CN109354617B - 水稻环境条件性致死突变基因osesl1及其编码蛋白和应用 - Google Patents

水稻环境条件性致死突变基因osesl1及其编码蛋白和应用 Download PDF

Info

Publication number
CN109354617B
CN109354617B CN201811503381.XA CN201811503381A CN109354617B CN 109354617 B CN109354617 B CN 109354617B CN 201811503381 A CN201811503381 A CN 201811503381A CN 109354617 B CN109354617 B CN 109354617B
Authority
CN
China
Prior art keywords
rice
osesl1
embryo
gene
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811503381.XA
Other languages
English (en)
Other versions
CN109354617A (zh
Inventor
方军
王晶
于洋
卜庆云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Institute of Geography and Agroecology of CAS
Original Assignee
Northeast Institute of Geography and Agroecology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Institute of Geography and Agroecology of CAS filed Critical Northeast Institute of Geography and Agroecology of CAS
Priority to CN201811503381.XA priority Critical patent/CN109354617B/zh
Publication of CN109354617A publication Critical patent/CN109354617A/zh
Priority to US16/962,192 priority patent/US11339402B2/en
Priority to PCT/CN2019/117126 priority patent/WO2020119359A1/zh
Application granted granted Critical
Publication of CN109354617B publication Critical patent/CN109354617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/022Genic fertility modification, e.g. apomixis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/022Genic fertility modification, e.g. apomixis
    • A01H1/024Female sterility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • A01H1/045Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection using molecular markers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • A01H6/4636Oryza sp. [rice]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8267Seed dormancy, germination or sprouting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/829Female sterility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

水稻环境条件性致死突变基因osesl1及其编码蛋白和应用,涉及一种水稻突变基因osesl1及其编码蛋白和应用。是要解决现有方法无法有效的防止异常气候对光温敏不育系育性的影响的问题。基因osesl1的核苷酸序列如序列表中SEQ ID NO:1所示。其编码蛋白的氨基酸序列如SEQ ID NO:2所示。osesl1突变体水稻抽穗后,种胚致死表型在授粉后12天出现,表现为胚和胚乳连接处变黑。当平均温度低于22℃时种胚正常,当平均温度高于28℃时种胚致死,当温度在22‑28℃之间时,大于13h长日照条件下种胚致死,小于13h短日条件下种胚正常。本发明的基因osesl1在控制水稻种胚发育中的应用。

