CN109341471A - 基于球列实现三轴机床几何误差检测的鉴定方法 - Google Patents

基于球列实现三轴机床几何误差检测的鉴定方法 Download PDF

Info

Publication number
CN109341471A
CN109341471A CN201811229758.7A CN201811229758A CN109341471A CN 109341471 A CN109341471 A CN 109341471A CN 201811229758 A CN201811229758 A CN 201811229758A CN 109341471 A CN109341471 A CN 109341471A
Authority
CN
China
Prior art keywords
axis
error
lathe
ball row
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811229758.7A
Other languages
English (en)
Inventor
李杏华
魏煊
高凌妤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201811229758.7A priority Critical patent/CN109341471A/zh
Publication of CN109341471A publication Critical patent/CN109341471A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/24Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes

Abstract

本发明涉及机床几何误差测量,为能直接或间接地测量机床几何误差,本发明,基于球列实现三轴机床几何误差检测的鉴定方法,(一)在制作好L型球列后,先对其进行标定并得到L型球列上各个小球之间的相对坐标关系;(二)正式测量前,使L型球列的X轴尽量与机床的X轴方向平行,L型球列的Y轴与机床Y轴方向相同,测量出X,Y轴在小球节点处的定位误差、直线度误差、俯仰和偏摆角误差,以及X、Y轴之间的垂直度误差;(三)测量出在平移前小球节点处的机床X轴的滚转角误差;(四)使L型球列的两轴与机床的X、Z轴方向,Y、Z轴方向平行再通过(二)(三)步骤即可测量出机床剩余误差项。本发明主要应用于设计制造场合。

