CN109342536B - 一种利用黄铜丝束电极对农作物表面农药残留的检测方法 - Google Patents

一种利用黄铜丝束电极对农作物表面农药残留的检测方法 Download PDF

Info

Publication number
CN109342536B
CN109342536B CN201811522380.XA CN201811522380A CN109342536B CN 109342536 B CN109342536 B CN 109342536B CN 201811522380 A CN201811522380 A CN 201811522380A CN 109342536 B CN109342536 B CN 109342536B
Authority
CN
China
Prior art keywords
electrode
brass
crops
tow
metal wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811522380.XA
Other languages
English (en)
Other versions
CN109342536A (zh
Inventor
钟子萱
李育霖
钟庆东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201811522380.XA priority Critical patent/CN109342536B/zh
Publication of CN109342536A publication Critical patent/CN109342536A/zh
Application granted granted Critical
Publication of CN109342536B publication Critical patent/CN109342536B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Abstract

本发明公开了一种利用黄铜丝束电极对农作物表面农药残留的检测方法,选取单丝尺寸为φ1.6*30mm的黄铜,分别对金属丝进行预处理;将上述金属丝制得丝束电极;将蔬菜样本粉碎,过滤,得到过滤液,离心,取上清液备用;取上清液,配制成浓度为0~200ppm含联苯菊酯的复合溶液,将制备的黄铜丝束电极放入复合溶液中测试,参比电极为饱和甘汞电极,整个测试过程在室温下测试;将金属丝端面浸入复合溶液中,并观察电极表面的电位电流变化情况,记录并观察现象。本发明利用黄铜丝束电极来检测残留农药含量的浓度,还能测试不同位置电位、电流密度分布及差异等信息,同时黄铜丝束电极制备方便,测试方法简单,能快速得到农作物表面残留农药的浓度,能够有效的评价果蔬农作物的安全性。