Description

水稻环境条件性致死突变基因osesl1及其编码蛋白和应用
技术领域
本发明涉及一种水稻突变基因osesl1及其编码蛋白和应用。
背景技术
水稻(Oryza sativa L.)是人类赖以生存的重要粮食作物,全世界一半以上的人口以水稻为主粮。全球120多个国家种植水稻,其中90%的种植面积和产量集中于亚洲。中国是世界稻谷生产大国和稻作历史古国,是最大的水稻生产基地之一,水稻总产量居世界第一。近年来,随着世界人口的增长、老龄化的加剧、城市化建设的加快,以及部分地区植被破坏所导致的环境恶化等问题的出现,如何在有限的人力和环境资源条件下提高水稻的产量和品质、保证粮食安全是关系国计民生的重大问题。
利用杂种优势提高水稻产量和品质是现代农业的主要成就之一,并在雄性不育的基础上提出了三系法和两系法杂交水稻。三系法中,不育系的不育性稳定、不受光温影响、但需要保持系进行繁种,生产过程复杂,而且恢复系受到细胞质生物遗传的限制,制约了三系法的发展。两系法核心为光温敏不育系,其育性转换与日照长短和温度高低有密切关系:温敏不育系的育性转换表现为受温度主控,高温不育,低温可育;光敏不育系的育性转换由光周期主控,长光照诱导不育,短光照下可育。两系法杂交稻,不再需要借助保持系来繁殖不育系,种子生产简单、成本低,但随着繁殖代数的增加起点温度不断升高,不育系丧失温敏的特性、易受不稳定天气影响使育性波动导致种子纯度下降,制种和繁种都存在一定的风险。
目前克隆的多个具有感温性或感光性的基因均来自于不育系,其中包括温敏不育基因tms5,其蛋白编码一个短版的RNaseZ同源蛋白RNaseZS1(Zhou H,Zhou M,Yang Y,etal.2014.RNase ZS1processes UbL40mRNAs and controls thermosensitive genic malesterility in rice.Nature Communications,5:4884.);光敏不育基因pms3为RNA(LDMAR)(Ding J,Lu Q,Ouyang Y,et al.2012.A long noncoding RNA regulates photoperiod-sensitive male sterility,an essential component of hybrid rice.Proceedings ofthe National Academy of Sciences of the USA,109(7):2654-2659);光温敏核不育基因Ugp1尿苷二磷酸葡萄糖焦磷酸化酶基因(UDP-glucose rophosphorylase,Ugp1)(ChenR,Zhao X,Shao Z,et al.2007.Rice UDP-glucose pyrophosphorylase1is essentialfor pollen callose deposition and its co-suppression results in a new type ofthermosensitive genic male sterility.The Plant Cell,19(3):847-861.)、水稻肌球蛋白基因(Oryza sativa myosin XIB,osmyo XIB)(Jiang S Y,Cai M,RamachandranS.2007.ORYZA SATIVA MYOSIN XI B controls pollen development by photoperiod-sensitive protein localizations.Developmental Biology,304(2):579-592.)和花药碳饥饿基因(carbon starved anther,CSA)(Zhang H,Xu C,He Y,et al.2013.Mutationin CSA creates a new photoperiod-sensitive genic male sterile line applicablefor hybrid rice seed production.Proceedings of the National Academy ofSciences of the USA,110(1):76-81.)。上述基因均是涉及花粉育性相关基因,如果向不育系中同时导入环境敏感型的合子致死基因或胚胎致死基因,利用环境条件让不育系在制种时所产生自交种子死亡,即便出现不稳定的天气导致育性变化而结实,也会由于合子或胚胎的条件性致死使得自交种子不能存活,从而保证杂交种纯度;而在对不育系进行繁种时,花粉育性条件同时也满足了合子或胚胎的存活条件,保证了自交种子结实可用。然而,科研人员却一直苦于没有找到适合的基因可以应用。
无论三系法还是两系法杂交稻在制种过程中,不育系和恢复系都要分开播种,而且在收获杂交种时候,恢复系还需要单独收获,这两种情况都存在操作程序繁琐、成本高、劳动强度大等问题,仅适用于在劳动密集型国家和地区推广,在经济发达和机械化程度高的国家推广缓慢,大大限制了杂交稻的发展。在有限的人力与环境资源条件下,要保证杂交水稻的产量增加和成本降低,必须实现杂交水稻制种的全程机械化,因此提出筛选受精、结实存在障碍的特殊材料或自交不发芽的材料作父本,这两类材料都能正常提供花粉。选择这种材料作恢复系(父本),可以省去在杂交水稻制种过程中对恢复系的单独处理,但父本自身的繁殖问题还有待研究,所以目前尚未在生产上应用。因此如何有效的防止异常气候对光温敏不育系育性的影响以及最大限度降低杂交稻制种成本已成为我国杂交稻生产必须解决的重要课题。
发明内容
本发明是要解决现有方法无法有效的防止异常气候对光温敏不育系育性的影响的问题,提供一种水稻环境条件性致死突变基因osesl1及其编码蛋白和应用。
本发明水稻环境条件性致死突变基因osesl1的核苷酸序列如序列表中SEQ IDNO:1所示。该基因具有5个外显子,4个内含子。
本发明水稻环境条件性致死突变基因osesl1编码蛋白的氨基酸序列如SEQ IDNO:2所示。
本发明水稻环境条件性致死突变基因osesl1在控制水稻种胚发育中的应用。
进一步的,控制水稻生长环境温度低于22℃时种胚正常,控制的水稻生长环境温度高于28℃时种胚致死。
进一步的,当水稻生长环境温度在22-28℃之间时,控制日照时间大于13h种胚致死,控制日照时间小于13h种胚正常。
本发明提取osesl1突变体基因组的DNA,采用标记dCAP2经PCR扩增,和NcoI酶切鉴定,获得osesl1osesl1基因型的纯合子。所述dCAP2标记的上游引物的序列如SEQ ID NO:4所示,下游引物的序列如SEQ ID NO:5所示。
本发明观察研究osesl1突变体发现水稻抽穗后,种胚致死表型在授粉后12天出现,表现为胚和胚乳连接处变黑。当平均温度低于22℃时种胚正常,当平均温度高于28℃时种胚致死,而当温度在22-28℃之间时种胚发育主要受到光周期调控,大于13h长日照条件下种胚致死,小于13h短日条件下种胚正常。
本发明得到一个粳稻日本晴EMS诱变的环境条件性致死突变体osesl1(Photo/thermo)-period sensitive lethal 1),该突变体结实后种胚变黑,收获季遇到高温高湿天气有穗发芽现象,拯救后植株营养生长和生殖生长都不受影响。该突变表型由一个隐性核基因控制。通过构建杂交群体,利用图位克隆方法,获得了控制这一性状的基因。序列比较表明,该基因编码一个莽草酸途径的入口酶DAHPS(3-deoxy-Darabino-heptulosonate7-phosphate synthase)3-脱氧-D-阿拉伯糖型-庚酮糖酸-7-磷酸合成酶。目前水稻中尚无这类基因突变影响种胚变黑和环境条件性致死的研究报道,说明这是该基因受环境影响控制种胚发育的新功能。这一突变体的获得,对于了解水稻胚发育的机制具有重要的应用价值。突变基因克隆后,可以探索将其用于杂交水稻不育系、恢复系育种和地方品种保护中。本发明中水稻环境条件性致死突变基因,可以通过改变环境条件使种胚致死用于保证两系法中不育系种子纯度;也通过相同条件应用于两系法和三系法中恢复系中提高杂交稻机械化程度;还可以根据地区光温特点向具有致死条件地区的地方品种中导入该突变基因进行地方品种的保护。
附图说明
图1为授粉后12天野生型日本晴种胚;
图2为授粉后12天野生型日本晴种胚切片图;
图3为授粉后12天osesl1突变体的种胚;
图4为授粉后12天osesl1突变体的种胚切片图;
图5为OsESL1突变基因的初定位图;
图6为OsESL1突变基因的精细定位图;
图7为应用dCAP2标记检测野生型、osesl1突变体及T2转基因个体osesl1基因型
图8为水稻环境致死突变体osesl1及T2转基因植株生长发育表型;
图9为水稻环境致死突变体osesl1及T2转基因植株种子致死表型;
图10为水稻环境致死突变体osesl1和野生型植株在临界温度范围内长日照和短日照条件。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式水稻环境条件性致死突变基因osesl1的核苷酸序列如序列表中SEQ ID NO:1所示。该基因具有5个外显子,4个内含子。
具体实施方式二:本实施方式水稻环境条件性致死突变基因osesl1编码蛋白的氨基酸序列如SEQ ID NO:2所示。
具体实施方式三:本实施方式水稻环境条件性致死突变基因osesl1在控制水稻种胚发育中的应用。
具体实施方式四:本实施方式与具体实施方式三不同的是:控制水稻生长环境温度低于22℃时种胚正常,控制水稻生长环境温度高于28℃时种胚致死。其它与具体实施方式三相同。
具体实施方式五:本实施方式与具体实施方式三不同的是:当水稻生长环境温度在22-28℃之间时,控制日照时间大于13h种胚致死,控制日照时间小于13h种胚正常。其它与具体实施方式三相同。
下面对本发明的实施例做详细说明,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方案和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:水稻环境致死突变体osesl1的获得及表型分析
水稻环境致死突变体osesl1是采用EMS化学诱变粳稻日本晴(Nipponbare)的种子,处理条件为:在室温下先用超纯水浸泡吸涨24h,然后用1.5%EMS(v/v)浸泡18h,先用75ml超纯水漂洗3次,每次5分钟,再用75ml超纯水漂洗3次,每次20min。播种之前再用自来水漂洗2h,具体处理方法参考文献如下(Till B J,Cooper J,Tai T H,et al.Discoveryof chemically induced mutations in rice by TILLING.BMC Plant Biology,2007,7(1):19)。将诱变的种子播种于田间并收获M1代种子,M1代再自交获得M2代,分别在冬季种植在海南(低温短日),夏季种植在黑龙江(高温长日),以便从中筛选低温短日条件下正常繁殖而高温长日条件下种胚致死的突变体。筛选获得一个突变体osesl1,该突变体在营养生长、生殖生长与对照日本晴没有明显差异,而在高温长日条件下开花授粉后第12天在种子的胚与胚乳连接处呈现细胞程序性死亡,导致整个种胚变黑,如图1~图4所示,图1为授粉后12天野生型日本晴种胚;图2为授粉后12天野生型日本晴种胚切片图;图3为授粉后12天osesl1突变体的种胚;图4为授粉后12天osesl1突变体的种胚切片图。该种胚变黑的突变体种子不经过休眠破除,在收获后第0天(DAH0,0day after harvest)时具有一定的生活力,萌发率达到44.67%,到收获后第60天(DAH60)萌发率降到12.18%,而到90天(DAH90)时萌发率为0,说明种子几乎全部死亡。若经过7天45℃破除休眠则种胚也全部死亡。具体统计结果见表1。
表1种胚萌发率统计
Germination DAH0 DAH 60 DAH90 DAH7for 45℃
Wild-type 99.3%+0.01% 99.99%+0.01% 99.33%+0.01% 100.00%+0.00%
osesl1 44.67%+0.09% 12.18%+0.10% 0.00%+0.00% 0.00%+0.00%
利用回交的方法把osesl1位点导入到常规粳稻、籼稻品种中,如明恢63(MH63osesl1),成恢448(CH448osesl1)、7001S(7001S osesl1)等材料中,对水稻产量没有影响,说明osesl1位点可以在不同背景中进行应用。将osesl1位点通过回交导入东北地方粳稻品种空育131(KY131)中获得KY131osesl1,种植在高温长日地区,观察其营养生长和生殖生长且与野生型无明显差异。对KY131osesl1的产量相关性状千粒重和结实率等进行统计分析发现:KY131osesl1与野生型KY131相比在千粒重和结实率方面无明显差别,单株粒数有所增加,致死率可达到93.3%(表2)。利用该特性可以将osesl1基因型导入北方专利水稻品种空育131(KY131osesl1)中,利用种胚致死特性进行南方繁种,为北方水稻生产为提供品种保护。
表2KY131osesl1及KY131产量相关性状分析。
品种 单株粒数 千粒重(g) 结实率(%) 致死率(%)
KY131<sup>osesl1</sup> 455.6±119.6 20.3±1.35 93.2%±1.30% 93.3%±1.30%
KY131 374.4±92.56 21.9±1.21 93.8%±1.70% 0.00%±0.00%
实施例2:水稻环境致死突变体osesl1遗传分析与图位克隆
(1)遗传分析
将osesl1突变体与籼稻明恢63(MH63)进行杂交,获得F1种子,F1自交后得到278株F2群体,并对F2代群体进行表型调查统计分离比,其中野生型:突变型=216:62,卡方检测符合3:1分离比,进一步利用osesl1突变体和野生型日本晴回交的F2代群体进行调查也符合3:1分离,说明该突变体穗发芽的表型是由隐性单基因控制的。
(2)基因定位
a)利用SSR分子标记进行初定位。首先,根据水稻基因组数据库公布的SSR序列信息合成水稻SSR引物;然后,采用CTAB法提取亲本及F2(osesl1xMH63)代DNA;最后,进行PCR扩增和PAGE胶电泳检测。以亲本osesl1和MH63为对照,分析F2代群体中存在差异的分子标记。
采用CTAB法,简要步骤如下:取叶片0.1g左右放入2ml EP管中,放入钢珠后在液氮中预冷,震动研磨,加入700μl 65℃预热的DNA提取液,小心混匀后放入65℃水浴40分钟,加入等体积的氯仿,剧烈混匀,离心(12000rpm)10分钟,取上清加入等体积的异丙醇沉淀30分钟,离心(12000rpm)10分钟,加入70%的无水乙醇清洗沉淀,离心(12000rpm)5分钟,弃上清,倒置晾干。加入50μl水,溶解沉淀。-20℃冰箱保存。
PCR反应体系的总体积为10μl,水稻基因组DNA模版1μl(约200ng)、2xMaster Mix5μl、10μM引物各0.5μl,加ddH2O到10μl。反应程序:94℃变性5min;94℃30s;58℃30s;72℃20s,35个循环;72℃延伸10min。
分析结果发现osesl1突变体突变基因初定位于8号连锁群标记M5与M6之间(如图5)。
b)利用重测序方法进行精细定位。调查F2(osesl1xNipponbare)代群体,根据其是否具有突变表型进行分类,筛选具有代表性的野生型和突变型F2个体分别建立野生池和突变池,采用CTAB法分别提取DNA,建库进行重测序,从而精细定位突变基因(如图6),其在TheRice Annotation Project(RAP)数据库中的基因登录号为Os08g0484500。
根据精细定位的结果设计基因两侧引物进行PCR扩增和测序验证。PCR反应体系的总体积为50μl,水稻基因组DNA模版1μl(约200ng)、2×PCR buffer for KOD Fx 25μl、2mMdNTP 10μl、KOD Fx(1U/μl)1μl、10μM引物各1.5μl,加ddH2O到50μl。
引物OsESL1F:5’-ATGCCCCTCGCGCCATGCCC-3’
引物OsESL1R:5’-GAGCCCCAAAGATGGGATGT-3’
反应程序:98℃变性2min;98℃10s;60℃90s;68℃2min,30个循环;78℃延伸10min。回收PCR产物,进行Sanger测序分析。
结果发现Os08g0484500基因是莽草酸途径的一个酶基因OsDAHPS,该基因第一个外显子区存在1个SNP位点,是G-T的替换,导致氨基酸Val(gtg)-leu(ttg)的错义突变,因此将这个基因命名为OsESL1。所述的OsESL1突变基因CDS(Coding Sequence)具有SEQ ID NO:1所示的序列;编码的蛋白质具有SEQ ID NO:2所示的序列;基因组具有SEQ ID NO:3所示的序列。
实施例3:功能标记分析
根据测序结果的SNP位点利用dCAPS Finder 2.0(http://helix.wustl.edu/dcaps/dcaps.html)设计dCAPS标记,利用dCAP2标记筛选鉴定osesl1与日本晴回交的F2代群体基因型。
dCAP2引物的上游引物序列如SEQ ID NO:4所示,下游引物序列如SEQ ID NO:5所示,以基因组DNA为模版。PCR反应体系的总体积为10μl,水稻基因组DNA模版1μl(约200ng)、2xMaster Mix 5μl、10μM dCAP2引物各0.5μl,加ddH2O到10μl。反应程序:94℃变性5min;94℃30s;58℃30s;72℃20s,35个循环;72℃延伸10min。加入NcoI酶切37℃过夜。酶切产物在4%琼脂糖上检测,野生型被切开为102bp,突变型不能被切开为127bp(图7)。该方法也可应用于对osesl1基因型导入材料的检测。
检测F2代结果发现野生型:杂合型:突变型分离比为1:2:1,符合孟德尔遗传规律,说明该SNP与F2代突变表型紧密连锁,该突变表型是由该突变位点所决定的。
实施例4:水稻环境条件性致死突变体osesl1表型互补实验
(1)互补载体构建及遗传转化
为确认穗发芽突变体的突变表型是否由该碱基的错义突变造成的,分别以日本晴和osesl1突变体的基因组DNA为模版,以Os08g0484500F和Os08g0484500R为引物,
Primer-Os08g0484500F:5’-TTACCCGGGATGCCCCTCGCGCCATGCCC-3’;
Primer--Os08g0484500R:5’-CCGTCTAGAGAGCCCCAAAGATGGGATGT-3’。
克隆OsESL1基因的野生型WT和突变型MU的基因组序列约3000bp的片段。PCR反应体系的总体积为50μl,水稻基因组DNA模版1μl(约200ng)、10×KOD酶反应缓冲液5μl、25mMMgSO4 3μl、2mM dNTPs 5μl、105μM引物各1.5μl、1单位KOD酶(TOYOBO公司),加ddH2O 50μl。反应程序:94℃变性5min;94℃40s;55℃40s;68℃4min30s,35个循环;68℃延伸5min。
用限制性内切酶SmaI和XbaI对pCAMBIA 2300载体和上述PCR扩增产物进行酶切,酶切后的载体片段和PCR产物片段,使摩尔比为1:3,室温下加入1μL T4DNA连接酶,最后加水补足体积至10μL。轻弹外壁混匀,短暂快速离心,16℃孵育过夜。将连接产物转化大肠杆菌DH5α,经酶切鉴定并测序获得到重组载体pCAMBIA 2300-WT和pCAMBIA 2300-MU并对其进行测序验证。测序验证正确可用于下游实验。
(2)转化株系的获得及其表型鉴定
采用冻融法将构建好的重组载体pCAMBIA 2300-WT和pCAMBIA 2300-MU转化农杆菌EHA105,采用农杆菌介导的遗传转化方法(Hiei等,Efficient transformation of rice(Oryza sativa L.)mediated by Agrobacterium and sequence analysis of theboundaries of the T-DNA.Plant Journal 1994,6:271-282),分别转化到osesl1突变体中。将筛选到的T0转基因阳性植株种植于水田,获得T1代种子,T1代自交获得T2代种子。鉴定T2代同时具有OsESL1基因型和过表达野生型和突变型OsESL1基因,观察这些植株表型恢复情况。结果表明,突变体和转基因植株在生长发育过程中与野生型无明显差别(如图8),转化含突变OsESL1-MU基因载体的T2代转基因植株仍呈现种胚致死的表型,而是转化野生型基因OsESL1-WT基因载体的T2代转基因植株恢复了野生型的表型(如图9),说明种胚致死的表型是由上述单碱基的错义突变所造成的。
实施例5:osesl1突变基因与光温环境关系的研究
两系不育系中温敏不育系的育性转换临界温度为23.5℃,大于23.5℃时不育,反之则可育。遗传背景和研究方法的差异导致不同不育系的温度敏感期有所不同。光敏不育系的育性及其育性转换主要受光照长度影响,敏感期光长为13.45h,小于13.45h时花粉育性开始逐渐恢复。然而,日照长度只在特定阶段即敏感期对其育性产生诱导反应,温度也对光温敏不育系中育性起主导作用,在长日低温下部分可育,而在短日高温下,育性又出现不同程度的下降,表明光敏不育性受光温双重影响。
突变体osesl1也呈现出类似于不育系的育性受到光温控制的种胚条件性致死的特性,表现为osesl1纯合突变体在北方夏季高温长日条件下种胚致死,而在南方冬季低温短日条件下种胚则恢复野生型表型。
将osesl1突变体进行不同温度22℃、24℃、26℃、28℃、30℃和光周期10h、13h、14h、15h处理后发现:osesl1突变体种胚致死的临界温度为24℃-28℃。临界温度范围内,每日光照在13h以上时,种胚死亡;而每日光照在13h以下时,种胚发育正常(表4)。低于24℃时无论日照长短种胚发育均正常,高于28℃时种胚致死亡亦不受光周期调控(如图10)。
表4osesl1突变基因在不同光温条件下致死率分析
临界温度(℃) 日照(h) 致死率(%)
24 11 4.78%±3.33%
24 13 99.58%±1.04%
24 15 100%±0.00%
26 11 25.20%±31.00%
28 11 6.45%±14.88%
28 13 96.74%±4.30%
28 15 100%±0.00%
极端温度(℃) 日照(h) 致死率(%)
大于30 10 99.5%±1.25%
大于30 14 99.5%±0.00%
22 10 0.00%±0.00%
22 14 0.00%±0.00%
鉴于osesl1突变体对光温的致死条件比光温敏不育系的临界温度和临界光长更为宽泛,且为隐性性状可以为两系法杂交稻育种提供多一重的保障。如将OsESL1基因导入两系不育系中,OsESL1基因型种胚致死表型出现在花粉育性的后期,胚发育过程是伴随着期环境温度的逐渐升高,即便不育系由于前期温度变化导致可育,也会由于后期的温度升高而使得自交的种胚致死保证制种安全,表5中归纳为安全制种与繁种的光温条件。而若将OsESL1基因导入到恢复系中,在长日高温的地区与不育系进行繁种,由于OsESL1基因型的种胚致死性可以省去对父本恢复系的单独收获,如果配合同生育期的不育系,可以混播混收,全程实现机械化作业,来提高杂交水稻制种效率的方法。无论对于不育系还是恢复系都可以在短日低温条件下进行繁种。
表5OsESL1基因型不育系与恢复系安全制种与繁种光温条件
Figure BDA0001898786700000091
Figure BDA0001898786700000101
序 列 表
<110> 中国科学院东北地理与农业生态研究所
<120>水稻环境条件性致死突变基因osesl1及其编码蛋白和应用
<160>7
<210> 1
<211> 1518
<212> DNA
<213> 日本晴(Oryza sativa)
<220>
<223> 水稻环境致死突变基因osesl1
<400> 1
atgcccctcg cgccatgccc ctcgccgccc ctcccctcct ccccgtggcc ggcgcgcgcc 60
ccgcgccggg gcggcctcct ccgcgcccgc gcggtgcggg cggcgccccg gccgccgagc 120
aagtggtcgc tgggtagctg gcgcagcctg acggcgctgc agcagccgga gtaccccgac 180
aaggcggagc tggatgaggt gctccggacg gtggaggcgt tcccgccgat tgtcttcgcc 240
ggcgaggcgc gcaagctgga ggagcggctc gcggaggccg ccgtcgggcg cgcgttcctc 300
ctccagggcg gcgactgcgc cgagagcttc aaggagttta acgcgaacaa catccgggac 360
accttccgtg tgctcctcca gatgtccgtg ttgctcatgt ttggaggcca gatgcctatc 420
atcaaggtag gaagaatggc aggtcagttt gcaaagccaa ggtcagatgg ctttgaggag 480
agggatggag tgaagttgcc aagctacaga ggggataaca ttaatgggga ttcattcgat 540
gagaaatcaa gattgccaga tccacaccgc atgatcaggg catactcaca gtctgcagca 600
acactgaatt tgctgcgggc ttttgctact ggaggttatg ctgccatgca gagggtaaca 660
caatggaacc ttgacttcac agagcatagt gaacagggtg acaggtacat ggagctggct 720
caccgagttg atgaggcttt ggggttcatg gcagctgctg gtctcactat ggaccatcct 780
attatgacaa caacagaatt ctggacatca catgagtgcc ttcttcttcc ctatgagcaa 840
gcacttactc gcgaggattc cacatctggc ctctattacg actgttctgc tcacttcctt 900
tgggttggag agcgtacacg tcagcttgat tgtgcccatg tggagtttct ccgaggaatt 960
gcgaaccctc tgggtatcaa ggtcagtgac aagatggacc caaaagaact tgtgaagttg 1020
attgatatct tgaatcccca gaacaaacca gggagaatta ctatcattac aagaatggga 1080
cctgaaaaca tgagagtgaa actccctcac ctaatacgtg ctgtccgtgg tgctggccag 1140
atagtaacat gggttactga tccgatgcat ggtaacacaa tgaaggctcc ttgtggcctc 1200