Description

基于球列实现三轴机床几何误差检测的鉴定方法
技术领域
本发明涉及一种三轴数控机床几何误差的辨识方法,主要是基于一维球列实现定位误差和角度误差的检测,以及基于L型球列实现垂直度误差的检测。
背景技术
机床的误差可以定义为“机床按照某种操作规程指令所产生的实际响应与该操作规程所预期产生的响应之间的差异”。在机床的总误差中,几何误差是极为重要的一个因素,在机床加工的工件误差比例中占比近20%。提高机床的精度的方法一般有两种,一种是误差避免,即在机床设计和制造阶段消除各种误差源,但由于现代机床的结构日益复杂,误差影响因素多,使得高精度的机床制造十分困难,也提高了制造成本。另一种是误差补偿,即通过使用误差模型预测来消除误差。目前误差补偿技术已经成为一种能有效提高机床精度并具备经济效益的方法。
机床误差检测领域中,使用较为广泛的机床误差检测仪器有激光干涉仪和球杆仪,由于自身检测原理上的因素,这些仪器在应用于多轴数控机床的误差检测中存在各自的不足:如激光干涉仪调整复杂,一次测量只能获得一个参数,操作要求高,难以实现自动化、快速化,并且价格昂贵,一般企业不具备;球杆仪无法随意规划测量路径,为旋转轴误差辨识的测量步骤设计和理论解耦算法研究增加了难度,且球杆仪以磁力座配合精密球进行接触式测量,需要在低速下运动以保证测量精度,很难适应快速化趋势。一维球列适合各轴的直线标定,但对角度误差检测不具优势,而多轴机床各轴之间的相对误差对加工精度影响非常大。
首次提出基于一维球列实现数控机床误差检测的是天津大学精仪学院的张国雄老师,由于在张老师提出的检测方法中需要对球列进行180°的翻转,具体实验过程中要实现180°的精确翻转有所困难,因此本文在球列法的基础上对机床误差检测提出了一种新思路。
发明内容
为克服现有技术的不足,本发明旨在提出一种以L型球列为检具的误差测量方法,利用它能直接或间接地测量机床21项几何误差。为此,本发明采取的技术方案是,基于球列实现三轴机床几何误差检测的鉴定方法,δ表示平移运动误差、ε表示转角运动误差,下标表示平移误差的作用方向或转角误差转动轴的方向,括号内的字母表示平移的方向,机床的21项几何运动误差:
1)沿X、Y、Z轴的定位误差:δx(x),δy(y),δz(z)
2)6个直线度误差:δy(x),δz(x),δx(y),δz(y),δx(z),δy(z)
3)3个滚转角误差:εx(x),εy(y),εz(z)
4)3个的俯仰误差和3个偏摆误差:εy(x),εz(x),εx(y),εz(y),εx(z),εy(z)
5)3个垂直度误差:
将陶瓷球通过连接杆安装在L型基座上,安装后通过多次摆放测量机床的21项几何误差,具体步骤如下:
(一)在制作好L型球列后,先对其进行标定并得到L型球列上各个小球之间的相对坐标关系,在L型球列坐标系中设L球列中心处球心位置坐标为(0,0,0),用坐标机标定出球列每个球心之间的相对位置,相对位置用每个球在坐标机下的坐标减去中心处球心的坐标(xi,yi,zi),i=1~n-1,n为单个球列上球的个数;
(二)正式测量前,使L型球列的X轴尽量与机床的X轴方向平行,L型球列的Y轴与机床Y轴方向相同,在测量过程中保证L型球列固定在机床上,通过三坐标测量机的测头获得L型球列上小球在三坐标机坐标系下的坐标(Xi,Yi,Zi),令L球列中心处球心在三坐标机下的坐标为(X0,Y0,Z0),测量出X,Y轴在小球节点处的定位误差、直线度误差、俯仰和偏摆角误差,以及X、Y轴之间的垂直度误差;
(三)保持L型球列与坐标机的方向不变,将球列沿着机床导轨Y方向平行一段距离,平移后每个球列的坐标为:(Xi',Yi',Zi'),进而测量出在平移前小球节点处的机床X轴的滚转角误差;
(四)使L型球列的两轴与机床的X、Z轴方向,Y、Z轴方向平行再通过(二)(三)步骤即可测量出机床剩余误差项。
其中,利用L球列测量机床各节点的误差后,通过数据处理得到整个X轴向的误差;Y、Z轴误差以此类推;
将L型球列固定在机床工作台上,调整使其X轴与机床X轴平行,Y轴与机床Y轴平行,用坐标机测量球列各球心坐标,测量值与球心距的参考值之差即为机床定位误差,通过直线度公式和球心坐标位置获得球心节点处的直线度误差;
俯仰角和偏摆角的测量:
将球板放置在待测坐标机上,让球列的方向与坐标机x轴方向平行,用待测坐标机测得L型球列X轴方向上每个球心的坐标为(Xi,Yi,Zi),在不考虑安装误差的情况下,三坐标机的偏摆角反应在球列上就是待测坐标机测得的球列Y坐标与球列在高精度坐标机下的Y坐标之差与球X坐标的比值,则此时机床在X轴上坐标为Xi处的偏摆角即导轨在Y方向的角度偏差为:
俯仰角为:
如果考虑安装误差,设安装误差为α,偏摆角或俯仰角为ε,通过公式(1)、(2)计算出的角度为θ,坐标机测得的球列球心拟合直线与机床理想的x轴夹角即为安装误差α,考虑安装误差标定偏摆角和俯仰角的具体步骤如下:
1.拟合机床测得球列球心直线,算出与机床理想x轴的夹角α,即为安装误差;
2.通过实际的读数,用公式(1)或(2)计算出的角度为θ;
3.通过θ-α即可得到机床在球心位置Xi处的偏摆角或俯仰角;
滚转角的测量:
滚转角偏差的测量采用球列平移的方法,平移后每个球列的坐标为:(Xi',Yi',Zi'),假设x导轨不存在滚转角误差,y导轨和z导轨都是理想情况,那么此时待测机床测得的球列平移前和平移后的z坐标应该满足条件:Zi'=Zi,假设此时机床误差只有X导轨的滚转角误差,待测机床测得该球列平移前后的Z坐标之差只与X导轨的滚转角有关,机床误差只有X导轨的滚转角误差时滚转角为:
X轴的滚转角应该为Y、Z轴理想情况下的滚转角与Y导轨的俯仰角,Z导轨的偏摆角之差,X轴导轨的滚转角:
εx(Xi)=ε'x(Xi)-εx(Yi)-εx(Zi) (4)
垂直度的测量:
以X、Y轴的垂直度标定为例,通过公式(1)(2)测得每一个球列与机床理想X,Y轴之间的夹角θxiyi,用θxiyi对机床所测的每一个球列进行校正后,拟合出来机床理想的X轴,Y轴两条直线;拟合两个球列的直线,获得导轨的垂直度
本发明的特点及有益效果是:
L型球列检测机床误差只需1~2天即可完成,并且可以由检测结果分离出21项原始误差。L型球列制作较市场上主流的光学器件更为经济简便,L型球列自身带有直角,在测量垂直度时更加精确。
附图说明:
图1机床导轨几何误差示意图。
图2L型球列示意图图中:1-L型基座,2-连接杆,3-陶瓷球。
图3不考虑安装误差测俯仰角和偏摆角原理图。
图4考虑安装误差测俯仰角和偏摆角原理图。
图5测滚转角平移示意图。
图6测滚转角原理图。
图7测滚转角原理图。
图8测垂直度摆放示意图。
图9测垂直度原理图。
图10测垂直度原理图。
具体实施方式
为克服现有技术的不足,本发明旨在提出一种以L型球列为检具的误差测量方法,利用它能直接或间接地测量机床21项几何误差。
本方法主要包括建立精确简便的机床误差辨识模型,设计球列的摆放位置和误差辨识步骤等,该方法原理准确,符合工程实际,且简便易行。
一般机床具有3个互相垂直的轴,在这3个轴上由导轨-滑座系统实现直线运动,一个物体在空间有6个自由度来确定其位置,这些自由度构成了3个平移和转角,所以一个物体的实际定位和方向与所期望值相比具有6个误差源。δ表示平移运动误差、ε表示转角运动误差,下标表示平移误差的作用方向或转角误差转动轴的方向,括号内的字母表示平移的方向。
综上所述,机床的21项几何运动误差:
6)沿X、Y、Z轴的定位误差:δx(x),δy(y),δz(z)
7)6个直线度误差:δy(x),δz(x),δx(y),δz(y),δx(z),δy(z)
8)3个滚转角误差:εx(x),εy(y),εz(z)
9)3个的俯仰误差和3个偏摆误差:εy(x),εz(x),εx(y),εz(y),εx(z),εy(z)
10)3个垂直度误差:
将陶瓷球通过连接杆安装在L型基座上,安装后通过多次摆放可以测量机床的21项几何误差,具体步骤如下:
(一)在制作好L型球列后,先对其进行标定并得到L型球列上各个小球之间的相对坐标关系,在L型球列坐标系中设L球列中心处球心位置坐标为(0,0,0),用高精度坐标机标定出球列每个球心之间的相对位置,相对位置用每个球在高精度坐标机下的坐标减去中心处球心的坐标(xi,yi,zi)。(i=1~n-1,n为单个球列上球的个数)。
(二)正式测量前,使L型球列的X轴尽量与机床的X轴方向平行,L型球列的Y轴与机床Y轴方向相同,在测量过程中保证L型球列固定在机床上。通过三坐标测量机的测头可获得L型球列上小球在三坐标机坐标系下的坐标(Xi,Yi,Zi)(i=0~n-1,n为单个球列上球的个数),令L球列中心处球心在三坐标机下的坐标为(X0,Y0,Z0),可以测量出X,Y轴在小球节点处的定位误差、直线度误差、俯仰和偏摆角误差,以及X、Y轴之间的垂直度误差。
(三)保持L型球列与坐标机的方向不变,将球列沿着机床导轨Y方向平行一段距离,平移后每个球列的坐标为:(Xi',Yi',Zi')(i=0~n-1,n为单个球列上球的个数),可以进而测量出在平移前小球节点处的机床X轴的滚转角误差。
(四)使L型球列的两轴与机床的X、Z轴方向,Y、Z轴方向平行再通过(二)(三)步骤即可测量出机床剩余误差项。
本发明创新点主要在于对于机床角度误差的测量,因此对定位误差和直线度误差的测量仅进行简要介绍。
以X轴为例进行说明,Y、Z轴误差的测量方法与之相似,利用L球列测量机床各节点的误差后,可通过数据处理得到整个轴向的误差。
将L型球列固定在工作台上,调整使其X轴与机床X轴平行,Y轴与机床Y轴平行,用坐标机测量球列各球心坐标,测量值与球心距的参考值之差即为机床定位误差。通过直线度公式和球心坐标位置可以获得球心节点处的直线度误差。
俯仰角和偏摆角的测量:
将球板放置在待测坐标机上,让球列的方向与坐标机x轴方向平行,用待测坐标机测得L型球列X轴方向上每个球心的坐标为(Xi,Yi,Zi)。在不考虑安装误差的情况下,如图3,三坐标机的偏摆角反应在球列上就是待测坐标机测得的球列Y坐标与球列在高精度坐标机下的Y坐标之差与球X坐标的比值,则此时机床在X轴上坐标为Xi处的偏摆角(导轨在Y方向的角度偏差)为:
俯仰角为:
如果考虑安装误差,设安装误差为α,偏摆角或俯仰角为ε,通过公式(1)、(2)计算出的角度为θ,坐标机测得的球列球心拟合直线与机床理想的x轴夹角即为安装误差α,这三个角的关系如图4所示。考虑安装误差标定偏摆角和俯仰角的具体步骤如下:
1.拟合机床测得球列球心直线,算出与机床理想x轴的夹角α,即为安装误差。
2.通过实际的读数,用公式(1)或(2)计算出的角度为θ
3.通过θ-α即可得到机床在球心位置Xi处的偏摆角或俯仰角。
滚转角的测量:
滚转角偏差的测量采用球列平移的方法,如图5所示,平移后每个球列的坐标为:(Xi',Yi',Zi')(i=1~n),假设x导轨不存在滚转角误差,y导轨和z导轨都是理想情况,那么此时待测机床测得的球列平移前和平移后的z坐标应该满足条件:Zi'=Zi。假设此时机床误差只有X导轨的滚转角误差,从图6中可以看出,待测机床测得该球列平移前后的Z坐标之差只与X导轨的滚转角有关
机床误差只有X导轨的滚转角误差时滚转角为:
实际上,这种情况待测机床测得该球列平移前后的Z坐标之差还与Y轴导轨的俯仰角和Z轴导轨的偏摆角误差有关,如图7所示,所以X轴的滚转角应该为Y、Z轴理想情况下的滚转角与Y导轨的俯仰角,Z导轨的偏摆角之差,X轴导轨的滚转角:
εx(Xi)=ε'x(Xi)-εx(Yi)-εx(Zi) (4)
垂直度的测量:
以X、Y轴的垂直度标定为例,如图8所示在机床上沿X,Y轴摆放L型球列,通过公式(1)(2)测得每一个球列与机床理想X,Y轴之间的夹角θxiyi。如图9所示,用θxiyi对机床所测的每一个球列进行校正后,拟合出来机床理想的X轴,Y轴两条直线。
如图10所示,拟合两个球列的直线,可以获得导轨的垂直度

Claims (2)

1.一种基于球列实现三轴机床几何误差检测的鉴定方法,其特征是,δ表示平移运动误差、ε表示转角运动误差,下标表示平移误差的作用方向或转角误差转动轴的方向,括号内的字母表示平移的方向,机床的21项几何运动误差:
1)沿X、Y、Z轴的定位误差:δx(x),δy(y),δz(z)
2)6个直线度误差:δy(x),δz(x),δx(y),δz(y),δx(z),δy(z)
3)3个滚转角误差:εx(x),εy(y),εz(z)
4)3个的俯仰误差和3个偏摆误差:εy(x),εz(x),εx(y),εz(y),εx(z),εy(z)
5)3个垂直度误差:
将陶瓷球通过连接杆安装在L型基座上,安装后通过多次摆放测量机床的21项几何误差,具体步骤如下:
(一)在制作好L型球列后,先对其进行标定并得到L型球列上各个小球之间的相对坐标关系,在L型球列坐标系中设L球列中心处球心位置坐标为(0,0,0),用坐标机标定出球列每个球心之间的相对位置,相对位置用每个球在坐标机下的坐标减去中心处球心的坐标(xi,yi,zi),i=1~n-1,n为单个球列上球的个数;
(二)正式测量前,使L型球列的X轴尽量与机床的X轴方向平行,L型球列的Y轴与机床Y轴方向相同,在测量过程中保证L型球列固定在机床上,通过三坐标测量机的测头获得L型球列上小球在三坐标机坐标系下的坐标(Xi,Yi,Zi),令L球列中心处球心在三坐标机下的坐标为(X0,Y0,Z0),测量出X,Y轴在小球节点处的定位误差、直线度误差、俯仰和偏摆角误差,以及X、Y轴之间的垂直度误差;
(三)保持L型球列与坐标机的方向不变,将球列沿着机床导轨Y方向平行一段距离,平移后每个球列的坐标为:(X′i,Y′i,Z′i),进而测量出在平移前小球节点处的机床X轴的滚转角误差;
(四)使L型球列的两轴与机床的X、Z轴方向,Y、Z轴方向平行再通过(二)(三)步骤即可测量出机床剩余误差项。
2.如权利要求1所述的基于球列实现三轴机床几何误差检测的鉴定方法,其特征是,其中,利用L球列测量机床各节点的误差后,通过数据处理得到整个X轴向的误差;Y、Z轴误差以此类推;
将L型球列固定在机床工作台上,调整使其X轴与机床X轴平行,Y轴与机床Y轴平行,用坐标机测量球列各球心坐标,测量值与球心距的参考值之差即为机床定位误差,通过直线度公式和球心坐标位置获得球心节点处的直线度误差;
进一步地:
俯仰角和偏摆角的测量:
将球板放置在待测坐标机上,让球列的方向与坐标机x轴方向平行,用待测坐标机测得L型球列X轴方向上每个球心的坐标为(Xi,Yi,Zi),在不考虑安装误差的情况下,三坐标机的偏摆角反应在球列上就是待测坐标机测得的球列Y坐标与球列在高精度坐标机下的Y坐标之差与球X坐标的比值,则此时机床在X轴上坐标为Xi处的偏摆角即导轨在Y方向的角度偏差为:
俯仰角为:
如果考虑安装误差,设安装误差为α,偏摆角或俯仰角为ε,通过公式(1)、(2)计算出的角度为θ,坐标机测得的球列球心拟合直线与机床理想的x轴夹角即为安装误差α,考虑安装误差标定偏摆角和俯仰角的具体步骤如下:
1.拟合机床测得球列球心直线,算出与机床理想x轴的夹角α,即为安装误差;
2.通过实际的读数,用公式(1)或(2)计算出的角度为θ;
3.通过θ-α即可得到机床在球心位置Xi处的偏摆角或俯仰角;
滚转角的测量:
滚转角偏差的测量采用球列平移的方法,平移后每个球列的坐标为:(X′i,Y′i,Z′i),假设x导轨不存在滚转角误差,y导轨和z导轨都是理想情况,那么此时待测机床测得的球列平移前和平移后的z坐标应该满足条件:Z′i=Zi,假设此时机床误差只有X导轨的滚转角误差,待测机床测得该球列平移前后的Z坐标之差只与X导轨的滚转角有关,机床误差只有X导轨的滚转角误差时滚转角为:
X轴的滚转角应该为Y、Z轴理想情况下的滚转角与Y导轨的俯仰角,Z导轨的偏摆角之差,X轴导轨的滚转角:
εx(Xi)=ε′x(Xi)-εx(Yi)-εx(Zi) (4)
垂直度的测量:
以X、Y轴的垂直度标定为例,通过公式(1)(2)测得每一个球列与机床理想X,Y轴之间的夹角θxiyi,用θxiyi对机床所测的每一个球列进行校正后,拟合出来机床理想的X轴,Y轴两条直线;拟合两个球列的直线,获得导轨的垂直度
CN201811229758.7A 2018-10-22 2018-10-22 基于球列实现三轴机床几何误差检测的鉴定方法 Pending CN109341471A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811229758.7A CN109341471A (zh) 2018-10-22 2018-10-22 基于球列实现三轴机床几何误差检测的鉴定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811229758.7A CN109341471A (zh) 2018-10-22 2018-10-22 基于球列实现三轴机床几何误差检测的鉴定方法

Publications (1)

Publication Number Publication Date
CN109341471A true CN109341471A (zh) 2019-02-15

Family

ID=65311461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811229758.7A Pending CN109341471A (zh) 2018-10-22 2018-10-22 基于球列实现三轴机床几何误差检测的鉴定方法

Country Status (1)

Country Link
CN (1) CN109341471A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110081823A (zh) * 2019-06-06 2019-08-02 合肥工业大学 一种机床五自由度几何运动误差测量系统
CN110666591A (zh) * 2019-09-17 2020-01-10 天津大学 基于组合面型的数控机床直行误差辨识方法
CN112388388A (zh) * 2020-09-30 2021-02-23 成都飞机工业(集团)有限责任公司 基于标准球阵列的机床几何误差检测方法
CN112461170A (zh) * 2019-09-09 2021-03-09 廊坊精雕数控机床制造有限公司 一种机床几何精度的数字化检测方法及装置
CN112828682A (zh) * 2019-11-25 2021-05-25 大隈株式会社 机床的误差测量方法以及机床
CN112894490A (zh) * 2021-01-27 2021-06-04 天津大学 基于旋转l型阵列实现数控机床垂直度误差检测的方法
DE102022112154B3 (de) 2022-05-16 2023-04-27 Röders Gmbh Messkörper zur Überprüfung von geometrischen Abweichungen einer 3-achsigen Werkzeugmaschine, 3-achsige Werkzeugmaschine und Verfahren zur Kompensation geometrischer Abweichungen einer 3-achsigen Werkzeugmaschine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2115516U (zh) * 1992-03-21 1992-09-09 欧阳健飞 T形机床误差检具
CN2169847Y (zh) * 1993-03-05 1994-06-22 欧阳健飞 组合球列检具
CN2330974Y (zh) * 1998-06-26 1999-07-28 合肥工业大学 三坐标测量机精度检定装置
JP2003302202A (ja) * 2002-04-09 2003-10-24 National Institute Of Advanced Industrial & Technology 多次元座標測定機の性能評価方法、多次元座標測定機の校正用ゲージ及び校正用ゲージの治具
CN2713436Y (zh) * 2004-06-23 2005-07-27 华中科技大学 三维步距规
CN1789901A (zh) * 2005-12-05 2006-06-21 成都司塔瑞测控工程有限公司 三坐标系校准检定仪
CN101183049A (zh) * 2007-12-10 2008-05-21 华中科技大学 数控铣床误差自动测量装置
CN204366221U (zh) * 2015-01-09 2015-06-03 华成精密模具(常熟)有限公司 一种l架校正治具
CN206132015U (zh) * 2016-06-28 2017-04-26 天津大学 多传感器测量机坐标统一和精度检定的标准器
CN206919765U (zh) * 2017-03-07 2018-01-23 甘太喜 一种多功能步距规
CN107900781A (zh) * 2017-12-25 2018-04-13 河北工业大学 用于车床的接触式在线检测系统的标定装置和标定方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2115516U (zh) * 1992-03-21 1992-09-09 欧阳健飞 T形机床误差检具
CN2169847Y (zh) * 1993-03-05 1994-06-22 欧阳健飞 组合球列检具
CN2330974Y (zh) * 1998-06-26 1999-07-28 合肥工业大学 三坐标测量机精度检定装置
JP2003302202A (ja) * 2002-04-09 2003-10-24 National Institute Of Advanced Industrial & Technology 多次元座標測定機の性能評価方法、多次元座標測定機の校正用ゲージ及び校正用ゲージの治具
CN2713436Y (zh) * 2004-06-23 2005-07-27 华中科技大学 三维步距规
CN1789901A (zh) * 2005-12-05 2006-06-21 成都司塔瑞测控工程有限公司 三坐标系校准检定仪
CN101183049A (zh) * 2007-12-10 2008-05-21 华中科技大学 数控铣床误差自动测量装置
CN204366221U (zh) * 2015-01-09 2015-06-03 华成精密模具(常熟)有限公司 一种l架校正治具
CN206132015U (zh) * 2016-06-28 2017-04-26 天津大学 多传感器测量机坐标统一和精度检定的标准器
CN206919765U (zh) * 2017-03-07 2018-01-23 甘太喜 一种多功能步距规
CN107900781A (zh) * 2017-12-25 2018-04-13 河北工业大学 用于车床的接触式在线检测系统的标定装置和标定方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110081823A (zh) * 2019-06-06 2019-08-02 合肥工业大学 一种机床五自由度几何运动误差测量系统
CN110081823B (zh) * 2019-06-06 2024-01-26 合肥工业大学 一种机床五自由度几何运动误差测量系统
CN112461170A (zh) * 2019-09-09 2021-03-09 廊坊精雕数控机床制造有限公司 一种机床几何精度的数字化检测方法及装置
CN110666591A (zh) * 2019-09-17 2020-01-10 天津大学 基于组合面型的数控机床直行误差辨识方法
CN112828682A (zh) * 2019-11-25 2021-05-25 大隈株式会社 机床的误差测量方法以及机床
CN112388388A (zh) * 2020-09-30 2021-02-23 成都飞机工业(集团)有限责任公司 基于标准球阵列的机床几何误差检测方法
CN112894490A (zh) * 2021-01-27 2021-06-04 天津大学 基于旋转l型阵列实现数控机床垂直度误差检测的方法
CN112894490B (zh) * 2021-01-27 2022-07-26 天津大学 基于旋转l型阵列实现数控机床垂直度误差检测的方法
DE102022112154B3 (de) 2022-05-16 2023-04-27 Röders Gmbh Messkörper zur Überprüfung von geometrischen Abweichungen einer 3-achsigen Werkzeugmaschine, 3-achsige Werkzeugmaschine und Verfahren zur Kompensation geometrischer Abweichungen einer 3-achsigen Werkzeugmaschine

Similar Documents

Publication Publication Date Title
CN109341471A (zh) 基于球列实现三轴机床几何误差检测的鉴定方法
US6973738B2 (en) Measuring method and device, machine tool having such device, and work processing method
US11156446B2 (en) Position measurement method and position measurement system for object in machine tool
WO2013044677A1 (zh) 带有激光跟踪的大型三坐标测量方法与装置
CN110220454B (zh) 一种三坐标定位机构的位姿标定方法
CN102506689B (zh) 一种基于测长仪的高精度螺纹塞规测量装置及测量方法
CN109732402A (zh) 基于激光干涉仪的多线机床空间几何误差测量辨识方法
CN100491895C (zh) 三坐标系校准检定仪
CN110539020B (zh) 一种双五轴镜像铣机床的精度自诊断方法
Wang et al. Algorithm for detecting volumetric geometric accuracy of NC machine tool by laser tracker
JPH01500293A (ja) 機械で使用される光学測定装置
CN108801146A (zh) 一种机床五自由度误差测量装置及误差模型建立方法
CN109163658A (zh) 一种可提供位置和角度基准的光学基准件的标定方法
CN109520417A (zh) 机床几何误差及旋转台转角定位误差检定装置和方法
CN108801193A (zh) 一种基于误差与变异规律的三坐标测量机误差测量方法
Iwasawa et al. Development of a measuring method for several types of programmed tool paths for NC machine tools using a laser displacement interferometer and a rotary encoder
CN208720994U (zh) 一种机床五自由度误差测量装置
Han et al. A review of geometric error modeling and error detection for CNC machine tool
Guo et al. Continuous measurements with single setup for position-dependent geometric errors of rotary axes on five-axis machine tools by a laser displacement sensor
CN107900781B (zh) 用于车床的接触式在线检测系统的标定装置和标定方法
CN207982928U (zh) 用于车床的接触式在线检测系统的标定装置
CN111708321A (zh) 数控机床刀轴方向动态误差检测装置及方法
CN216846033U (zh) 基于深矢高工件的内壁测量系统
Buhmann et al. New positioning procedure for optical probes integrated on ultra-precision diamond turning machines
JP2858926B2 (ja) 機械の静的精度計測用のマスター計測装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190215