Description

一种利用黄铜丝束电极对农作物表面农药残留的检测方法
技术领域
本发明是一种利用黄铜丝束电极对农作物表面农药残留的检测方法,属于金属电化学微观测试处理技术领域。
背景技术
近年来,由于人们缺乏安全使用农药的意识和相关知识,农药的超剂量和超范围使用,特别是高毒高残留农药的使用,以及不按安全间隔期进行采收等,致使部分农产品农药残留严重,农药的持续开发和大规模超量使用导致由此产生的公众食品安全和生态环境事件频发,农药残留检测成为当前广泛关注的问题。同时农药残留超标也会影响农产品的贸易,世界各国对农药残留问题高度重视,对各种农副产品中农药残留都规定了越来越严格的限量标准。目前农药残留快速检测方法种类繁多,主要有生化测定法和色谱检测法,其中生化测定法中的酶抑制率法由于具有快速、灵敏、操作简便、成本低廉等特点,被列为国家推荐标准方法(GB/T5009.1992003),已成为对果蔬中有机磷和氨基甲酸酯类农药残留进行现场快速定性初筛检测的主流技术之一,得到越来越多的应用。本发明采用黄铜丝束电极对农作物表面残留的农药进行分析测试,利用电化学测试来表征残留农药在农作物上含量的浓度,以此作为一种新的评价农作物表面残留农药的手段。目前对利用丝束电极作为检测农副产品表面的残留农药的研究鲜有报道,本次测试采用的为 CST520阵列电极电位电流扫描仪,采用10×10阵列(丝束)电极(wire beam electrode,WBE)来模拟试样表面,通过自动扫描WBE表面的电位/电流分布,可得到在溶液下的电极电位及偶接电流分布,从而表征农作物表面残留农药含量的浓度。
发明内容
本发明是一种利用黄铜丝束电极对农作物表面农药残留的检测方法,通过对比不同ppm浓度的农药(联苯菊酯)来判断农作物表面农药残留含量的浓度。其优点在于利用黄铜丝束电极作为探针来检测溶液体系中的残留农药含量的浓度,相比于传统电极不仅能够能提供总体电化学参数,还能测试不同位置电位、电流密度分布及差异等信息,同时丝束电极具有制备方便,测试简单的优点。传统检测农作物表面残留农药不仅耗时、费用高,且测试方法复杂。本发明基于农作物表面残留农药的检测,能够有效的评价果蔬农作物的安全性。
为达到上述目的,本发明采用如下技术方案:一种利用黄铜丝束电极对农作物表面农药残留的检测方法,其特征在于包括如下步骤:
a.选取直径相同的黄铜为试验材料,单丝尺寸为φ1.6*30mm,分别对金属丝进行预处理,每根金属丝的一个端面与彩排线钎焊相连,裸露部分用绝缘材料进行封装;
b.将上述步骤a中制备的金属丝进行紧密排列,按照10×10阵列排布插入点阵列中,每根金属丝间距不小于1mm,利用环氧树脂与固化剂比例为5:1浇筑。待成型固化后,再依次采用400#、800#、1200#、2000#号金相砂纸逐级对金属丝阵列的工作端面进行打磨,再利用无水乙醇和蒸馏水对金属丝阵列的工作端进行清洗、干燥;得到洁净干燥的丝束电极待用再用氧化锆抛光布进行抛光,最终得到在肉眼观察下表面近乎镜面的丝束电极;
c.选取50.00g蔬菜样本,保证蔬菜样本表面清洁,无泥土或者杂物附着,使用剪刀将其剪碎,大小约为1cm,得到碎片状的蔬菜样本;把经过处理的50.00g蔬菜样本放入食物料理机中粉碎,将制得的匀浆液用滤纸过滤,得到过滤液;取过滤液放入离心机中,加入50mL的丙酮,高速离心机工作15min后,加入5wt. % Na2SO4溶液,以6000 r/min离心10min后,静置2 min,取上清液备用;
d.取上述步骤c中20ml上清液和适量的联苯菊酯,配制成浓度为0~200ppm含联苯菊酯的复合溶液,将上述步骤b中制备的黄铜丝束电极放入复合溶液中测试,测试仪器为CST520阵列电极电位电流扫描仪,参比电极为饱和甘汞电极,整个测试过程在室温下测试;将金属丝端面浸入复合溶液中,并观察电极表面的电位电流变化情况,记录并观察现象。
优选的是,步骤a中黄铜为黄铜H62。
优选的是,步骤a中对金属丝进行预处理具体为:先金属丝进行除锈清洗,并调节绷直单丝的预紧力;然后分别用400#、800#、1200#、2000#金相砂纸依次对金属丝进行打磨;再利用丙酮和乙醇对金属丝进行清洗。
优选的是,在步骤a中钎焊时需在高倍镜下观测钎焊部分有没有孔洞及裂纹,以及用力拉扯彩排线与金属丝,以保证钎焊部分结构致密。
优选的是,步骤b丝束电极制作时,每个电极之间不得接触,环氧树脂浇筑时不得有气泡等缺陷。
优选的是,步骤d黄铜丝束电极电化学测试在室温下进行。
优选的是,步骤d测试过程中,工作电极与参比电极之间的距离和参比电极与对电极之间的距离保持一样,且在同一水平面上进行。
本发明通过黄铜丝束电极对农作物表面农药残留进行电化学测试,然后再和事先对不同ppm浓度的农药(联苯菊酯)电化学测试数据进行对比,从而判断出农作物表面农药残留含量的浓度。其优点在于利用黄铜丝束电极作为探针来检测溶液体系中的残留农药含量的浓度,相比于传统电极不仅能够能提供总体电化学参数,还能测试不同位置电位、电流密度分布及差异等信息,同时黄铜丝束电极具有制备方便,测试方法简单,能快速得到农作物表面残留农药的浓度,能够有效的评价果蔬农作物的安全性。
附图说明
图1是平均电位时间图;
图2是平均电流时间图;
图3是电位标准差图;
图4是电流标准差图。
具体实施方式
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:
实施例1:
a.选取直径相同的黄铜(H62)为试验材料,单丝尺寸为φ1.6*30mm,分别对金属丝进行除锈清洗,并调节绷直单丝的预紧力,然后分别用400#、800#、1200#、2000#金相砂纸依次对金属丝进行打磨,再利用丙酮和乙醇对金属丝进行清洗,每根金属丝的一个端面与彩排线钎焊相连,裸露部分用绝缘材料进行封装;为使得钎焊部分结构致密,需在对钎焊部分在高倍镜下观测有没有孔洞及裂纹,以及用力拉扯彩排线与金属丝以保证钎焊部分结构致密;
b.将上述步骤a中制备的金属丝进行紧密排列,按照10×10阵列排布插入点阵列中,每根金属丝间距不小于1mm,利用环氧树脂与固化剂比例为5:1浇筑。待成型固化后,再依次采用400#、800#、1200#、2000#号金相砂纸逐级对金属丝阵列的工作端面进行打磨,再利用无水乙醇和蒸馏水对金属丝阵列的工作端进行清洗、干燥。得到洁净干燥的丝束电极待用,再用氧化锆抛光布进行抛光,最终得到在肉眼观察下表面近乎镜面的丝束电极。
c.选取50.00g蔬菜样本,保证蔬菜样本表面清洁,无泥土或者杂物附着,使用剪刀将其剪碎,大小约为1cm,得到碎片状的蔬菜样本。把经过处理的50.00g蔬菜样本放入食物料理机中粉碎,将制得的匀浆液用滤纸过滤,得到过滤液。取过滤液放入离心机中,加入50mL的丙酮,高速离心机工作15min后,加入5wt. % Na2SO4溶液,以6000 r/min离心10min后,静置2 min,取上清液备用。
d.取上述步骤c中20ml上清液和0ml的联苯菊酯,配制成浓度为0ppm不含联苯菊酯的复合溶液,作为对照组。将上述步骤b中制备的黄铜丝束电极放入复合溶液中测试,测试仪器为 CST520阵列电极电位电流扫描仪,参比电极为饱和甘汞电极,整个测试过程在室温下测试。将金属丝端面浸入复合溶液中,并观察电极表面的电位电流变化情况,记录并观察现象。