aagactcgct cctttgatag aatcttggct gaggtgcgcg cattctttga tgtgcacgaa 1260
caagaaggca gccacccagg aggggtgcat ctggagatga ctggacaaaa tgtgacagaa 1320
tgcatcggcg ggtcacgcac ggtgacattc gacgatctgg gctcacgata ccacacacac 1380
tgcgacccga ggctcaacgc atcgcagtct ctggagttgg cgttcatcat cgccgagcgg 1440
ctcagaaaga ggaggatcgc ctcatggcag ttgaacaaga acagtcatct gggcaacatc 1500
ccatctttgg ggctctga 1518
<210> 2
<211> 505
<212> PRT
<213>日本晴(Oryza sativa)
<220>
<223>水稻环境致死突变基因osesl1编码蛋白
<400> 2
Met Pro Leu Ala Pro Cys Pro Ser Pro Pro Leu Pro Ser Ser Pro
1 5 10 15
Trp Pro Ala Arg Ala Pro Arg Arg Gly Gly Leu Leu Arg Ala Arg
20 25 30
Ala Val Arg Ala Ala Pro Arg Pro Pro Ser Lys Trp Ser Leu Gly
35 40 45
Ser Trp Arg Ser Leu Thr Ala Leu Gln Gln Pro Glu Tyr Pro Asp
50 55 60
Lys Ala Glu Leu Asp Glu Val Leu Arg Thr Val Glu Ala Phe Pro
65 70 75
Pro Ile Val Phe Ala Gly Glu Ala Arg Lys Leu Glu Glu Arg Leu
80 85 90
Ala Glu Ala Ala Val Gly Arg Ala Phe Leu Leu Gln Gly Gly Asp
95 100 105
Cys Ala Glu Ser Phe Lys Glu Phe Asn Ala Asn Asn Ile Arg Asp
110 115 120
Thr Phe Arg Val Leu Leu Gln Met Ser Val Leu Leu Met Phe Gly
125 130 135
Gly Gln Met Pro Ile Ile Lys Val Gly Arg Met Ala Gly Gln Phe
140 145 150
Ala Lys Pro Arg Ser Asp Gly Phe Glu Glu Arg Asp Gly Val Lys
155 160 165
Leu Pro Ser Tyr Arg Gly Asp Asn Ile Asn Gly Asp Ser Phe Asp
170 175 180
Glu Lys Ser Arg Leu Pro Asp Pro His Arg Met Ile Arg Ala Tyr
185 190 195
Ser Gln Ser Ala Ala Thr Leu Asn Leu Leu Arg Ala Phe Ala Thr
200 205 210
Gly Gly Tyr Ala Ala Met Gln Arg Val Thr Gln Trp Asn Leu Asp
215 220 225
Phe Thr Glu His Ser Glu Gln Gly Asp Arg Tyr Met Glu Leu Ala
230 235 240
His Arg Val Asp Glu Ala Leu Gly Phe Met Ala Ala Ala Gly Leu
245 250 255
Thr Met Asp His Pro Ile Met Thr Thr Thr Glu Phe Trp Thr Ser
260 265 270
His Glu Cys Leu Leu Leu Pro Tyr Glu Gln Ala Leu Thr Arg Glu
275 280 285
Asp Ser Thr Ser Gly Leu Tyr Tyr Asp Cys Ser Ala His Phe Leu
290 295 300
Trp Val Gly Glu Arg Thr Arg Gln Leu Asp Cys Ala His Val Glu
305 310 315
Phe Leu Arg Gly Ile Ala Asn Pro Leu Gly Ile Lys Val Ser Asp
320 325 330
Lys Met Asp Pro Lys Glu Leu Val Lys Leu Ile Asp Ile Leu Asn
335 340 345
Pro Gln Asn Lys Pro Gly Arg Ile Thr Ile Ile Thr Arg Met Gly
350 355 360
Pro Glu Asn Met Arg Val Lys Leu Pro His Leu Ile Arg Ala Val
365 370 375
Arg Gly Ala Gly Gln Ile Val Thr Trp Val Thr Asp Pro Met His
380 385 390
Gly Asn Thr Met Lys Ala Pro Cys Gly Leu Lys Thr Arg Ser Phe
395 400 405
Asp Arg Ile Leu Ala Glu Val Arg Ala Phe Phe Asp Val His Glu
410 415 420
Gln Glu Gly Ser His Pro Gly Gly Val His Leu Glu Met Thr Gly
425 430 435
Gln Asn Val Thr Glu Cys Ile Gly Gly Ser Arg Thr Val Thr Phe
440 445 450
Asp Asp Leu Gly Ser Arg Tyr His Thr His Cys Asp Pro Arg Leu
455 460 465
Asn Ala Ser Gln Ser Leu Glu Leu Ala Phe Ile Ile Ala Glu Arg
470 475 480
Leu Arg Lys Arg Arg Ile Ala Ser Trp Gln Leu Asn Lys Asn Ser
485 490 495
His Leu Gly Asn Ile Pro Ser Leu Gly Leu
500 505
<210> 3
<211> 3751
<212> DNA
<213> 日本晴(Oryza sativa)
<220>
<223> 水稻环境致死突变基因osesl1基因组
<400> 3
atgcccctcg cgccatgccc ctcgccgccc ctcccctcct ccccgtggcc ggcgcgcgcc 60
ccgcgccggg gcggcctcct ccgcgcccgc gcggtgcggg cggcgccccg gccgccgagc 120
aagtggtcgc tgggtagctg gcgcagcctg acggcgctgc agcagccgga gtaccccgac 180
aaggcggagc tggatgaggt gctccggacg gtggaggcgt tcccgccgat tgtcttcgcc 240
ggcgaggcgc gcaagctgga ggagcggctc gcggaggccg ccgtcgggcg cgcgttcctc 300
ctccagggcg gcgactgcgc cgagagcttc aaggagttta acgcgaacaa catccgggac 360
accttccgtg tgctcctcca gatgtccgtg ttgctcatgt ttggaggcca gatgcctatc 420
atcaaggtat aaaattaccc ccgaatatct tatttattcc cctttttaat catatcttac 480
tataaagtta tccccacaaa ctccttaagc ttatcatgca aagatgccac atcatcgtcc 540
actaacaaga tgccacatca tcatccacta attaacaaga tgccacatta tcatccacta 600
acaatcatca catttaaaca tcatgcaata tagtttttat aatttaagag cttttcaaat 660
acaaacatgt taaattatca tccaaaataa ttcacaaaat gttttaatat atatctttat 720
tatgttttat gatatcctat atatttatat agttcatcct cacttagtta gtgcttaaat 780
gattaatcta tggtccaaat tatctttctc attttttcct ctaattaagt catatcacat 840
caattgtttt tagcctttag atgattaatc tatggtccaa actatctccc tacttttctt 900
cttccataaa gtcataccac cttacttttt acgtttgaat caccattcta catactattt 960
aaatttaaat tatcataaac cacattaatt tacttaatct tatgttatct agctatctta 1020
catgttattt tttttactgt tatcatacta aattcccaca gcaatgcgcg gggtttcacc 1080
tagtaataat aataattatg tctcgctaca aaaactgtag atttttgtat tcagcatcac 1140
aatgtaatag gaagaattgc agtctaattt actgcacctc gaattatttg acaagtactt 1200
ataattttta tgcatttgtg aaagaactta cttgttcaat cacaaatgtt tacattgttg 1260
ttctcttgtt ttgttgtacc aagaactgaa agccaaatca attttgtttt tctgatcagt 1320
ttgcactaca cagttcacac aaaggattta tcggtttgtg tacacgatta gatgagtata 1380
tttagtgcat gttcttaatt aggttggcac aataaatctt tcacaagcgt cctttacttg 1440
atgttaaata ctgtaataga agaacccttg tcctggtcga tattctgtat tgtcattcaa 1500
cttctgcaat cttcttttgc ttgattctct ttttacaatg caaattaact gtataagtgt 1560
atactctaat catgatatat gtttcaactt tcaactgtat gtaccaaaat ttccattgct 1620
aggtatttcc tgcaaatgga acaaatctgt agctgtatca tggattgaat tttcttttct 1680
cctgttacca tgttgttttt gcgttccttt aatgcatttc tagtggacat cgcacagaat 1740
tgtatcactt actgtctcac atggaatatg taggtaggaa gaatggcagg tcagtttgca 1800
aagccaaggt cagatggctt tgaggagagg gatggagtga agttgccaag ctacagaggg 1860
gataacatta atggggattc attcgatgag aaatcaagat tgccagatcc acaccgcatg 1920
atcagggcat actcacagtc tgcagcaaca ctgaatttgc tgcgggcttt tgctactgga 1980
ggttatgctg ccatgcagag ggtaacacaa tggaaccttg acttcacaga gcatagtgaa 2040
cagggtgaca ggtggttacc tttatcttaa actgtcccaa ttcttcattg attgcttctc 2100
agatgaattg attcatgtaa ttcatttaag ccacagccat atgctcacca ctgcaattct 2160
tgtacaatgt tgaacaggta catggagctg gctcaccgag ttgatgaggc tttggggttc 2220
atggcagctg ctggtctcac tatggaccat cctattatga caacaacaga attctggaca 2280
tcacatgagt gccttcttct tccctatgag caagcactta ctcgcgagga ttccacatct 2340
ggcctctatt acgactgttc tgctcacttc ctttgggttg gagagcgtac acgtcagctt 2400
gattgtgccc atgtggagtt tctccgagga attgcgaacc ctctgggtat caaggtaaat 2460
aggaatattc ctacacttgt caagacagat aaatagataa tgtataccaa gttcaaactt 2520
catttgaaag tgcaggtaat tcacactttg tcctaaagga attcacccta aactcatcaa 2580
actaaatgca ggtcagtgac aagatggacc caaaagaact tgtgaagttg attgatatct 2640
tgaatcccca gaacaaacca gggagaatta ctatcattac aagaatggga cctgaaaaca 2700
tgagagtgaa actccctcac ctaatacgtg ctgtccgtgg tgctggccag atagtaacat 2760
gggttactga tccgatgcat ggtaacacaa tgaaggctcc ttgtggcctc aagactcgct 2820
cctttgatag aatcttggta attccttgca tggcctacag cctacttttc agtatttgct 2880
tgttcctatt acttctcagt ggtctgtaac tgagcaatag tcttatattt gctggacagc 2940
ctaattgcat atgcactatg ctgctatgca gtgagaagct gtttataggg tgtttcatga 3000
tggaactaaa cattataata tatctgaaac aacatagctt tgtcaaaatg atggttctcg 3060
tttatgcaga atgtggtagg acactagtgg ctagagtttg ccaattgcca ttcatatatg 3120
aataactatc aacacttgaa acaaaatgcg tgtaaaagtg catgacaaag agcaatcgtc 3180
tatagctctg tcatggtttc atggacctgt aatctagttc attttcacta tgactggtat 3240
tacttcgttg tagtagtttg gttgttctct tgctattcaa cagttcctat catctaccag 3300
ccgtagttta ggataaaatc tgagactttt cactgctatg gttcagtcct tgggagaagt 3360
atcgtacacg tttaaacttc tactatacta ttcatttgac attaacatga ccggcgactt 3420
aaatcaacta agatgactta tgttgccttc ttgaaaccag gctgaggtgc gcgcattctt 3480
tgatgtgcac gaacaagaag gcagccaccc aggaggggtg catctggaga tgactggaca 3540
aaatgtgaca gaatgcatcg gcgggtcacg cacggtgaca ttcgacgatc tgggctcacg 3600
ataccacaca cactgcgacc cgaggctcaa cgcatcgcag tctctggagt tggcgttcat 3660
catcgccgag cggctcagaa agaggaggat cgcctcatgg cagttgaaca agaacagtca 3720
tctgggcaac atcccatctt tggggctctg a 3751
<210> 4
<211> 20
<212> DNA
<213>人工序列
<220>
<223> 引物OsESL1 F
<400> 4
atgcccctcgcgccatgccc 20
<210> 5
<211> 20
<212> DNA
<213>人工序列
<220>
<223> 引物OsESL1 R
<400> 5
gagccccaaagatgggatgt 20
<210> 6
<211> 29
<212> DNA
<213>人工序列
<220>
<223> 引物Os08g0484500 F
<400> 6
ttacccgggatgcccctcgcgccatgccc 29
<210> 7
<211> 29
<212> DNA
<213>人工序列
<220>
<223> 引物Os08g0484500 R
<400> 7
ccgtctagagagccccaaagatgggatgt 29

Claims (3)

1.水稻环境条件性致死突变基因osesl1,其特征在于该水稻环境条件性致死突变基因osesl1的核苷酸序列如序列表中SEQ ID NO:1所示。
2.如权利要求1所述的水稻环境条件性致死突变基因osesl1的编码蛋白,其特征在于该编码蛋白的氨基酸序列如SEQ ID NO:2所示。
3.如权利要求1所述的水稻环境条件性致死突变基因osesl1在控制水稻种胚发育中的应用;控制水稻生长环境温度低于22℃时种胚正常,控制水稻生长环境温度高于28℃时种胚致死;当水稻生长环境温度在22-28℃之间时,控制日照时间大于13h种胚致死,控制日照时间小于13h种胚正常。
CN201811503381.XA 2018-12-10 2018-12-10 水稻环境条件性致死突变基因osesl1及其编码蛋白和应用 Active CN109354617B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811503381.XA CN109354617B (zh) 2018-12-10 2018-12-10 水稻环境条件性致死突变基因osesl1及其编码蛋白和应用
US16/962,192 US11339402B2 (en) 2018-12-10 2019-11-11 Rice environmental conditional-lethal mutant gene oses11, encoding protein and use thereof
PCT/CN2019/117126 WO2020119359A1 (zh) 2018-12-10 2019-11-11 水稻环境条件性致死突变基因osesl1及其编码蛋白和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811503381.XA CN109354617B (zh) 2018-12-10 2018-12-10 水稻环境条件性致死突变基因osesl1及其编码蛋白和应用

Publications (2)

Publication Number Publication Date
CN109354617A CN109354617A (zh) 2019-02-19
CN109354617B true CN109354617B (zh) 2021-09-21

Family

ID=65331872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811503381.XA Active CN109354617B (zh) 2018-12-10 2018-12-10 水稻环境条件性致死突变基因osesl1及其编码蛋白和应用

Country Status (3)

Country Link
US (1) US11339402B2 (zh)
CN (1) CN109354617B (zh)
WO (1) WO2020119359A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109354617B (zh) * 2018-12-10 2021-09-21 中国科学院东北地理与农业生态研究所 水稻环境条件性致死突变基因osesl1及其编码蛋白和应用
CN111087456B (zh) * 2019-12-13 2021-11-19 浙江省农业科学院 一种在高温下产生可变剪切的转录因子OsbZIP58及其在调控水稻耐高温中的应用
CN114875042B (zh) * 2022-06-05 2023-08-08 浙江大学 OsTPR075的突变体在水稻抽穗期调控过程中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006021558A2 (en) * 2004-08-26 2006-03-02 Poalis A/S A plant with reduced lignin by modulating dahps gene expression
CN102121017A (zh) * 2010-12-22 2011-07-13 上海大学 水稻温敏雄性不育基因、其编码蛋白及其应用
WO2012004795A1 (en) * 2010-07-06 2012-01-12 Yeda Research And Development Co. Ltd. Transgenic plants having altered dahp synthase activity
CN105821074A (zh) * 2016-03-14 2016-08-03 上海交通大学 水稻温敏雄性不育基因tms10的应用及育性恢复方法
CN107418956A (zh) * 2016-05-23 2017-12-01 华中农业大学 水稻光敏感核不育基因pms1的分离克隆及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952795B (zh) 2011-08-18 2014-03-26 华中农业大学 水稻光敏感核不育基因pms3的分离克隆及应用
CN109354617B (zh) * 2018-12-10 2021-09-21 中国科学院东北地理与农业生态研究所 水稻环境条件性致死突变基因osesl1及其编码蛋白和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006021558A2 (en) * 2004-08-26 2006-03-02 Poalis A/S A plant with reduced lignin by modulating dahps gene expression
WO2012004795A1 (en) * 2010-07-06 2012-01-12 Yeda Research And Development Co. Ltd. Transgenic plants having altered dahp synthase activity
CN102121017A (zh) * 2010-12-22 2011-07-13 上海大学 水稻温敏雄性不育基因、其编码蛋白及其应用
CN105821074A (zh) * 2016-03-14 2016-08-03 上海交通大学 水稻温敏雄性不育基因tms10的应用及育性恢复方法
CN107418956A (zh) * 2016-05-23 2017-12-01 华中农业大学 水稻光敏感核不育基因pms1的分离克隆及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
《Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice》;Yourong Fan等;《Plant Reproduction》;20171102;第31卷(第1期);第3-14页 *
《Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA》;Hai Zhou等;《Cell Research》;20120221;第22卷(第4期);第649-660页 *
《XM_015794667.1》;NCBI;《GenBank》;20180807;第1-2页 *
《中国两系杂交水稻光温敏核不育基因的鉴定与演化分析》;张华丽等;《中国农业科学》;20141230;第48卷(第1期);第1-9页 *
《水稻隐性核雄性不育基因研究进展及育种应用探讨》;马西青等;《中国水稻科学》;20120910;第26卷(第5期);第511-520页 *

Also Published As

Publication number Publication date
WO2020119359A1 (zh) 2020-06-18
CN109354617A (zh) 2019-02-19
US20210062211A1 (en) 2021-03-04
US11339402B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
CN109354617B (zh) 水稻环境条件性致死突变基因osesl1及其编码蛋白和应用
US20140298507A1 (en) Synthetic Clonal Reproduction Through Seeds
WO2021244007A1 (zh) 水稻雄性育性调控基因、水稻雄性育性调控基因突变体、其应用以及调控水稻育性的方法
CN106754967A (zh) 一种水稻粒型基因OsLG1及其编码蛋白质和应用
CN108047319B (zh) 水稻种子休眠性调控基因OsMPK14及其应用
CN109971763A (zh) 花期调控基因cmp1和相关的载体及其应用
Kato et al. Molecular cloning of the wheat CK2α gene and detection of its linkage with Vrn-A1 on chromosome 5A
CN110951753A (zh) 一种水稻光温敏核雄性不育基因tms2759及其分子标记和应用
CN113754746B (zh) 水稻雄性育性调控基因、其应用以及利用CRISPR-Cas9调控水稻育性的方法
CN112457385B (zh) 一种控制水稻生育期基因ljp1的应用
Liu et al. Introgression of sharp eyespot resistance from Dasypyrum villosum chromosome 2VL into bread wheat
CN113430209B (zh) 大麦雄性不育基因bms-1及其应用
CN112574288B (zh) 小麦TaFBX113基因在调控粒厚发育中的应用
CN112301035B (zh) 高抗水稻白叶枯病基因Xa7及其用途
CN111187775B (zh) 一种水稻湿敏不育基因及其应用与不育系培育方法
Wang et al. Fine mapping of qHD4-1, a QTL controlling the heading date, to a 20.7-kb DNA fragment in rice (Oryza sativa L.)
CN109912706B (zh) 一种水稻弱势早衰相关基因、蛋白质、分子标记及应用
CN106349353B (zh) 一种调控植物淀粉合成相关蛋白OsFSE及其编码基因与应用
CN113754747B (zh) 一种水稻雄性育性调控基因突变体及其分子标记和应用
CN113429468B (zh) 大麦雄性不育基因msg3002及其应用
CN106350525B (zh) 一种水稻粒型基因dss及其编码蛋白质和应用
CN113355336B (zh) 大麦雄性不育基因HvMSG47及其应用
CN113817754B (zh) 水稻短粒基因shg1及其应用
CN110846325B (zh) 一种水稻多花基因mof1及其编码的蛋白质的应用
CN108315336B (zh) 一种控制水稻小穗发育基因pis1的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant