CN109354657B - 烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备及应用方法 - Google Patents

烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备及应用方法 Download PDF

Info

Publication number
CN109354657B
CN109354657B CN201810945246.4A CN201810945246A CN109354657B CN 109354657 B CN109354657 B CN 109354657B CN 201810945246 A CN201810945246 A CN 201810945246A CN 109354657 B CN109354657 B CN 109354657B
Authority
CN
China
Prior art keywords
alkylphenol
mgo
graphene oxide
octylphenol
nonylphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810945246.4A
Other languages
English (en)
Other versions
CN109354657A (zh
Inventor
马晓国
谢晓纹
郭丽慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201810945246.4A priority Critical patent/CN109354657B/zh
Publication of CN109354657A publication Critical patent/CN109354657A/zh
Application granted granted Critical
Publication of CN109354657B publication Critical patent/CN109354657B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0422Elimination of an organic solid phase containing oxygen atoms, e.g. saccharose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/10Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种烷基酚(包括双酚A、辛基酚、壬基酚)复合模板分子印迹聚合物的制备及其在烷基酚去除和分析中的应用。采用改进的Hummer法制备氧化石墨烯,在其表面负载四氧化三铁粒子,并包覆介孔硅,然后接枝双键。以所得材料为载体,双酚A、辛基酚、壬基酚共同作为模板分子,4‑乙烯苯甲酸、乙二醇二甲基丙烯酸酯和2,2’‑偶氮二异丁腈分别作为功能单体、交联剂和引发剂,在60℃下进行聚合。以甲醇∶乙酸(9∶1,V∶V)混合液洗脱模板分子,真空干燥,得烷基酚复合模板分子印迹聚合物。该材料将分子印迹的专一识别性和磁性材料的易于分离性结合起来,可选择性同时吸附水中的双酚A、辛基酚、壬基酚,吸附容量分别达到16.81、35.97、61.73mg/g,在30min内达到吸附平衡,能重复利用5次以上,可用于烷基酚的去除和检测。

Description

烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备 及应用方法
技术领域
本发明属于新型环境功能材料、水处理及检测技术领域,具体涉及一种烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备及应用方法。
背景技术
烷基酚类物质如双酚A(BPA)、壬基苯酚(NP)和辛基苯酚(OP)属于环境雌激素的一类,具有雌性激素效应,能扰乱生物体的内分泌功能,存在潜在的致癌风险。目前在环境水样、鱼虾、肉及肉制品、奶类及谷物等多种食物中都检测到这类物质。因此,研发高效的烷基酚去除技术及灵敏的烷基酚检测方法具有重要意义。
环境水样中烷基酚类物质的含量往往降低,已有化学和物理方法去除烷基酚类化合物,但其中一些会产生有毒副产物。吸附法是去除有机污染物最重要的方法之一,具有效率高、操作简便等优点。吸附法的关键是吸附材料。活性炭是最常用的吸附剂,不过存在治理成本高、选择性低、难以重复利用等弊端。因此,有必要开发效率高、选择性好、成本低和环保的吸附剂。
目前,检测环境水样、饮料及食品中烷基酚常用的方法主要有气相色谱法(GC)、高效液相色谱法(HPLC)、质谱法(MS)及其联用技术(GC-MS、HPLC-MS)等。由于烷基酚在环境样品中的含量比较低,且基体成分复杂,常需要采用分离富集技术,以提高烷基酚的浓度并消除样品中基体成分的干扰。传统的样品前处理技术如溶剂萃取法、固相萃取、分散液液微萃取等,对于复杂基质中烷基酚类物质的检测存在选择性差等缺点,不利于后续过程中对烷基酚物质的分析。因此,有必要研制吸附性能好、选择性高的材料作为烷基酚检测中样品前处理材料。
分子印迹聚合物是一类以模板分子、功能单体、引发剂、交联剂及致孔剂等在特定的分散体系中通过聚合作用制得的交联聚合物,其具备特定的空间构型空穴且空穴内含有与模板分子的特异性结合位点,对模板分子有着一定的“记忆效应”。因此,分子印迹聚合物近年来在有机污染物的去除和分析中发挥着越来越重要的作用。然而,传统的分子印迹材料制备方法消耗时间长、工艺复杂,制得的材料吸附容量低、吸附过程慢。新近出现的表面分子印迹技术有效地避免了上述缺点,解决了洗脱模板分子时存在的“包埋”过深而难以洗脱的问题。由于表面分子印迹聚合物的结合能力在很大程度上取决于载体的表面积,所以选择具有较大表面积的材料来制备分子印迹聚合物能够获得较大的吸附量。
氧化石墨烯(GO)是石墨烯的氧化产物,但其表面含有大量的含氧官能团(如羟基、环氧基和羧基),并拥有大的表面积。在氧化石墨烯表面负载四氧化三铁等可使其带有磁性,克服吸附剂与吸附溶液难分离的缺点。许多研究结果显示,使用多孔材料可有效提高吸附性能。其中,介孔二氧化硅因表面积大等优点而被广泛应用。因此,在MGO表面负载介孔硅形成的复合材料将具有很大的比表面积和良好的亲水性能。以接枝双键后的磁性氧化石墨烯-介孔硅复合材料为基体,进行表面分子印迹,可增加吸附位点数,提高其对目标分子的选择性吸附能力。
目前关于烷基酚类印迹聚合物的合成多采用单一的酚作为模板分子,由于环境样品中多种烷基酚物质往往同时存在时,单一模板印迹聚合物难以实现对多种烷基酚物质的同时有效吸附去除,有必要开发复合模板分子印迹聚合物及其应用技术。
发明内容
本发明的目的是针对现有材料存在的若干问题,开发一种吸附容量大、选择性高、吸附平衡时间短、处理成本低的用于烷基酚同时吸附去除的新型材料和相应的技术。
为此,以接枝双键后的磁性氧化石墨烯-介孔硅复合物为基体,4-乙烯苯甲酸、乙二醇二甲基丙烯酸酯、2,2’-偶氮二异丁腈分别为功能单体、交联剂和引发剂,双酚A、辛基酚、壬基酚为复合模板分子,通过聚合反应,合成了具有高选择性和较大吸附容量的烷基酚复合模板分子印迹材料。以该材料作为吸附剂,实现了对水样中双酚A、辛基酚、壬基酚的高效、快速吸附去除和分离富集。
本发明所采用的技术方案是:
1、烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的合成方法,其特征在于包括以下步骤:
(1)采用改进的Hummer法制备氧化石墨烯(GO)。称取5.0g石墨粉(碳含量>98wt%)和2.5gNaNO3,于冰水浴、持续搅拌的条件下,混合于98%的浓H2SO4(250mL)中,缓慢加入35g KMnO4,控制混合液温度不超过10℃,低温反应2h后,将温度维持在35℃左右,反应2h。然后逐滴加入240mL去离子水,当溶液温度达到90℃时,继续反应40min。反应结束后冷却至室温,得到的亮黄色悬浮液用500mL去离子水稀释,加入双氧水(30%)至无气泡生成。先后用稀释10倍的HCl溶液和丙酮洗涤产物,于80℃下真空干燥。
(2)采用化学共沉淀法制备磁性氧化石墨烯(MGO)。将GO混合于去离子水中,室温下超声30min。接着加入8g FeCl3·9H2O和7g FeSO2·7H2O,通氮除氧。逐滴加入25%的氨水,至pH=11左右,于80℃、持续剧烈搅拌条件下反应60min。反应结束待溶液冷却至室温,在外加磁场的作用下从混合液中收集MGO,用去离子水、无水乙醇分别洗涤3次。将收集到的MGO于50℃真空干燥,研磨。
(3)MGO@mSiO2的制备。将0.5g的MGO纳米颗粒、1.5g十六烷基三甲基溴化铵(CTAB)和100mL去离子水混合,并将混合物超声处理30min。再向溶液中加入250mL无水乙醇和5mL氨水(30%),然后超声处理10min,在机械搅拌下逐滴加入4mL正硅酸乙酯(TEOS),室温下搅拌24h。在外加磁场下收集材料,并用无水乙醇洗涤3遍。为了去除CTAB,采用1%的硝酸铵乙醇混合液作为溶剂,在60℃下冷凝回流24h,最后用无水乙醇洗涤3次,并在60℃下真空干燥。
(4)MGO@mSiO2的双键修饰。将0.5g MGO@mSiO2分散于50mL甲苯中,超声反应60min,接着加入10mL乙烯基三甲氧基硅烷(VTTS),通氮除氧10min,于50℃下搅拌反应24h。在外加磁场作用下将收集到的产物用甲苯洗涤3次,于50℃真空条件下干燥24h,得到修饰双键后的MGO@mSiO2(VVTS-MGO@mSiO2)。
(5)烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备。量取双酚A、辛基酚、壬基酚各0.175mmol(毫摩尔)(摩尔比:1∶1∶1)溶于50mL甲苯中,超声分散15min。接着往上述溶液中加入1.05mmol 4-乙烯苯甲酸(模板分子与功能单体摩尔比=1∶2,),继续超声15min。然后放入气浴摇床200rpm震摇8h。接着,加入300mg VTTS-MGO@mSiO2、2.63mmol的EGDMA(模板分子∶交联剂=1∶5,摩尔比),以及50mg AIBN,通氮除氧,于60℃水浴中搅拌24h(200rpm)。用外加磁场收集得到的固态物质,用甲醇洗涤2遍后,接着用甲醇∶乙酸(9∶1,V∶V)混合溶液洗涤聚合物,至高效液相色谱法(HPLC)检测不到模板分子。最后用甲醇将聚合物重复洗涤几次,于60℃下真空干燥24h,得到烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯。
2、一种权利要求1制备的烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯用于去除和检测含烷基酚的水样,其特征在于包括如下步骤:
(1)将20mg印迹材料加到50mL含有一定浓度的双酚A、辛基酚、壬基酚的水样中,调节pH为6,于恒温振荡器中200rpm条件下振荡吸附30min;
(2)在外加磁场作用下将吸附了双酚A、辛基酚、壬基酚的印迹材料从溶液中分离出来,然后加入1mL丙酮,于恒温振荡器中200rpm下振荡洗脱5min;
(3)用高效液相色谱仪测定洗脱液中双酚A、辛基酚、壬基酚的浓度。
本发明的有益效果是:
(1)本发明制备的烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯材料对双酚A、辛基酚、壬基酚的吸附容量分别达到16.81、35.97、61.73mg/g,在30min内达到吸附平衡,可重复利用5次以上,为实际水样中烷基酚污染的治理提供了新的途径。
(2)本发明制备的烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯材料对双酚A、辛基酚、壬基酚具有良好的专一识别性,且具备超顺磁性和较大的比表面积,利用外加磁场可对复杂基质溶液中的双酚A、辛基酚、壬基酚进行高选择性快速分离富集。
(3)本发明制备的烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯材料作为固相萃取过程中的吸附剂,吸附速率快、抗干扰能力强,加速了样品前处理过程,高效富集了环境样品中的双酚A、辛基酚、壬基酚,提高了仪器对烷基酚检测的灵敏度。
具体实施方式
下面通过实例对本发明做进一步详细说明,这些实例仅用来说明本发明,并不限制本发明的范围。
实施例1
(1)采用改进的Hummer法制备氧化石墨烯(GO)。称取5.0g石墨粉(碳含量>98wt%)和2.5gNaNO3,于冰水浴、持续搅拌的条件下,混合于98%的浓H2SO4(250mL)中,缓慢加入35g KMnO4,控制混合液温度不超过10℃,低温反应2h后,将温度维持在35℃左右,反应2h。然后逐滴加入240mL去离子水,当溶液温度达到90℃时,继续反应40min。反应结束后冷却至室温,得到的亮黄色悬浮液用500mL去离子水稀释,加入双氧水(30%)至无气泡生成。先后用稀释10倍的HCl溶液和丙酮洗涤产物,于80℃下真空干燥。
(2)采用化学共沉淀法制备磁性氧化石墨烯(MGO)。将GO混合于去离子水中,室温下超声30min。接着加入8g FeCl3·9H2O和7g FeSO2·7H2O,通氮除氧。逐滴加入25%的氨水,至pH=11左右,于80℃、持续剧烈搅拌条件下反应60min。反应结束待溶液冷却至室温,在外加磁场的作用下从混合液中收集MGO,用去离子水、无水乙醇分别洗涤3次。将收集到的MGO于50℃真空干燥,研磨。
(3)MGO@mSiO2的制备。将0.5g的MGO纳米颗粒、1.5g十六烷基三甲基溴化铵(CTAB)和100mL去离子水混合,并将混合物超声处理30min。再向溶液中加入250mL无水乙醇和5mL氨水(30%),然后超声处理10min,在机械搅拌下逐滴加入4mL正硅酸乙酯(TEOS),室温下搅拌24h。在外加磁场下收集材料,并用无水乙醇洗涤3遍。为了去除CTAB,采用1%的硝酸铵乙醇混合液作为溶剂,在60℃下冷凝回流24h,最后用无水乙醇洗涤3次,并在60℃下真空干燥。
(4)MGO@mSiO2的双键修饰。将0.5g MGO@mSiO2分散于50mL甲苯中,超声反应60min,接着加入10mL乙烯基三甲氧基硅烷(VTTS),通氮除氧10min,于50℃下搅拌反应24h。在外加磁场作用下将收集到的产物用甲苯洗涤3次,于50℃真空条件下干燥24h,得到修饰双键后的MGO@mSiO2(VVTS-MGO@mSiO2)。
(5)烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备。量取双酚A、辛基酚、壬基酚各0.175mmol(毫摩尔)(摩尔比:1∶1∶1)溶于50mL甲苯中,超声分散15min。接着往上述溶液中加入1.05mmol 4-乙烯苯甲酸(模板分子与功能单体摩尔比=1∶2,),继续超声15min。然后放入气浴摇床200rpm震摇8h。接着,加入300mg VTTS-MGO@mSiO2、2.63mmol的EGDMA(模板分子∶交联剂=1∶5,摩尔比),以及50mg AIBN,通氮除氧,于60℃水浴中搅拌24h(200rpm)。用外加磁场收集得到的固态物质,用甲醇洗涤2遍后,接着用甲醇∶乙酸(9∶1,V∶V)混合溶液洗涤聚合物,至高效液相色谱法(HPLC)检测不到模板分子。最后用甲醇将聚合物重复洗涤几次,于60℃下真空干燥24h,得到烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯。
实施例2
对实施例1所得材料进行各项指标实验。
将20mg实施例1所得材料加到不同pH值的20mL含有50mg/L双酚A、辛基酚、壬基酚的溶液中,考察pH值对吸附效果的影响。结果表明,pH在6左右,吸附量最大。
将20mg实施例1所得材料加到pH=6的20mL含有50mg/L双酚A、辛基酚、壬基酚溶液中,考察吸附时间对吸附效果的影响。结果表明30min内,吸附达到平衡,吸附过程服从二级动力学。
将20mg实施例1所得材料加到不同初始浓度的溶液中,于恒温振荡器中在25℃下吸附60min,研究材料的吸附量随初始浓度的变化,通过吸附等温线拟合,发现吸附过程服从Langmuir吸附等温式,计算得到印迹材料对双酚A、辛基酚、壬基酚的饱和吸附量分别达到16.81、35.97、61.73mg/g。
选择双酚AF、4-叔丁基苯酚作为竞争性分子进行吸附试验,研究材料对双酚A、辛基酚、壬基酚的吸附选择性。结果表明,材料中双酚A、辛基酚、壬基酚对双酚AF的相对选择性系数分别为3.38、4.40、6.66,对4-叔丁基苯酚的相对选择性系数分别为4.50、5.87、8.88,说明印迹材料对双酚A、辛基酚、壬基酚具有很好的特异性识别功能,印迹效果十分明显。
实施例3
实施例1所得材料用于环境水中双酚A、辛基酚、壬基酚的吸附去除。
将20mg材料加至50mL含有20mg/L双酚A、辛基酚、壬基酚溶液中,调节pH值为6,于200rpm下振荡30min。在外加磁场作用下使吸附剂与溶液分离。采用高效液相色谱法测定溶液中残留双酚A、辛基酚、壬基酚的浓度,计算双酚A、辛基酚、壬基酚的去除率。用甲醇∶乙酸(9∶1,V∶V)混合溶液洗脱材料所吸附的双酚A、辛基酚、壬基酚。
材料可重复使用5次。
实施例4 所得材料用于水中微量双酚A、辛基酚、壬基酚的固相萃取-分散液液微萃取
将20mg材料加至50mL含有0.1mg/L双酚A、辛基酚、壬基酚溶液中,调节pH值为6,于200rpm下振荡10min。在外加磁场作用下使吸附剂与溶液分离。然后加入1mL丙酮洗脱材料所吸附的双酚A、辛基酚、壬基酚,洗脱5min。在外加磁场作用下收集洗脱液。
用高效液相色谱仪测定洗脱液中双酚A、辛基酚、壬基酚的浓度,计算双酚A、辛基酚、壬基酚的回收率。

Claims (2)

1.一种烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的合成方法,其特征在于,包括以下几个步骤:
(1)采用改进的Hummer法制备氧化石墨烯(GO):称取5.0 g石墨粉,碳含量>98 wt%和2.5 g NaNO3,于冰水浴、持续搅拌的条件下,混合于250 mL 98%的浓H2SO4中;缓慢加入35 gKMnO4,控制混合液温度不超过10℃,低温反应2 h后,将温度维持在35℃左右,反应2 h;然后逐滴加入240 mL去离子水,当溶液温度达到90℃时,继续反应40 min;反应结束后冷却至室温,得到的亮黄色悬浮液用500 mL去离子水稀释,加入30%双氧水至无气泡生成;先后用稀释10倍的HCl溶液和丙酮洗涤产物,于80℃下真空干燥;
(2)采用化学共沉淀法制备磁性氧化石墨烯(MGO):将GO混合于去离子水中,室温下超声30 min;接着加入8 g FeCl3·9H2O和7 g FeSO2·7H2O,通氮除氧;逐滴加入25%的氨水,至pH=11左右,于80℃、持续剧烈搅拌条件下反应60 min;反应结束待溶液冷却至室温,在外加磁场的作用下从混合液中收集MGO,用去离子水、无水乙醇分别洗涤3次,将收集到的MGO于50℃真空干燥,研磨;
(3)MGO@mSiO2的制备: 将0.5 g的MGO纳米颗粒、1.5 g 十六烷基三甲基溴化铵(CTAB)和100 mL去离子水混合,并将混合物超声处理30 min;再向溶液中加入250 mL无水乙醇和5mL30% 氨水,然后超声处理10min,在机械搅拌下逐滴加入4 mL 正硅酸乙酯(TEOS),室温下搅拌24 h;在外加磁场下收集材料,并用无水乙醇洗涤3遍;为了去除CTAB,采用1%的硝酸铵乙醇混合液作为溶剂,在60℃下冷凝回流24 h,最后用无水乙醇洗涤3次,并在60℃下真空干燥;
(4)MGO@mSiO2的双键修饰:将0.5 g MGO@mSiO2分散于50 mL甲苯中,超声反应60 min,接着加入10 mL乙烯基三甲氧基硅烷(VTTS),通氮除氧10 min,于50℃下搅拌反应24 h;在外加磁场作用下将收集到的产物用甲苯洗涤3次,于50℃真空条件下干燥24 h,得到修饰双键后的MGO@mSiO2(VTTS- MGO@mSiO2);
(5)烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备:量取摩尔比1:1:1的双酚A、辛基酚、壬基酚各0.175 mmol(毫摩尔)为模板分子溶于50 mL甲苯中,超声分散15min;接着按模板分子与功能单体摩尔比1:2的比例往上述溶液中加入1.05 mmol 4-乙烯苯甲酸,继续超声15 min,然后放入气浴摇床200 rpm震摇8 h;接着,加入300 mg VTTS-MGO@mSiO2,按模板分子与交联剂摩尔比1:5的比例加入2.63 mmol EGDMA,以及50 mg AIBN,通氮除氧,于60℃水浴中200 rpm搅拌24 h;用外加磁场收集得到的固态物质,用甲醇洗涤2遍后,接着用甲醇:乙酸(9:1,V:V)混合溶液洗涤聚合物,至高效液相色谱法(HPLC)检测不到模板分子;最后用甲醇将聚合物重复洗涤几次,于60℃下真空干燥24 h,得到烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯。
2. 一种如权利要求1 所述合成方法得到的烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯用于去除和检测含烷基酚的水样,其特征在于包括如下步骤:
(1)将20 mg印迹材料加到50 mL含有一定浓度的双酚A、辛基酚、壬基酚的水样中,调节pH为6,于恒温振荡器中200 rpm条件下振荡吸附30 min;
(2)在外加磁场作用下将吸附了双酚A、辛基酚、壬基酚的印迹材料从溶液中分离出来,然后加入1 mL丙酮,于恒温振荡器中200 rpm下振荡洗脱5 min;
(3)用高效液相色谱仪测定洗脱液中双酚A、辛基酚、壬基酚的浓度。
CN201810945246.4A 2018-08-16 2018-08-16 烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备及应用方法 Expired - Fee Related CN109354657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810945246.4A CN109354657B (zh) 2018-08-16 2018-08-16 烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备及应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810945246.4A CN109354657B (zh) 2018-08-16 2018-08-16 烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备及应用方法

Publications (2)

Publication Number Publication Date
CN109354657A CN109354657A (zh) 2019-02-19
CN109354657B true CN109354657B (zh) 2021-02-02

Family

ID=65350065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810945246.4A Expired - Fee Related CN109354657B (zh) 2018-08-16 2018-08-16 烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备及应用方法

Country Status (1)

Country Link
CN (1) CN109354657B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198120A (zh) * 2020-02-25 2020-05-26 南京海关工业产品检测中心 基于分子印迹技术检测纺织品中壬基酚的方法
CN111198119A (zh) * 2020-02-25 2020-05-26 南京海关工业产品检测中心 基于分子印迹技术检测纺织品中辛基酚的方法
CN111650302B (zh) * 2020-06-19 2022-12-23 国家烟草质量监督检验中心 一种辛基酚和壬基酚同分异构体的分离检测方法
CN112007621A (zh) * 2020-06-23 2020-12-01 广东工业大学 四环素类抗生素多模板分子印迹磁性复合材料的制备及应用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604009A (zh) * 2012-03-23 2012-07-25 济南大学 磁性石墨烯载体的分子印迹聚合物的制备方法
CN105148876A (zh) * 2015-09-06 2015-12-16 江南大学 一种磁性石墨烯表面分子印迹纳米复合材料的制备方法
CN105688444A (zh) * 2014-11-27 2016-06-22 宁波市疾病预防控制中心 一种氯酚石墨烯基分子印迹固相萃取小柱及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604009A (zh) * 2012-03-23 2012-07-25 济南大学 磁性石墨烯载体的分子印迹聚合物的制备方法
CN105688444A (zh) * 2014-11-27 2016-06-22 宁波市疾病预防控制中心 一种氯酚石墨烯基分子印迹固相萃取小柱及其制备方法和应用
CN105148876A (zh) * 2015-09-06 2015-12-16 江南大学 一种磁性石墨烯表面分子印迹纳米复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Selective removal of BPA from aqueous solution using molecularly imprinted polymers based on magnetic graphene oxide;Rong-Zhong Wang;Dan-Lian Huang;Yun-Guo Liu;《Selective removal of BPA from aqueous solution》;20161108;第106201–106210页 *

Also Published As

Publication number Publication date
CN109354657A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
CN109354657B (zh) 烷基酚复合模板分子印迹聚合物修饰磁性氧化石墨烯的制备及应用方法
Xie et al. Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water
Jiang et al. A novel sol–gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A
CN109092254B (zh) 一种双虚拟模板邻苯二甲酸酯分子印迹磁性材料的制备及应用方法
CN105688869B (zh) 一种磁性金属‑有机纳米管材料的制备方法及其应用
CN112808256B (zh) 一种磁性核壳介孔表面分子印迹复合纳米材料及其制备方法
CN107118354B (zh) 一种赭曲霉毒素金属有机骨架-分子印迹复合的分离介质的制备方法及应用
Zhong et al. Synthesis and characterization of magnetic molecularly imprinted polymers for enrichment of sanguinarine from the extraction wastewater of M. cordata
Piao et al. Separation of Sudan dyes from chilli powder by magnetic molecularly imprinted polymer
CN112552547B (zh) 一种β-内酰胺类抗生素多模板分子印迹磁性复合材料及其制备方法与应用
An et al. Selective adsorption of AuCl4− on chemically modified D301 resin with containing N/S functional polymer
Tan et al. Development of surface imprinted core–shell nanoparticles and their application in a solid-phase dispersion extraction matrix for methyl parathion
An et al. Novel ionic surface imprinting technology: design and application for selectively recognizing heavy metal ions
Qiu et al. Fabrication of novel stir bar sorptive extraction coating based on magnetic molecularly imprinted polymer through atom transfer radical polymerization for trace analysis of estrogens in milk
Li et al. Rapid extraction of trace bisphenol A in real water samples using hollow mesoporous silica surface dummy molecularly imprinted polymers
An et al. Effective recovery of AuCl4− using D301 resin functionalized with ethylenediamine and thiourea
CN105498728B (zh) 一种邻苯二甲酸二(2-乙基己基)酯表面分子印迹磁性纳米材料的制备及应用
CN112007621A (zh) 四环素类抗生素多模板分子印迹磁性复合材料的制备及应用方法
Liu et al. A new core–shell magnetic mesoporous surface molecularly imprinted composite and its application as an MSPE sorbent for determination of phthalate esters
CN112958041B (zh) 一种核壳结构纳米复合树脂、制备方法及在电镀废水处理中的应用
CN111909311B (zh) 一种玉米赤霉烯酮功能化石墨烯表面分子印迹材料及其制备方法
CN112007614A (zh) 一种硅烷化试剂修饰的两亲性磁性纳米粒子及其制备方法和应用
Ren et al. Synthesis, characterization and evaluation of hollow molecularly imprinted polymers for Sudan I
Hashemi-Moghaddam et al. Synthesis and comparison of new layer-coated silica nanoparticles and bulky molecularly imprinted polymers for the solid-phase extraction of glycine
CN108246266A (zh) 一种阿特拉津表面分子印迹磁性介孔材料的制备及应用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210202