本实施例利用黄铜丝束电极对农作物表面农药残留的检测,适用于常见的果蔬农作物,通过利用 CST520阵列电极电位电流扫描仪得到电极表面的电位电流图,能够清晰、精确的表征农作物表面农药残留含量的浓度。
实施例2:
a.选取直径相同的黄铜(H62)为试验材料,单丝尺寸为φ1.6*30mm,分别对金属丝进行除锈清洗,并调节绷直单丝的预紧力,然后分别用400#、800#、1200#、2000#金相砂纸依次对金属丝进行打磨,再利用丙酮和乙醇对金属丝进行清洗,每根金属丝的一个端面与彩排线钎焊相连,裸露部分用绝缘材料进行封装;为使得钎焊部分结构致密,需在对钎焊部分在高倍镜下观测有没有孔洞及裂纹,以及用力拉扯彩排线与金属丝以保证钎焊部分结构致密;
b.将上述步骤a中制备的金属丝进行紧密排列,按照10×10阵列排布插入点阵列中,每根金属丝间距不小于1mm,利用环氧树脂与固化剂比例为5:1浇筑。待成型固化后,再依次采用400#、800#、1200#、2000#号金相砂纸逐级对金属丝阵列的工作端面进行打磨,再利用无水乙醇和蒸馏水对金属丝阵列的工作端进行清洗、干燥。得到洁净干燥的丝束电极待用,再用氧化锆抛光布进行抛光,最终得到在肉眼观察下表面近乎镜面的丝束电极。
c.选取50.00g蔬菜样本,保证蔬菜样本表面清洁,无泥土或者杂物附着,使用剪刀将其剪碎,大小约为1cm,得到碎片状的蔬菜样本。把经过处理的50.00g蔬菜样本放入食物料理机中粉碎,将制得的匀浆液用滤纸过滤,得到过滤液。取过滤液放入离心机中,加入50mL的丙酮,高速离心机工作15min后,加入5wt. % Na2SO4溶液,以6000 r/min离心10min后,静置2 min,取上清液备用。
d.取上述步骤c中20ml上清液和适量的联苯菊酯,配制成浓度为10ppm含联苯菊酯的复合溶液,将上述步骤b中制备的黄铜丝束电极放入复合溶液中测试,测试仪器为CST520阵列电极电位电流扫描仪,参比电极为饱和甘汞电极,整个测试过程在室温下测试。将金属丝端面浸入复合溶液中,并观察电极表面的电位电流变化情况,记录并观察现象。
本实施例利用黄铜丝束电极对农作物表面农药残留的检测,适用于常见的果蔬农作物,通过利用 CST520阵列电极电位电流扫描仪得到电极表面的电位电流图,能够清晰、精确的表征农作物表面农药残留含量的浓度。
实施例3:
a.选取直径相同的黄铜(H62)为试验材料,单丝尺寸为φ1.6*30mm,分别对金属丝进行除锈清洗,并调节绷直单丝的预紧力,然后分别用400#、800#、1200#、2000#金相砂纸依次对金属丝进行打磨,再利用丙酮和乙醇对金属丝进行清洗,每根金属丝的一个端面与彩排线钎焊相连,裸露部分用绝缘材料进行封装;为使得钎焊部分结构致密,需在对钎焊部分在高倍镜下观测有没有孔洞及裂纹,以及用力拉扯彩排线与金属丝以保证钎焊部分结构致密;
b.将上述步骤a中制备的金属丝进行紧密排列,按照10×10阵列排布插入点阵列中,每根金属丝间距不小于1mm,利用环氧树脂与固化剂比例为5:1浇筑。待成型固化后,再依次采用400#、800#、1200#、2000#号金相砂纸逐级对金属丝阵列的工作端面进行打磨,再利用无水乙醇和蒸馏水对金属丝阵列的工作端进行清洗、干燥。得到洁净干燥的丝束电极待用,再用氧化锆抛光布进行抛光,最终得到在肉眼观察下表面近乎镜面的丝束电极。
c.选取50.00g蔬菜样本,保证蔬菜样本表面清洁,无泥土或者杂物附着,使用剪刀将其剪碎,大小约为1cm,得到碎片状的蔬菜样本。把经过处理的50.00g蔬菜样本放入食物料理机中粉碎,将制得的匀浆液用滤纸过滤,得到过滤液。取过滤液放入离心机中,加入50mL的丙酮,高速离心机工作15min后,加入5wt. % Na2SO4溶液,以6000 r/min离心10min后,静置2 min,取上清液备用。
d.取上述步骤c中20ml上清液和适量的联苯菊酯,配制成浓度为50ppm含联苯菊酯的复合溶液,将上述步骤b中制备的黄铜丝束电极放入复合溶液中测试,测试仪器为CST520阵列电极电位电流扫描仪,参比电极为饱和甘汞电极,整个测试过程在室温下测试。将金属丝端面浸入复合溶液中,并观察电极表面的电位电流变化情况,记录并观察现象。
本实施例利用黄铜丝束电极对农作物表面农药残留的检测,适用于常见的果蔬农作物,通过利用 CST520阵列电极电位电流扫描仪得到电极表面的电位电流图,能够清晰、精确的表征农作物表面农药残留含量的浓度。
实施例4:
a.选取直径相同的黄铜(H62)为试验材料,单丝尺寸为φ1.6*30mm,分别对金属丝进行除锈清洗,并调节绷直单丝的预紧力,然后分别用400#、800#、1200#、2000#金相砂纸依次对金属丝进行打磨,再利用丙酮和乙醇对金属丝进行清洗,每根金属丝的一个端面与彩排线钎焊相连,裸露部分用绝缘材料进行封装;为使得钎焊部分结构致密,需在对钎焊部分在高倍镜下观测有没有孔洞及裂纹,以及用力拉扯彩排线与金属丝以保证钎焊部分结构致密;
b.将上述步骤a中制备的金属丝进行紧密排列,按照10×10阵列排布插入点阵列中,每根金属丝间距不小于1mm,利用环氧树脂与固化剂比例为5:1浇筑。待成型固化后,再依次采用400#、800#、1200#、2000#号金相砂纸逐级对金属丝阵列的工作端面进行打磨,再利用无水乙醇和蒸馏水对金属丝阵列的工作端进行清洗、干燥。得到洁净干燥的丝束电极待用,再用氧化锆抛光布进行抛光,最终得到在肉眼观察下表面近乎镜面的丝束电极。
c.选取50.00g蔬菜样本,保证蔬菜样本表面清洁,无泥土或者杂物附着,使用剪刀将其剪碎,大小约为1cm,得到碎片状的蔬菜样本。把经过处理的50.00g蔬菜样本放入食物料理机中粉碎,将制得的匀浆液用滤纸过滤,得到过滤液。取过滤液放入离心机中,加入50mL的丙酮,高速离心机工作15min后,加入5wt. % Na2SO4溶液,以6000 r/min离心10min后,静置2 min,取上清液备用。
d.取上述步骤c中20ml上清液和适量的联苯菊酯,配制成浓度为100ppm含联苯菊酯的复合溶液,将上述步骤b中制备的黄铜丝束电极放入复合溶液中测试,测试仪器为CST520阵列电极电位电流扫描仪,参比电极为饱和甘汞电极,整个测试过程在室温下测试。将金属丝端面浸入复合溶液中,并观察电极表面的电位电流变化情况,记录并观察现象。
本实施例利用黄铜丝束电极对农作物表面农药残留的检测,适用于常见的果蔬农作物,通过利用 CST520阵列电极电位电流扫描仪得到电极表面的电位电流图,能够清晰、精确的表征农作物表面农药残留含量的浓度。
实施例5:
a.选取直径相同的黄铜(H62)为试验材料,单丝尺寸为φ1.6*30mm,分别对金属丝进行除锈清洗,并调节绷直单丝的预紧力,然后分别用400#、800#、1200#、2000#金相砂纸依次对金属丝进行打磨,再利用丙酮和乙醇对金属丝进行清洗,每根金属丝的一个端面与彩排线钎焊相连,裸露部分用绝缘材料进行封装;为使得钎焊部分结构致密,需在对钎焊部分在高倍镜下观测有没有孔洞及裂纹,以及用力拉扯彩排线与金属丝以保证钎焊部分结构致密;
b.将上述步骤a中制备的金属丝进行紧密排列,按照10×10阵列排布插入点阵列中,每根金属丝间距不小于1mm,利用环氧树脂与固化剂比例为5:1浇筑。待成型固化后,再依次采用400#、800#、1200#、2000#号金相砂纸逐级对金属丝阵列的工作端面进行打磨,再利用无水乙醇和蒸馏水对金属丝阵列的工作端进行清洗、干燥。得到洁净干燥的丝束电极待用,再用氧化锆抛光布进行抛光,最终得到在肉眼观察下表面近乎镜面的丝束电极。
c.选取50.00g蔬菜样本,保证蔬菜样本表面清洁,无泥土或者杂物附着,使用剪刀将其剪碎,大小约为1cm,得到碎片状的蔬菜样本。把经过处理的50.00g蔬菜样本放入食物料理机中粉碎,将制得的匀浆液用滤纸过滤,得到过滤液。取过滤液放入离心机中,加入50mL的丙酮,高速离心机工作15min后,加入5wt. % Na2SO4溶液,以6000 r/min离心10min后,静置2 min,取上清液备用。
d.取上述步骤c中20ml上清液和适量的联苯菊酯,配制成浓度为200ppm含联苯菊酯的复合溶液,将上述步骤b中制备的黄铜丝束电极放入复合溶液中测试,测试仪器为CST520阵列电极电位电流扫描仪,参比电极为饱和甘汞电极,整个测试过程在室温下测试。将金属丝端面浸入复合溶液中,并观察电极表面的电位电流变化情况,记录并观察现象。
本实施例利用黄铜丝束电极对农作物表面农药残留的检测,适用于常见的果蔬农作物,通过利用 CST520阵列电极电位电流扫描仪得到电极表面的电位电流图,能够清晰、精确的表征农作物表面农药残留含量的浓度。
结果分析:
上述实施例实验测试分析的结果如图1~图4所示,图1是平均电位时间图;图2是平均电流时间图;图3是电位标准差图;图4是电流标准差图。测试结果表分析如下表1所示。
表1:电化学检测数据分析
实施例1 实施例2 实施例3 实施例4 实施例5
农药浓度(ppm) 0 10 50 100 200
初始平均电流/A 0.7*10<sup>-10</sup> 1.0*10<sup>-10</sup> 1.9*10<sup>-10</sup> 0.9*10<sup>-10</sup> -0.2*10<sup>-10</sup>
初始平均电位/V -0.1357 -0.1498 -0.1542 -0.1599 -0.1458
电位标准差/V 0.0395 0.0437 0.0448 0.0572 0.0281
电流标准差/A 4.3*10<sup>-8</sup> 3.7*10<sup>-8</sup> 4.1*10<sup>-8</sup> 7.9*10<sup>-8</sup> 5.7*10<sup>-8</sup>
本发明上述实施例提供了一种利用黄铜丝束电极对农作物表面农药残留的检测方法,利用CST520阵列电极电位电流扫描仪检测电极表面的电位/电流情况,来表征农作物表面农药残留含量的浓度。通过上述电化学测试数据可知,随着复合溶液中农药ppm浓度的加入,平均电流与平均电位均发生变化。测试初期,不加农药的复合溶液均比加了农药的复合溶液电位更正,随着测试时间增加,表现出稳定的线性规律,从电位电流标准差图也可知,含有农药的复合溶液中电极表面电位电流标准差均大于没有农药的复合溶液。通过对比不同ppm浓度的农药,平均电位与平均电流表现出规律性,因此,可以从平均电流与平均电位以及电位电流标准差测试数据中来判断农作物表面的残留农药含量的浓度,进一步达到保障农作物食品安全。
上面结合附图对本发明实施例进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明利用丝束电极检测农作物农药残余的方法的技术原理和发明构思,都属于本发明的保护范围。

Claims (7)

1.一种利用黄铜丝束电极对农作物表面农药残留的检测方法,其特征在于包括如下步骤:
a.选取直径相同的黄铜为试验材料,单丝尺寸为φ1.6*30mm,分别对金属丝进行预处理,每根金属丝的一个端面与彩排线钎焊相连,裸露部分用绝缘材料进行封装;
b.将上述步骤a中制备的金属丝进行紧密排列,按照10×10阵列排布插入点阵列中,每根金属丝间距不小于1mm,利用环氧树脂与固化剂比例为5:1浇筑;待成型固化后,再依次采用400#、800#、1200#、2000#号金相砂纸逐级对金属丝阵列的工作端面进行打磨,再利用无水乙醇和蒸馏水对金属丝阵列的工作端进行清洗、干燥;得到洁净干燥的丝束电极待用再用氧化锆抛光布进行抛光,最终得到在肉眼观察下表面近乎镜面的丝束电极;
c.选取50.00g蔬菜样本,保证蔬菜样本表面清洁,无泥土或者杂物附着,使用剪刀将其剪碎,大小约为1cm,得到碎片状的蔬菜样本;把经过处理的50.00g蔬菜样本放入食物料理机中粉碎,将制得的匀浆液用滤纸过滤,得到过滤液;取过滤液放入离心机中,加入50mL的丙酮,高速离心机工作15min后,加入5wt. % Na2SO4溶液,以6000 r/min离心10min后,静置2min,取上清液备用;
d.取上述步骤c中20ml上清液和适量的联苯菊酯,配制成浓度为0~200ppm含联苯菊酯的复合溶液,将上述步骤b中制备的黄铜丝束电极放入复合溶液中测试,测试仪器为CST520阵列电极电位电流扫描仪,参比电极为饱和甘汞电极,整个测试过程在室温下测试;将金属丝端面浸入复合溶液中,并观察电极表面的电位电流变化情况,记录并观察现象。
2.根据权利要求1所述的利用黄铜丝束电极对农作物表面农药残留的检测方法,其特征在于步骤a中黄铜为黄铜H62。
3.根据权利要求1所述的利用黄铜丝束电极对农作物表面农药残留的检测方法,其特征在于步骤a中对金属丝进行预处理具体为:先对金属丝进行除锈清洗,并调节绷直单丝的预紧力;然后分别用400#、800#、1200#、2000#金相砂纸依次对金属丝进行打磨;再利用丙酮和乙醇对金属丝进行清洗。
4.根据权利要求1所述的利用黄铜丝束电极对农作物表面农药残留的检测方法,其特征在于:在步骤a中钎焊时需在高倍镜下观测钎焊部分有没有孔洞及裂纹,以及用力拉扯彩排线与金属丝,以保证钎焊部分结构致密。
5.根据权利要求1所述的利用黄铜丝束电极对农作物表面农药残留的检测方法,其特征在于:步骤b丝束电极制作时,每个电极之间不得接触,环氧树脂浇筑时不得有气泡缺陷。
6.根据权利要求1所述的利用黄铜丝束电极对农作物表面农药残留的检测方法,其特征在于:步骤d黄铜丝束电极电化学测试在室温下进行。
7.根据权利要求1所述的利用黄铜丝束电极对农作物表面农药残留的检测方法,其特征在于:步骤d测试过程中,工作电极与参比电极之间的距离和参比电极与对电极之间的距离保持一样,且在同一水平面上进行。
CN201811522380.XA 2018-12-13 2018-12-13 一种利用黄铜丝束电极对农作物表面农药残留的检测方法 Active CN109342536B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811522380.XA CN109342536B (zh) 2018-12-13 2018-12-13 一种利用黄铜丝束电极对农作物表面农药残留的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811522380.XA CN109342536B (zh) 2018-12-13 2018-12-13 一种利用黄铜丝束电极对农作物表面农药残留的检测方法

Publications (2)

Publication Number Publication Date
CN109342536A CN109342536A (zh) 2019-02-15
CN109342536B true CN109342536B (zh) 2020-09-29

Family

ID=65303973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811522380.XA Active CN109342536B (zh) 2018-12-13 2018-12-13 一种利用黄铜丝束电极对农作物表面农药残留的检测方法

Country Status (1)

Country Link
CN (1) CN109342536B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276275A (ja) * 2008-05-16 2009-11-26 Panasonic Corp 測定デバイス及びそれを用いた測定方法
WO2014096977A2 (en) * 2012-12-20 2014-06-26 King Abdullah University Of Science And Technology Sensor for metal detection
CN104155441A (zh) * 2014-04-22 2014-11-19 山东理工大学 一种基于微流控芯片的农药残留检测方法
CN106769833A (zh) * 2017-01-03 2017-05-31 北京科技大学 用于组合材料芯片的高通量电化学表征的装置及方法
US20170285017A1 (en) * 2016-03-31 2017-10-05 Ndd, Inc. Bio-sensing device
CN107860707A (zh) * 2017-11-15 2018-03-30 上海大学 利用丝束电极表征铝合金表面微区电偶腐蚀非均匀性的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276275A (ja) * 2008-05-16 2009-11-26 Panasonic Corp 測定デバイス及びそれを用いた測定方法
WO2014096977A2 (en) * 2012-12-20 2014-06-26 King Abdullah University Of Science And Technology Sensor for metal detection
CN104155441A (zh) * 2014-04-22 2014-11-19 山东理工大学 一种基于微流控芯片的农药残留检测方法
US20170285017A1 (en) * 2016-03-31 2017-10-05 Ndd, Inc. Bio-sensing device
CN106769833A (zh) * 2017-01-03 2017-05-31 北京科技大学 用于组合材料芯片的高通量电化学表征的装置及方法
CN107860707A (zh) * 2017-11-15 2018-03-30 上海大学 利用丝束电极表征铝合金表面微区电偶腐蚀非均匀性的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Application of wire beam electrode technique to investigate the migrating behavior of corrosion inhibitors in mortar;Wei Shi 等;《Construction and Building Materials》;20161229;第134卷;第167-175页 *
采用丝束电极研究金属镍的快速电沉积行为;郑金 等;《材料保护》;20030531;第36卷(第5期);第5-7页 *

Also Published As

Publication number Publication date
CN109342536A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
Barcelon et al. X-ray computed tomography for internal quality evaluation of peaches
Xue et al. Application of particle swarm optimization (PSO) algorithm to determine dichlorvos residue on the surface of navel orange with Vis-NIR spectroscopy
CN111965098B (zh) 一种热带环境下运行复合绝缘子老化状态评价方法
CN110208244B (zh) 一种基于拉曼光谱测试果蔬组织中细胞水平水分含量和分布的方法
SIE et al. Micro-PIXE analysis of fish otoliths: methodology and evaluation of first results for stock discrimination
CN106769833A (zh) 用于组合材料芯片的高通量电化学表征的装置及方法
Koppen et al. Identification of low-dose irradiated seeds using the neutral comet assay
Guntekin et al. Prediction of bending properties for turkish red Pine (Pinus brutia Ten.) lumber using stress wave method
CN110702663A (zh) 一种冷冻肉品贮藏时间的无损快速检测方法
CN104792765A (zh) 一种银纳米颗粒、sers活性基底及其制备方法与应用
CN108414376B (zh) 便捷式无损伤桃果实硬度测定模型建立方法
Dilcher Podocarpus from the Eocene of North America
CN109342536B (zh) 一种利用黄铜丝束电极对农作物表面农药残留的检测方法
US7782448B2 (en) Analysis of the effects of a first substance on the behavior of a second substance using surface enhanced Raman spectroscopy
Ziehmer et al. Preliminary evaluation of the potential of tree-ring cellulose content as a novel supplementary proxy in dendroclimatology
Vítek et al. Application of Raman spectroscopy to analyse lignin/cellulose ratio in Norway spruce tree rings
CN112213178A (zh) 一种浅河区域沉积物中微塑料的检测方法
CN109342537B (zh) 一种利用430不锈钢丝束电极检测蔬菜联苯菊酯残留的方法
Lipson et al. Factors influencing fleece rot in sheep
Schatzki et al. Rapid, non-destructive selection of peanuts for high aflatoxin content by soaking and tandem mass spectrometry
CN114609028A (zh) 一种有机涂层耐蚀性原位检测的便携式装置及方法
CN109541003B (zh) 一种利用银丝束电极表征不同浓度联苯菊酯的检测与评定方法
Costa et al. Near-infrared (NIR) methods to determine kiwifruit field harvest date and maturity parameters in cool store
Sinambela et al. A ripeness study of oil palm fresh fruit at the bunch different positions
CN105181673A (zh) 一种丙硫醇的检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant