴酚和泊洛沙姆407的质量比为1:5时效果最佳,稳定性最佳,随着和厚朴酚与泊洛沙姆407的质量比增高,粒径变大,但PDI低于0.3,符合要求。但1:4,1:6,1:7,1:8,在4℃静置30天后测得PDI大于0.3。
实施例6
称取200mg和厚朴酚,1000mg泊洛沙姆407,90℃加热使熔融。向熔融物中加入80mL水,二氧化碳保护下于90℃磁力搅拌1h。将磁力搅拌得到的药物溶液高压均质,条件为400bar循环20次,制得和厚朴酚纳晶溶液。加入800mg甘露醇,磁力搅拌10min。把3mL样品置于10mL西林瓶中,于-20℃预冻24h,于冷冻干燥机内冻干24h,制成和厚朴酚纳晶冻干粉。冻干粉用PBS复溶后,测得平均粒径为30.4nm,PDI为0.16。4℃静置30天后测得平均粒径为32.0nm,PDI为0.28。
实施例7
称取200mg和厚朴酚,1000mg泊洛沙姆407,95℃加热使熔融。向熔融物中加入80mL水,二氧化碳保护下于95℃磁力搅拌1h。将磁力搅拌得到的药物溶液高压均质,条件为400bar循环20次,制得和厚朴酚纳晶溶液。测得平均粒径为42.9nm,PDI为0.24。4℃静置30天后测得平均粒径为50.6nm,PDI为0.37。
实施例8
称取200mg和厚朴酚,1000mg泊洛沙姆407,100℃加热使熔融。向熔融物中加入80mL水,二氧化碳保护下于100℃磁力搅拌1h。将磁力搅拌得到的药物溶液高压均质,条件为400bar循环20次,制得和厚朴酚纳晶溶液。测得平均粒径为55.7nm,PDI为0.26。4℃静置30天后测得平均粒径为62.4nm,PDI为0.40。
实施例6-8结果显示:加热温度在90℃-100℃时,和厚朴酚纳晶的粒径范围为30-60nm,PDI较低,稳定性高。当加热温度为90℃时效果最佳,随着温度升高,粒径和PDI都增大。
实施例9
称取200mg和厚朴酚,1000mg泊洛沙姆407,90℃加热使熔融。向熔融物中加入80mL水,氮气保护下于90℃磁力搅拌1h。将磁力搅拌得到的药物溶液高压均质,条件为400bar循环20次,制得和厚朴酚纳晶溶液。测得平均粒径为31.5nm,PDI为0.19。4℃静置30天后测得平均粒径为43.7nm,PDI为0.35。
实施例10
称取200mg和厚朴酚,1000mg泊洛沙姆407,90℃加热使熔融。向熔融物中加入80mL水,氩气保护下于90℃磁力搅拌1h。将磁力搅拌得到的药物溶液高压均质,条件为400bar循环20次,制得和厚朴酚纳晶溶液。测得平均粒径为37.2nm,PDI为0.22。4℃静置30天后测得平均粒径为45.5nm,PDI为0.34。
实施例11
称取200mg和厚朴酚,1000mg泊洛沙姆407,90℃加热使熔融。向熔融物中加入80mL水,无气体保护下于90℃磁力搅拌1h。将磁力搅拌得到的药物溶液高压均质,条件为400bar循环20次,制得和厚朴酚纳晶溶液。测得平均粒径为32.7nm,PDI为0.15。4℃静置30天后测得平均粒径为49.3nm,PDI为0.35。4℃静置30天后测得平均粒径为60.3nm,PDI为0.46。
实施例9-11,结果显示:比较了二氧化碳、氮气或惰性气体作为保护气体及无气体保护,所制备纳晶的静置稳定性,保护气体为二氧化碳时,所制备纳晶4℃静置稳定性和粒径分布显著优于保护气体为氮气或惰性气体时,无气体保护、氮气或惰性气体的粒径差异不大,但4℃静置30天后测得PDI都高于0.3。
实施例12
选择4~6周龄,体重18~22g,SPF级ICR小鼠24只,雌、雄各半。将小鼠随机分成四组,每组6只,分别为空白对照组、阳性对照组、和厚朴酚原料药组和和厚朴酚纳晶组。空白对照组灌胃给药游离生理盐水溶液、阳性对照组灌胃给药阿司匹林原料药混悬液(100mg/kg)、和厚朴酚原料药组灌胃给药和厚朴酚原料药混悬液(100mg/kg)、和厚朴酚纳晶组灌胃给药和厚朴酚纳晶溶液(实施例1)(100mg/kg),每日给药一次,连续给药7天。末次给药30min后,将20μL二甲苯均匀涂抹在小鼠右耳前后两面,左耳不涂为正常耳。30min后,将小鼠颈椎脱臼致死,剪下双耳,用直径6mm的打孔器分别在双耳同一部位打下圆耳片,立刻用电子天平称重。
以右耳片与左耳片质量之差计算肿胀度,以(空白对照组平均肿胀度-实验组平均肿胀度)/空白对照组平均肿胀度×100%计算肿胀抑制率。所有数据用IBM SPSSStatistics 22统计软件进行统计分析,各组之间的比较采用单因素方差分析法,P<0.05被认为差异有统计意义,P<0.01被认为差异有高度统计意义。
实验结果参见表1。阳性对照药阿司匹林与和厚朴酚均有抑制二甲苯所致小鼠耳肿胀的作用。其中,阳性对照组肿胀度与和厚朴酚纳晶组肿胀度差异无统计学意义(P>0.05),和厚朴酚原料药组肿胀度与阳性对照组肿胀度、和厚朴酚纳晶组肿胀度差异均有统计意义(P<0.05),表明和厚朴酚纳晶的抗炎效果优于和厚朴酚原料药。
表1 不同处理对二甲苯所致小鼠耳肿胀的影响(Mean±SD,n=6)
Figure BDA0001844984040000061

Claims (1)

1.一种和厚朴酚纳晶的制备方法,其特征在于,所述方法步骤如下:
a. 在90℃下加热使和厚朴酚与泊洛沙姆407熔融;
b. 在气体保护下,在上述熔融物中加水,搅拌;
c. 高压均质处理,即得和厚朴酚纳晶;
d. 和厚朴酚纳晶与冻干保护剂混合,经冷冻干燥,得到和厚朴酚纳晶冻干粉;
其中步骤(a)中和厚朴酚与泊洛沙姆407的质量比为1:5;步骤(b)气体是二氧化碳。
CN201811266427.0A 2018-10-29 2018-10-29 一种和厚朴酚纳晶的制备方法 Active CN109369343B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811266427.0A CN109369343B (zh) 2018-10-29 2018-10-29 一种和厚朴酚纳晶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811266427.0A CN109369343B (zh) 2018-10-29 2018-10-29 一种和厚朴酚纳晶的制备方法

Publications (2)

Publication Number Publication Date
CN109369343A CN109369343A (zh) 2019-02-22
CN109369343B true CN109369343B (zh) 2021-09-14

Family

ID=65390266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811266427.0A Active CN109369343B (zh) 2018-10-29 2018-10-29 一种和厚朴酚纳晶的制备方法

Country Status (1)

Country Link
CN (1) CN109369343B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330410B (zh) * 2019-08-23 2022-01-28 中国药科大学 一种和厚朴酚葡甲胺共晶及其制备方法
CN115403450A (zh) * 2022-01-27 2022-11-29 化学与精细化工广东省实验室 一种厚朴酚与氨基酸共晶及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283982A (zh) * 2008-06-03 2008-10-15 南京工业大学 非诺贝特纳米混悬剂及其制备方法
CN103705469A (zh) * 2014-01-03 2014-04-09 中国医学科学院药用植物研究所 一种和厚朴酚纳米粒及其制备方法
CN106109458A (zh) * 2016-05-13 2016-11-16 齐鲁工业大学 注射用葛根素纳米结晶及其制备工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916541B2 (en) * 2011-01-05 2014-12-23 Better Health Publishing, Inc. Synergistic combination of honokiol and modified citrus pectin in cancer therapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283982A (zh) * 2008-06-03 2008-10-15 南京工业大学 非诺贝特纳米混悬剂及其制备方法
CN103705469A (zh) * 2014-01-03 2014-04-09 中国医学科学院药用植物研究所 一种和厚朴酚纳米粒及其制备方法
CN106109458A (zh) * 2016-05-13 2016-11-16 齐鲁工业大学 注射用葛根素纳米结晶及其制备工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Honokiol nanosuspensions:Preparation,increasedoralbioavailability and dramaticallyenhancedbiodistributioninthe cardio-cerebro-vascular system;XiangtaoWang 等;《Colloids andSurfacesB:Biointerfaces》;20140103;第116卷;第115页2.3,2.5,第116页3.1,table1 *
纳米混悬剂的物理稳定性研究进展;谢向阳 等;《国际药学研究杂志》;20111031;第38卷(第5期);369-374 *
药物纳米混悬液的制备—微型化技术;刘孝天 等;《现代工业》;20160331;第36卷(第3期);38-41 *

Also Published As

Publication number Publication date
CN109369343A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
Salazar et al. Combinative particle size reduction technologies for the production of drug nanocrystals
CN109369343B (zh) 一种和厚朴酚纳晶的制备方法
Chen et al. Preparation and characterization of a nanostructured lipid carrier for a poorly soluble drug
Alihosseini et al. Freeze-drying of ampicillin solid lipid nanoparticles using mannitol as cryoprotectant
CN102824356A (zh) 一种黄芩苷纳晶混悬剂、纳晶干粉及其制备方法
Jin et al. Novel breviscapine nanocrystals modified by panax notoginseng saponins for enhancing bioavailability and synergistic anti-platelet aggregation effect
Safavi et al. Reducing agent-free synthesis of curcumin-loaded albumin nanoparticles by self-assembly at room temperature
CN103083235A (zh) 一种杨梅素纳米混悬剂及其制备方法
CN104523574A (zh) 一种阿普斯特固体分散体及其制备方法
Chen et al. Development and evaluation of topotecan loaded solid lipid nanoparticles: A study in cervical cancer cell lines
Tian et al. Fabrication of nanosuspensions to improve the oral bioavailability of total flavones from Hippophae rhamnoides L. and their comparison with an inclusion complex
CN109432055B (zh) 一种聚合物包覆姜黄素共晶/胡椒碱的复合纳米颗粒及其制备和在缓释药物制剂中的应用
Ye et al. Preparation and characterization of novel composite nanoparticles using zein and hyaluronic acid for efficient delivery of naringenin
He et al. Curcumin-loaded lipid cubic liquid crystalline nanoparticles: preparation, optimization, physicochemical properties and oral absorption
Durán et al. Nanotoxicity and dermal application of nanostructured lipid carrier loaded with hesperidin from orange residue
JP2014525402A5 (zh)
CN107137349B (zh) 一种藤黄酸纳米混悬剂及其制备方法
Shi et al. Realgar nanoparticle-based microcapsules: preparation and in-vitro/in-vivo characterizations
Feng et al. Chirality plays critical roles in enhancing the aqueous solubility of nocathiacin I by block copolymer micelles
CN110604747A (zh) 一种蜂胶纳米粒、制备方法、应用及其冻干粉的制备方法
Kapare et al. Caffeic acid phenethyl ester loaded poly (ε-caprolactone) nanoparticles for improved anticancer efficacy: formulation development, characterization and in vitro cytotoxicity study
CN113925831B (zh) 一种高稳定性的根皮素纳米混悬剂及其制备方法和微针
CN114848615A (zh) 和厚朴酚小分子自主装纳米粒及制备方法
Peltonen et al. Polymeric stabilizers for drug nanocrystals
CN105748413B (zh) 羟基喜树碱纳米晶体负载微球及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant