CN109360877A - 一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法 - Google Patents

一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法 Download PDF

Info

Publication number
CN109360877A
CN109360877A CN201811022399.8A CN201811022399A CN109360877A CN 109360877 A CN109360877 A CN 109360877A CN 201811022399 A CN201811022399 A CN 201811022399A CN 109360877 A CN109360877 A CN 109360877A
Authority
CN
China
Prior art keywords
layer
temperature
type gan
type
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811022399.8A
Other languages
English (en)
Other versions
CN109360877B (zh
Inventor
刘丽军
任亮亮
曾海军
祝光辉
李刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaian Aucksun Optoelectronics Technology Co Ltd
Original Assignee
Huaian Aucksun Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaian Aucksun Optoelectronics Technology Co Ltd filed Critical Huaian Aucksun Optoelectronics Technology Co Ltd
Priority to CN201811022399.8A priority Critical patent/CN109360877B/zh
Publication of CN109360877A publication Critical patent/CN109360877A/zh
Application granted granted Critical
Publication of CN109360877B publication Critical patent/CN109360877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen characterised by the doping materials

Abstract

本发明提供了一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法,属于光电子技术领域。本发明的制备方法生长掺杂Al和In,In渐变掺入的低温氮化镓层,In的掺入,可提高Mg的掺杂浓度,降低Mg的活化能,从而提高有效空穴的注入,另外因为In原子较大,In的突然掺入晶格失配较大,In的渐变掺入使得该层与最后一个垒层之间的的晶格失配得以缓冲,有利于保护整个LED的结晶质量;Al的掺入,可以稍稍抬高导带能阶,有效阻挡电子从多量子阱发光层向低温p型GaN层中迁移,从而减少了从多量子阱发光层进入低温p型GaN层中电子和低温p型GaN层中空穴之间发生的非辐射复合。

Description

一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法
技术领域
本发明涉及一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法,属于光电子技术领域。
背景技术
做为节能领域的支柱产业,LED行业从发展之初就受到政府的大力扶持。自2010年开始LED照明市场呈快速发展态势,目前国内LED已经获得长足发展。随着几年内投资LED行业的企业不断增加,市场竞争越来越激烈。为了在未来的市场中占据更大的优势,开发高性能LED芯片成为当务之急。高性能LED芯片取决于高性能的LED外延片。
目前,氮化镓基发光二极管的发光效率受到内量子效率和提取效率两方面的限制。内量子效率相对较低的其中一个原因是载流子浓度不够,尤其是P型区空穴浓度很难达到。提高载流子浓度的方法一般是通过高温生长P型氮化镓,然后氮气退火来实现,提高镁在氮化镓中的激活效率。
发明内容
本发明针对现有氮化镓发光二极管电子溢流严重及P型区空穴浓度不足的缺点,提出一种能显著提高发光效率的GaN基LED外延片及其制备方法。
本发明的技术方案:
一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法所述的低温P型GaN外延片,包括蓝宝石衬底、铝镓氮低温缓冲层、高温氮化镓层、N型氮化镓层、应力释放层、多量子阱发光层、低温p型GaN层、p型AlGaN层、p型GaN层和p型接触层;
所述的蓝宝石衬底上生长有铝镓氮低温缓冲层,低温缓冲层上面生长高温氮化镓层,高温氮化镓层上面生长有Si掺杂氮化镓即N型氮化镓层,在N型氮化镓层上生长有应力释放层,应力释放层上生长多量子阱发光层,多量子阱发光层上生长低温p型GaN层,低温p型GaN层上生长p型AlGaN层,p型AlGaN层上生长p型GaN层,p型GaN层上生长p型接触层;
所述的低温P型GaN掺杂Al和In,且In渐变掺入,In的掺入用于提高Mg的掺杂浓度,降低Mg的活化能,从而提高有效空穴的注入,另外因为In原子较大,In的突然掺入晶格失配较大,In的渐变掺入使得该层与最后一个垒层之间的的晶格失配得以缓冲,有利于保护整个LED的结晶质量;Al的掺入,用于提高导带能阶,有效阻挡电子从多量子阱发光层向低温p型GaN层中迁移,从而减少从多量子阱发光层进入低温p型GaN层中电子和低温p型GaN层中空穴之间发生的非辐射复合。
所述的蓝宝石衬底组分为三氧化二铝;
所述的铝镓氮低温缓冲层的厚度为20-30nm;
所述的高温氮化镓层为非掺杂氮化镓,其厚度为1.5-3μm;
所述的Si掺杂氮化镓为N型氮化镓层,其厚度为2-4.5μm,N型氮化镓层中硅的掺杂浓度为5×1018-9×1019/cm-3
所述的应力释放层包含阱层和垒层,阱层为铟镓氮材料,垒层为氮化镓材料,生长周期为10-30;
所述的多量子阱发光层包含阱层和垒层,阱层为铟镓氮材料,垒层为氮化镓材料,多量子阱周期为5-20;
所述的低温p型GaN层,为掺杂Al和In(In渐变)的低温氮化镓层与P型GaN层交替生长,结构采用P-AlxInyGa1-x-yN、P-GaN交替生长,整体厚度在10-100nm,温度在500-900度,镁掺杂浓度为1×1019~5×1020/cm-3,生长周期为2-20;进一步温度控制在600-800度,生长周期控制在5-15;所述的低温p型GaN层中Al摩尔组分为低温P型GaN的5-30%,In的摩尔组分为低温P型GaN的0~30%;其中,x=0.05~0.3,y=0~0.3;
所述的p型AlGaN层,温度在600-1000度,厚度为10-50nm;进一步温度控制在750-900度,厚度控制在20-40nm;
所述的p型GaN层,生长高温高浓度的P型氮化镓层,生长温度800-1200℃,掺镁的氮化镓层的厚度为5-30nm;温度控制在850-1100℃,厚度控制在10-25nm;
所述的p型接触层,生长温度500-1000℃,厚度为0.5-5nm;进一步温度控制在600-900℃,厚度控制在1-3nm。
本发明的有益效果:本发明的制备方法,采用金属有机物化学气相沉积(MOCVD)法,在蓝宝石或碳化硅衬底上按现有技术依次生长铝镓氮低温缓冲层、高温氮化镓层、N型氮化镓层、应力释放层、多量子阱发光层、低温p型GaN层、p型AlGaN层、p型GaN层和p型接触层;采用P-AlxInyGa1-x-yN/P-GaN交替生长的方式来生长低温P型GaN;所述的低温p型GaN层中Al摩尔组分为低温P型GaN的5-30%,In的摩尔组分为低温P型GaN的0~30%。与现有氮化镓发光二极管相比,本发明的制备方法生长掺杂Al和In,In渐变的低温氮化镓层,In的掺入,可提高Mg的掺杂浓度,降低Mg的活化能,从而提高有效空穴的注入,另外因为In原子较大,In的突然掺入晶格失配较大,In的渐变掺入使得该层与最后一个垒层之间的的晶格失配得以缓冲,有利于保护整个LED的结晶质量;Al的掺入,可以稍稍抬高导带能阶,有效阻挡电子从多量子阱发光层向低温p型GaN层中迁移,从而减少了从多量子阱发光层进入低温p型GaN层中电子和低温p型GaN层中空穴之间发生的非辐射复合;
本发明的一种具有In和Al掺杂,In渐变生长的低温氮化镓层,采用P-AlInGaN/P-GaN超晶格组成的低温P型GaN层可以形成二维载流子气,且二维载流子气有利于空穴的均匀扩展,从而有效提高了空穴的迁移率,增加了电子与空穴的复合效率,并进一步提高了LED的发光效率;
本发明一种具有In和Al掺杂,In渐变生长的低温P型氮化镓层,低温生长P型GaN,可以减小Mg向InGaN/GaN量子阱有源区中扩散,减小P型外延层的高温生长过程对量子阱发光层的伤害,获得高发光强度的氮化镓系发光二极管。
附图说明
图1是传统的氮化镓发光二极管外延片的LED结构示意图。
图中:1蓝宝石衬底;2低温缓冲层;3高温GaN层;4Si掺杂GaN层;5应力释放层;6多量子阱发光层;7低温p型GaN层(分为P-AlxInyGa1-x-yN/P-GaN两层);8p型AlGaN层;9p型GaN层;10p型接触层。
具体实施方式
以下结合附图和技术方案,进一步说明本发明具体生长方式。
实施例1
生长蓝宝石衬底GaN基LED外延片,按照以下步骤生长:
(1)将蓝宝石衬底1放入MOCVD设备的反应室中,在氢气气氛下加热到1140℃,处理10分钟;
(2)在蓝宝石衬底1上生长低温缓冲层2即氮化镓缓冲层,生长温度540℃,厚度20nm;
(3)在上述低温缓冲层2上生长高温GaN层3即非掺杂氮化镓层,生长温度1000℃,厚度2μm;
(4)在上述高温GaN层3上生长Si掺杂GaN层4即N型氮化镓层,生长温度为1110℃,生长厚度3μm;其中,Si掺杂GaN层4的硅掺杂浓度为4×1019/cm-3;
(5)在Si掺杂GaN层4上生长应力释放层5即高温量子阱层,其中,阱层为铟镓氮材料,垒层为氮化镓材料,生长温度为900℃,多量子阱生长周期为20;
(6)在应力释放层5上生长多量子阱发光层6,多量子阱发光层包含阱层和垒层,其中阱层为铟镓氮材料,垒层为氮化镓材料,生长温度为805℃,多量子阱生长周期为12。
(7)在多量子阱发光层6上生长低温p型GaN层7,低温p型GaN层掺有Al和In(In渐变),结构采用P-AlInGaN,P-GaN交替生长,整体厚度在30nm,低温氮化镓层的生长温度在830℃,Al摩尔组分在10%,In的摩尔组分由0渐变到10%(step 2%),生长周期为6;
(8)在低温p型GaN层7上生长p型AlGaN层8,温度为850度,厚度为30nm,镁掺杂浓度为1×1020/cm-3
(9)在p型AlGaN层8上生长高温高浓度的P型氮化镓层9,生长温度1000℃,镁掺杂浓度为5×1020/cm-3;其中,掺镁的氮化镓层的厚度为15nm;
(10)在p型GaN层9上生长P型接触层10,生长温度750℃,镁掺杂浓度为1×1021/cm-3,厚度为1.5nm。
与传统结构相比,使用本方法的GaN基LED外延片制作出来的LED,发光效率提高约5%。

Claims (8)

1.一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法,其特征在于,所述的低温P型GaN外延片包括蓝宝石或碳化硅衬底、铝镓氮低温缓冲层、高温氮化镓层、N型氮化镓层、应力释放层、多量子阱发光层、低温p型GaN层、p型AlGaN层、p型GaN层和p型接触层;
所述的蓝宝石衬底上生长有铝镓氮低温缓冲层,低温缓冲层上面生长高温氮化镓层,高温氮化镓层上面生长有Si掺杂氮化镓即N型氮化镓层,在N型氮化镓层上生长有应力释放层,应力释放层上生长多量子阱发光层,多量子阱发光层上生长低温p型GaN层,低温p型GaN层上生长p型AlGaN层,p型AlGaN层上生长p型GaN层,p型GaN层上生长p型接触层;
所述的低温P型GaN掺杂Al和In,且In渐变掺入,In的掺入用于提高Mg的掺杂浓度,降低Mg的活化能,从而提高有效空穴的注入,另外因为In原子较大,In的突然掺入晶格失配较大,In的渐变掺入使得该层与最后一个垒层之间的的晶格失配得以缓冲,有利于保护整个LED的结晶质量;Al的掺入,用于提高导带能阶,有效阻挡电子从多量子阱发光层向低温p型GaN层中迁移,从而减少从多量子阱发光层进入低温p型GaN层中电子和低温p型GaN层中空穴之间发生的非辐射复合;
所述的蓝宝石衬底组分为三氧化二铝;
所述的铝镓氮低温缓冲层的厚度为20-30nm;
所述的高温氮化镓层为非掺杂氮化镓,其厚度为1.5-3μm;
所述的Si掺杂氮化镓为N型氮化镓层,其厚度为2-4.5μm,N型氮化镓层中硅的掺杂浓度为5×1018-9×1019/cm-3
所述的应力释放层包含阱层和垒层,阱层为铟镓氮材料,垒层为氮化镓材料,生长周期为10-30;
所述的多量子阱发光层包含阱层和垒层,阱层为铟镓氮材料,垒层为氮化镓材料,多量子阱周期为5-20;
所述的低温p型GaN层,为掺杂Al和In的低温氮化镓层与P型GaN层交替生长,其中In渐变掺入,结构采用P-AlxInyGa1-x-yN、P-GaN交替生长,整体厚度在10-100nm,温度在500-900度,镁掺杂浓度为1×1019~5×1020/cm-3,生长周期为2-20;所述的低温p型GaN层中Al摩尔组分为低温P型GaN的5-30%,In的摩尔组分为低温P型GaN的0~30%;其中,x=0.05~0.3,y=0~0.3;
所述的p型AlGaN层,温度在600-1000度,厚度为10-50nm;
所述的p型GaN层,生长高温高浓度的P型氮化镓层,生长温度800-1200℃,掺镁的氮化镓层的厚度为5-30nm;
所述的p型接触层,生长温度500-1000℃,厚度为0.5-5nm。
2.根据权利要求1所述的具有Al和In掺杂,In渐变生长的低温P型GaN外延片,其特征在于,所述的低温p型GaN层温度控制在600-800度,生长周期控制在5-15。
3.根据权利要求1或2所述的具有Al和In掺杂,In渐变生长的低温P型GaN外延片,其特征在于,所述的p型AlGaN层,温度控制在750-900度,厚度控制在20-40nm。
4.根据权利要求1或2所述的具有Al和In掺杂,In渐变生长的低温P型GaN外延片,其特征在于,所述的p型GaN层温度控制在850-1100℃,厚度控制在10-25nm。
5.根据权利要求3所述的具有Al和In掺杂,In渐变生长的低温P型GaN外延方法,其特征在于,所述的p型GaN层温度控制在850-1100℃,厚度控制在10-25nm。
6.根据权利要求1、2或5所述的具有Al和In掺杂,In渐变生长的低温P型GaN外延方法,其特征在于,所述的p型接触层温度控制在600-900℃,厚度控制在1-3nm。
7.根据权利要求3所述的具有Al和In掺杂,In渐变生长的低温P型GaN外延方法,其特征在于,所述的p型接触层温度控制在600-900℃,厚度控制在1-3nm。
8.根据权利要求4所述的具有Al和In掺杂,In渐变生长的低温P型GaN外延方法,其特征在于,所述的p型接触层温度控制在600-900℃,厚度控制在1-3nm。
CN201811022399.8A 2018-09-03 2018-09-03 一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法 Active CN109360877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811022399.8A CN109360877B (zh) 2018-09-03 2018-09-03 一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811022399.8A CN109360877B (zh) 2018-09-03 2018-09-03 一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法

Publications (2)

Publication Number Publication Date
CN109360877A true CN109360877A (zh) 2019-02-19
CN109360877B CN109360877B (zh) 2019-10-11

Family

ID=65350583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811022399.8A Active CN109360877B (zh) 2018-09-03 2018-09-03 一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法

Country Status (1)

Country Link
CN (1) CN109360877B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888071A (zh) * 2019-03-06 2019-06-14 聚灿光电科技(宿迁)有限公司 一种新型GaN基LED外延层结构及其制备方法
CN110246753A (zh) * 2019-06-20 2019-09-17 江苏能华微电子科技发展有限公司 一种提升p型GaN掺杂浓度的外延结构的制备方法及结构
CN112259651A (zh) * 2020-10-21 2021-01-22 厦门乾照光电股份有限公司 一种具有p型插入层的led芯片及制作方法
CN112342524A (zh) * 2020-11-06 2021-02-09 辽宁百思特达半导体科技有限公司 一种氮化镓高铝组分的外延生长方法
CN113594028A (zh) * 2021-07-27 2021-11-02 中国科学院苏州纳米技术与纳米仿生研究所 氮化镓p型掺杂的方法、GaN基PN结的制作方法及其应用
CN113675303A (zh) * 2021-08-20 2021-11-19 江西兆驰半导体有限公司 一种氮化物发光二极管外延片及其制备方法
CN115498083A (zh) * 2022-10-24 2022-12-20 淮安澳洋顺昌光电技术有限公司 发光二极管外延结构及发光二极管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100108985A1 (en) * 2008-10-31 2010-05-06 The Regents Of The University Of California Optoelectronic device based on non-polar and semi-polar aluminum indium nitride and aluminum indium gallium nitride alloys
CN102931306B (zh) * 2012-11-06 2016-02-17 华灿光电股份有限公司 一种发光二极管外延片
CN105977356A (zh) * 2016-05-17 2016-09-28 东南大学 一种具有复合电子阻挡层结构的紫外发光二极管
CN104868025B (zh) * 2015-05-18 2017-09-15 聚灿光电科技股份有限公司 具有非对称超晶格层的GaN基LED外延结构及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100108985A1 (en) * 2008-10-31 2010-05-06 The Regents Of The University Of California Optoelectronic device based on non-polar and semi-polar aluminum indium nitride and aluminum indium gallium nitride alloys
CN102931306B (zh) * 2012-11-06 2016-02-17 华灿光电股份有限公司 一种发光二极管外延片
CN104868025B (zh) * 2015-05-18 2017-09-15 聚灿光电科技股份有限公司 具有非对称超晶格层的GaN基LED外延结构及其制备方法
CN105977356A (zh) * 2016-05-17 2016-09-28 东南大学 一种具有复合电子阻挡层结构的紫外发光二极管

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888071A (zh) * 2019-03-06 2019-06-14 聚灿光电科技(宿迁)有限公司 一种新型GaN基LED外延层结构及其制备方法
CN109888071B (zh) * 2019-03-06 2021-11-02 聚灿光电科技(宿迁)有限公司 一种GaN基LED外延层结构及其制备方法
CN110246753A (zh) * 2019-06-20 2019-09-17 江苏能华微电子科技发展有限公司 一种提升p型GaN掺杂浓度的外延结构的制备方法及结构
CN110246753B (zh) * 2019-06-20 2021-07-13 江苏能华微电子科技发展有限公司 一种提升p型GaN掺杂浓度的外延结构的制备方法及结构
CN112259651A (zh) * 2020-10-21 2021-01-22 厦门乾照光电股份有限公司 一种具有p型插入层的led芯片及制作方法
CN112342524A (zh) * 2020-11-06 2021-02-09 辽宁百思特达半导体科技有限公司 一种氮化镓高铝组分的外延生长方法
CN112342524B (zh) * 2020-11-06 2022-06-17 辽宁百思特达半导体科技有限公司 一种氮化镓高铝组分的外延生长方法
CN113594028A (zh) * 2021-07-27 2021-11-02 中国科学院苏州纳米技术与纳米仿生研究所 氮化镓p型掺杂的方法、GaN基PN结的制作方法及其应用
CN113675303A (zh) * 2021-08-20 2021-11-19 江西兆驰半导体有限公司 一种氮化物发光二极管外延片及其制备方法
CN115498083A (zh) * 2022-10-24 2022-12-20 淮安澳洋顺昌光电技术有限公司 发光二极管外延结构及发光二极管

Also Published As

Publication number Publication date
CN109360877B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN109360877B (zh) 一种具有In和Al掺杂,In渐变生长的低温P型GaN外延方法
CN101488550B (zh) 高In组分多InGaN/GaN量子阱结构的LED的制造方法
CN101488548B (zh) 一种高In组分多InGaN/GaN量子阱结构的LED
CN109300851A (zh) 一种具有Al和In掺杂生长的低温P型GaN外延片
WO2017071400A1 (zh) 发光二极管及其制作方法
CN105633235B (zh) 一种n型GaN结构的GaN基LED外延结构及生长方法
CN103811601B (zh) 一种以蓝宝石衬底为基板的GaN基LED多阶缓冲层生长方法
CN102881788A (zh) 一种改善GaN基LED量子阱结构提高载子复合效率的外延生长方法
CN104409586A (zh) GaN基Ⅲ-Ⅴ族化合物半导体LED外延片及生长方法
CN105206726A (zh) 一种led结构及其生长方法
CN102664145A (zh) 采用金属有机化合物气相外延技术生长非对称电子储蓄层高亮度发光二极管的方法
CN108831974B (zh) 一种发光二极管外延片及其制造方法
CN102867892A (zh) 具有In掺杂的低温生长P型GaN外延方法
CN111063772A (zh) 高光效紫外led外延结构
CN106159048A (zh) 一种发光二极管外延片及其生长方法
CN106972085A (zh) 一种发光二极管外延片及其制造方法
CN103824917A (zh) 一种led制备方法、led和芯片
CN111725371B (zh) 一种led外延底层结构及其生长方法
CN113838951A (zh) In-Si共掺杂量子阱的AlGaN基深紫外LED外延结构及其制备方法
CN103337571B (zh) 改善GaN基外延片内波长集中度的外延结构及生长方法
CN106033788B (zh) 一种采用MOCVD技术制备370-380nm高亮度近紫外LED的方法
CN109888071A (zh) 一种新型GaN基LED外延层结构及其制备方法
CN214043696U (zh) 一种提升GaN基绿光LED发光效率的外延层
CN109904289B (zh) 基于超晶格势垒量子阱结构的led及其制备方法
CN115588723B (zh) 发光二极管的外延片及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant