CN109336599B - 无铅铁电上转换发光材料及其制备方法 - Google Patents

无铅铁电上转换发光材料及其制备方法 Download PDF

Info

Publication number
CN109336599B
CN109336599B CN201811549094.2A CN201811549094A CN109336599B CN 109336599 B CN109336599 B CN 109336599B CN 201811549094 A CN201811549094 A CN 201811549094A CN 109336599 B CN109336599 B CN 109336599B
Authority
CN
China
Prior art keywords
nbo
lead
hours
free ferroelectric
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811549094.2A
Other languages
English (en)
Other versions
CN109336599A (zh
Inventor
章权
罗来慧
祝泽林
杜鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha Pocheng Technology Co ltd
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201811549094.2A priority Critical patent/CN109336599B/zh
Publication of CN109336599A publication Critical patent/CN109336599A/zh
Application granted granted Critical
Publication of CN109336599B publication Critical patent/CN109336599B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种无铅铁电上转换发光材料,包括结构为ABO3结构的钙钛矿无铅铁电陶瓷材料,其特征在于:该无铅铁电陶瓷材料的化学式为(Na0.5K0.5)1‑x‑0.01NbO3:xPr3+/0.01Yb3+,其中,0.0006≤x≤0.004,通过在A位添加x mol的稀土元素Pr3+以及0.01mol的稀土元素Yb3+,并且改变Na0.5K0.5NbO3材料的含量,进而实现材料的上转换发光。本发明还公开了无铅铁电上转换发光材料的制备方法。与现有技术相比,本发明的无铅铁电上转换发光材料具备光致变色和温度传感性能,且材料的制备方法简单、成本较低。

Description

无铅铁电上转换发光材料及其制备方法
技术领域
本发明属于铁电材料制备技术领域,具体涉及一种无铅铁电上转换发光材料及其制备方法。
背景技术
上转换发光材料是一种吸收低能光辐射,发射高能光辐射的发光材料。发光机理是由于双光子或多光子的耦合作用;其特点是所吸收的光子能量低于所发射的光子能量,上转换主要的应用领域有光学存储材料、全固态紧凑型激光器件、红外量子计数器、三维立体显示、上转换荧光粉、温度探测器、生物分子的荧光探针等。自20世纪60年代发现上转换发光材料以来,人们对上转换发光进行了广泛的研究。国内外研究方向主要集中在基质材料如无铅铁电材料中掺杂稀土离子来制备上转换发光材料,以及对其发光机制、发光效率的改进等方面。如申请号为CN201710142424.5的发明专利申请《一种钙钛矿结构的锡酸盐可逆光致变色材料及其制备方法》(申请公布号为CN106916579A)、申请号为CN201711305680.8的发明专利申请《基于稀土掺杂的无铅铁电光致色变材料及其制备方法和应用》(申请公布号为CN108017390A)、申请号为CN200910071967.8的发明专利《镨掺杂的钛酸钙发光粉及其制备方法》(授权公告号为CN101544886B)。采用钙钛矿结构的上转换发光材料,具备较稳定的物理和化学性能,且具备独有的电学性。
ABO3型结构的钙钛矿无铅铁电陶瓷如Na0.5K0.5NbO3(KNN)材料具有优良的压电、铁电、介电等电学性能,是非常优越的无铅压电材料,在现代工业及光学领域具有潜在的应用价值。由于Na0.5K0.5NbO3材料在高温烧结的过程中Na、K离子挥发,会形成许多固有的点缺陷,例如氧空位、A/B位空位、激子等。这些缺陷对材料的电学和荧光性能会产生很重要的影响。但是该种材料的热稳定性、抗腐蚀性较差,限制了它们的广泛应用。
温度在我们日常生活以及化学检测、生物医学、物理探索等领域有着广泛的应用。然而传统的接触式温度传感器比如热电阻、热电偶、辐射温度计等都存在着一定的测量局限性,受测量环境影响较大,无法满足日益增长的温度测量需求。光学温度传感器具备了基本不导电、误差小、造价低廉、可广泛应用于大电流、易腐蚀、高磁场环境等优点。且随着现代工业对智能材料的要求越来越高,一种材料需要多种功能,能实现驱动、传感、执行等功能。基于此,若能开发出一种集温度传感、光致变色的多功能铁电基材料具有重要的意义。
发明内容
本发明所要解决的第一个技术问题是针对现有技术的现状,提供一种具有光致变色和温度传感性能的无铅铁电上转换发光材料。
本发明所要解决的第二个技术问题是针对现有技术的现状,提供一种便于生产、成本较低的无铅铁电上转换发光材料的制备方法。
本发明解决上述第一个技术问题所采用的技术方案为:一种无铅铁电上转换发光材料,包括结构为ABO3结构的钙钛矿无铅铁电陶瓷材料,其特征在于:该无铅铁电陶瓷材料的化学式为(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+,其中,0.0006≤x≤0.004,通过在A位添加x mol的稀土元素Pr3+以及0.01mol的稀土元素Yb3+,并且改变Na0.5K0.5NbO3材料的含量,进而实现材料的上转换发光。
所述x优选为0.0006、0.0008、0.001、0.002、0.003或0.004。
所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料通过调控不同浓度的稀土离子Pr3+以获取最佳组分,即所述x为0.001时,所测得的上转换发光强度最强。
在上述方案中,所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料在980nm波长的激光激发下,产生可见绿光。
作为优选,所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料在390nm紫外光辐照后,颜色从灰白色转为深灰色,在980nm光的激发下,(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料发射出的可见光的强度降低40~71%。
较优选的是,所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料经过390nm紫外光辐照后,再通过100~200℃加热5~10分钟,颜色恢复到灰白色,且在980nm光的激发下,(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料的发光强度恢复。即上转换发光性能同辐照前,实现对材料颜色作可逆性调控。
在上述方案中,所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料在-150~300℃的温度下,随着温度的升高,在980nm光的激发下,(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料发射出的可见光的强度逐渐增大(在-150~300℃的温度下,随着温度的升高,在980nm光的激发下,(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料测量归一化后524nm处峰值相对强度逐渐增高)。进而(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料具有温度传感性能,通过测试材料的上转换发光强度可测得对应的温度。
改进,所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料经过390nm紫外光辐照后,在-150~300℃的温度下,随着温度的升高,在980nm光的激发下,(Na0.5K0.5)1-x-0.01NbO3:xPr3 +/0.01Yb3+材料发射出的可见光的强度逐渐增大(在-150~300℃的温度下,随着温度的升高,在980nm光的激发下,(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料测量归一化后524nm处峰值相对强度逐渐增高)。辐照前后的材料均具有温度传感性能,故而,紫外光辐照对材料的温度传感性能的影响不大,进一步说明本发明的陶瓷材料具有稳定的结构。
所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料捣碎后,与聚二甲基硅氧烷按照质量比1:(3~3.5)比例充分混合,8~12小时固化后,制得复合薄膜,该复合薄膜经过紫外灯辐照10~30分钟后,通过施加250~1000N的应力或者加热至25~200℃能够发出红光。进而实现应力发光以及热释光,进一步扩大了本发明的陶瓷材料的应用领域。
本发明解决上述第二个技术问题所采用的技术方案为:一种如上所述的无铅铁电上转换发光材料的制备方法,其特征在于包括如下步骤:
①采用K2CO3,Na2CO3,Nb2O5,Pr2O3和Yb2O3为原料,按照化学式为(Na0.5K0.5)1-x- 0.01NbO3:xPr3+/0.01Yb3+中的K,Na,Nb,Pr和Yb化学计量比进行称重配料;然后将各原料进行球磨混合,球磨条件为:玛瑙球磨珠中大粒与小粒的个数比为1:(3~3.5),原料体积与球磨介质无水乙醇的体积比为1:(1.5~2.5);球磨8~10小时后的原料依次进行烘干、过筛、压片处理,且压片的压力为150~220 MPa,压片后得到的生坯在800~850℃下保温4~8个小时,合成具有钙钛矿结构的(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+样品前驱体;
②将步骤①中所得的(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+样品前驱体重新碾碎,再次以步骤①中的球磨条件球磨5~10小时,球磨后进行烘干处理,得到烘干粉体;
③将步骤②所得的烘干粉体加入质量溶度为3~5%的聚乙烯醇水溶液作为粘结剂进行造粒,且每10克烘干粉体加入的聚乙烯醇水溶液的体积为1~2ml;将造粒后的粉体在100~200 MPa下压片成型;然后在600~900℃下保温2~4个小时分解粘结剂;再在1100~1200℃下保温4~5小时,最终所得的陶瓷片就为(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+无铅铁电上转换发光材料。
与现有技术相比,本发明的优点在于:
通过在Na0.5K0.5NbO3中添加稀土离子Pr3+以及Yb3+(Yb3+为敏化剂,提高材料对红外光的吸收能力),并且改变材料的含量可以实现陶瓷材料的上转换发光,即陶瓷材料在980nm波长的激光激发下,产生可见绿光。陶瓷材料在辐照前后的上转换发光强度及颜色发生显著变化:陶瓷材料在390nm紫外光辐照后,颜色从灰白色转为深灰色,在980nm光的激发下,陶瓷材料发射出的可见光的强度降低。并且辐照后的陶瓷材料再通过加热,陶瓷材料的颜色可以完全恢复,实现可逆调控。由于稀土离子Pr3+热耦合能级(3P03P1)影响,测出材料具有良好的温度传感性能:紫外光辐照前后的材料,在-150~300℃的温度下,随着温度的升高,材料的上转换发光强度均逐渐增大,即辐照前后的材料均具备温度传感性能,且通过对辐照前后的材料的温度传感性能的灵敏度进行比对,发现辐照对温度传感性能的灵敏度影响不大,说明本发明的陶瓷材料具备稳定的温度传感性能。此外利用陶瓷材料独有的缺陷特性,陶瓷材料在紫外灯辐照后具有应力发光以及热释光的特性。
即本发明能通过辐照、加热及加压对陶瓷材料的颜色及上转换发光强度进行可逆调控,以满足不同的应用需求。本发明的陶瓷材料可以应用在光存储中,并且适用于稀土离子热耦合能级的测温体系中,其不受探针浓度、发光中心的不均匀性等外部因素的影响,准确性较高。
且本发明的制备方法简单,所有化学反应都在空气中进行;所需原料的成本较低,制得产品的颜色及发光强度调控具有良好的稳定性。
附图说明
图1为本发明实施例一中陶瓷片的X射线衍射图谱;
图2为本发明实施例一中陶瓷片的上转换发光光谱图;
图3为图2中550nm处的峰值与Pr3+的含量关系图;
图4为本发明实施例一中辐照前后陶瓷材料的上转换发光光谱图;
图5为本发明实施例一中辐照前后陶瓷材料的上转换发光强度的对比度图;
图6为本发明实施例一中辐照前后陶瓷材料的上转换发光强度的对比度的周期循环图;
图7为本发明实施例一中辐照前陶瓷材料在不同温度下的上转换发光光谱图;
图8为本发明实施例一中辐照后陶瓷材料在不同温度下的上转换发光光谱图;
图9为本发明实施例一中辐照前后陶瓷材料的温度传感性能的曲线图;
图10为本发明实施例一中辐照前后陶瓷材料的温度传感性能的灵敏度对比图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例一:
采用高纯的K2CO3,Na2CO3,Nb2O5,Pr2O3和Yb2O3为原料,按照(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+ (x=0.0006,0.0008,0.001,0.002,0.003,0.004)中的K,Na,Nb,Pr和Yb化学计量比进行称重配料,然后将原料放入球磨罐中进行球磨,球磨条件为:玛瑙球磨珠中大粒与小粒的个数比为1:3,原料体积与无水乙醇的体积比为1: 1.5;球磨9小时后,将原料放入烘箱烘干,烘干后原料进行一次过筛,再利用压片机在200 MPa下压片,压完片后的大片放入马弗炉中在850℃下保温4个小时合成具有钙钛矿结构的(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+样品前驱体。再将所得的样品前驱体重新碾碎,再次放入球磨罐中以相同的球磨条件球磨7小时,球磨后放入烘箱烘干,得到烘干粉体。将所得的烘干粉体通过加入粘合剂聚乙烯醇水溶液(PVA)进行造粒,聚乙烯醇的质量溶度为4%,其中烘干粉体与聚乙烯醇水溶液的比例是10克烘干粉体对应1ml聚乙烯醇水溶液;将造粒后的粉体在150 MPa下压成小片模型;再将小片放入马弗炉中在850℃下保温2小时分解粘结剂,然后在1150℃下保温4小时,最终所得的陶瓷片就为(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+无铅铁电上转换发光材料。
本实施例的陶瓷材料在980nm波长的激光激发下,产生可见绿光。在390nm紫外光辐照5~10 min后,陶瓷材料的颜色从灰白色转为深灰色,上转换发光强度降低40~71%;再通过100℃加热5分钟,颜色又恢复到原来的灰白色,且上转换发光强度同辐照前。
将所得的陶瓷片进行相关测试,测试结果请参见图1~10。从图1中可以看出Pr3+、Yb3+完全掺入到基质Na0.5K0.5NbO3中,没有杂质产生,所得的样品具有纯的钙钛矿结构。图2、3显示掺杂不同浓度的Pr3+离子得到不同的上转换发光强度,其中Pr3+离子浓度在0.001mol时发光最强。图4、5显示Pr3+离子浓度在0.001mol时,辐照前后陶瓷材料的对比度ΔRt(ΔRt= (R0 – Rt)/R0×100(%),R0为辐照前样品的上转换发光强度,Rt为辐照后样品的上转换发光强度)最大,达到了71%;Pr3+离子浓度在0.0006mol时,辐照前后陶瓷材料的对比度ΔRt最小,为40%。图6显示了上述对比度ΔRt的周期循环图,可以看出辐照前后的对比度几乎没有变化,证明了本发明的陶瓷材料的光致变色性能稳定,这对于其应用在光存储中非常有利。
同时,经过测试发现,本发明的陶瓷材料具有温度传感性能,具体请参见图7~10(图中温度K=273.15+℃)。辐照前后的陶瓷材料在-150~300℃的温度下,随着温度的升高,在980nm光的激发下,陶瓷材料在524nm处峰值相对强度逐渐增高,其上转换发光强度均逐渐增大,且辐照对陶瓷材料的温度传感灵敏度影响不大,说明本发明的陶瓷材料不论是辐照前还是辐照后均具备稳定的温度传感性能。具体应用时,应用温度传感中的发光中心强度比型的传感原理进行测温,当温度发生变化时,荧光峰即上转换发光光谱峰的相对强度也会发生相应的变化,我们可以通过这两个荧光峰的强度比值来对温度进行检测。
且将本实施例的陶瓷材料捣碎后,与聚二甲基硅氧烷按照质量比1:3比例充分混合,10小时固化后,制得复合薄膜,该复合薄膜经过紫外灯辐照30分钟后,通过施加1000N的应力或者加热至100℃能够发出红光。
实施例二:
采用高纯的K2CO3,Na2CO3,Nb2O5,Pr2O3和Yb2O3为原料,按照(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+ (x=0.002)中的K,Na,Nb,Pr和Yb化学计量比进行称重配料,然后将原料放入球磨罐中进行球磨,球磨条件为:玛瑙球磨珠中大粒与小粒的个数比为1:3.5,原料体积与无水乙醇的体积比为1: 2.5;球磨8小时后,将原料放入烘箱烘干,烘干后原料进行一次过筛,再利用压片机在150 MPa下压片,压完片后的大片放入马弗炉中在800℃下保温8个小时合成具有钙钛矿结构的(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+样品前驱体。再将所得的样品前驱体重新碾碎,再次放入球磨罐中以相同的球磨条件球磨5小时,球磨后放入烘箱烘干,得到烘干粉体。将所得的烘干粉体通过加入粘合剂聚乙烯醇水溶液(PVA)进行造粒,聚乙烯醇的质量溶度为3%,其中烘干粉体与聚乙烯醇水溶液的比例是10克烘干粉体对应2ml聚乙烯醇水溶液;将造粒后的粉体在100 MPa下压成小片模型;再将小片放入马弗炉中在600℃下保温4小时分解粘结剂,然后在1100℃下保温4.5小时,最终所得的陶瓷片就为(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+无铅铁电上转换发光材料。
本实施例的陶瓷材料在980nm波长的激光激发下,产生可见绿光。在390nm紫外光辐照5~10 min后,陶瓷材料的颜色从灰白色转为深灰色,上转换发光强度降低65%;再通过200℃加热10分钟,颜色又恢复到原来的灰白色,且上转换发光强度同辐照前。
经过测试发现,本实施例的陶瓷材料同样具有温度传感性能。
且将本实施例的陶瓷材料捣碎后,与聚二甲基硅氧烷按照质量比1:3.5比例充分混合,8小时固化后,制得复合薄膜,该复合薄膜经过紫外灯辐照20分钟后,通过施加500N的应力或者加热至25℃能够发出红光。
实施例三:
采用高纯的K2CO3,Na2CO3,Nb2O5,Pr2O3和Yb2O3为原料,按照(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+ (x=0.004)中的K,Na,Nb,Pr和Yb化学计量比进行称重配料,然后将原料放入球磨罐中进行球磨,球磨条件为:玛瑙球磨珠中大粒与小粒的个数比为1:3.2,原料体积与无水乙醇的体积比为1: 2;球磨10小时后,将原料放入烘箱烘干,烘干后原料进行一次过筛,再利用压片机在220 MPa下压片,压完片后的大片放入马弗炉中在820℃下保温6个小时合成具有钙钛矿结构的(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+样品前驱体。再将所得的样品前驱体重新碾碎,再次放入球磨罐中以相同的球磨条件球磨10小时,球磨后放入烘箱烘干,得到烘干粉体。将所得的烘干粉体通过加入粘合剂聚乙烯醇水溶液(PVA)进行造粒,聚乙烯醇的质量溶度为5%,其中烘干粉体与聚乙烯醇水溶液的比例是10克烘干粉体对应1.5ml聚乙烯醇水溶液;将造粒后的粉体在200 MPa下压成小片模型;再将小片放入马弗炉中在900℃下保温3小时分解粘结剂,然后在1200℃下保温5小时,最终所得的陶瓷片就为(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+无铅铁电上转换发光材料。
本实施例的陶瓷材料在980nm波长的激光激发下,产生可见绿光。在390nm紫外光辐照5~10 min后,陶瓷材料的颜色从灰白色转为深灰色,上转换发光强度降低47%;再通过150℃加热10分钟,颜色又恢复到原来的灰白色,且上转换发光强度同辐照前。
经过测试发现,本实施例的陶瓷材料同样具有温度传感性能。
且将本实施例的陶瓷材料捣碎后,与聚二甲基硅氧烷按照质量比1:3.2比例充分混合,12小时固化后,制得复合薄膜,该复合薄膜经过紫外灯辐照10分钟后,通过施加250N的应力或者加热至200℃能够发出红光。

Claims (3)

1.一种无铅铁电上转换发光材料,包括结构为ABO3结构的钙钛矿无铅铁电陶瓷材料,其特征在于:该无铅铁电陶瓷材料的化学式为(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+,其中,0.0006≤x≤0.004,通过在A位添加x mol的稀土元素Pr3+以及0.01mol的稀土元素Yb3+,并且改变Na0.5K0.5NbO3材料的含量,进而实现材料的上转换发光;
所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料在980nm波长的激光激发下,产生可见绿光;
所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料在390nm紫外光辐照后,颜色从灰白色转为深灰色,在980nm光的激发下,(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料发射出的可见光的强度降低40~71%;
所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料经过390nm紫外光辐照后,再通过100~200℃加热5~10分钟,颜色恢复到灰白色,且在980nm光的激发下,(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料的发光强度恢复;
所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料在-150~300℃的温度下,随着温度的升高,在980nm光的激发下,(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料发射出的可见光的强度逐渐增大;
所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料经过390nm紫外光辐照后,在-150~300℃的温度下,随着温度的升高,在980nm光的激发下,(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料发射出的可见光的强度逐渐增大;
所述(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+材料捣碎后,与聚二甲基硅氧烷按照质量比1:3~3.5比例充分混合,8~12小时固化后,制得复合薄膜,该复合薄膜经过紫外灯辐照10~30分钟后,通过施加250~1000N的应力或者加热至25~200℃能够发出红光。
2.根据权利要求1所述的无铅铁电上转换发光材料,其特征在于:所述x为0.0006、0.0008、0.001、0.002、0.003或0.004。
3.一种如权利要求1~2任意一条权项所述的无铅铁电上转换发光材料的制备方法,其特征在于包括如下步骤:
①采用K2CO3,Na2CO3,Nb2O5,Pr2O3和Yb2O3为原料,按照化学式为(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+中的K,Na,Nb,Pr和Yb化学计量比进行称重配料;然后将各原料进行球磨混合,球磨条件为:玛瑙球磨珠中大粒与小粒的个数比为1:3~3.5,原料体积与球磨介质无水乙醇的体积比为1: 1.5~2.5;球磨8~10小时后的原料依次进行烘干、过筛、压片处理,且压片的压力为150~220 MPa,压片后得到的生坯在800~850℃下保温4~8个小时,合成具有钙钛矿结构的(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+样品前驱体;
②将步骤①中所得的(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+样品前驱体重新碾碎,再次以步骤①中的球磨条件球磨5~10小时,球磨后进行烘干处理,得到烘干粉体;
③将步骤②所得的烘干粉体加入质量溶度为3~5%的聚乙烯醇水溶液作为粘结剂进行造粒,且每10克烘干粉体加入的聚乙烯醇水溶液的体积为1~2ml;将造粒后的粉体在100~200 MPa下压片成型;然后在600~900℃下保温2~4个小时分解粘结剂;再在1100~1200℃下保温4~5小时,最终所得的陶瓷片就为(Na0.5K0.5)1-x-0.01NbO3:xPr3+/0.01Yb3+无铅铁电上转换发光材料。
CN201811549094.2A 2018-12-18 2018-12-18 无铅铁电上转换发光材料及其制备方法 Active CN109336599B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811549094.2A CN109336599B (zh) 2018-12-18 2018-12-18 无铅铁电上转换发光材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811549094.2A CN109336599B (zh) 2018-12-18 2018-12-18 无铅铁电上转换发光材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109336599A CN109336599A (zh) 2019-02-15
CN109336599B true CN109336599B (zh) 2021-08-31

Family

ID=65304854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811549094.2A Active CN109336599B (zh) 2018-12-18 2018-12-18 无铅铁电上转换发光材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109336599B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894012B (zh) * 2022-10-21 2023-10-03 宁波大学 一种无铅铁电陶瓷材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007016854B4 (de) * 2007-04-10 2017-02-16 Robert Bosch Gmbh Piezoelektrische, bleifreie keramische Zusammensetzung, Verfahren zu deren Herstellung sowie ein dieses Material unfassendes piezoelektrisches Bauelement
CN108017390B (zh) * 2017-12-11 2021-02-23 宁波大学 基于稀土掺杂的无铅铁电光致色变材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Reversible luminescence modulation and temperature‐sensing properties of Pr3+/Yb3+ codoped K0.5Na0.5NbO3 ceramics";Quan Zhang 等;《J Am Ceram Soc.》;20190410;第102卷;第6018-6026页 *

Also Published As

Publication number Publication date
CN109336599A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
Li et al. Luminescence and optical thermometry strategy based on emission and excitation spectra of Pr3+ doped SrMoO4 phosphors
Zhu et al. Improving the up/down-conversion luminescence via cationic substitution and dual-functional temperature sensing properties of Er3+ doped double perovskites
CN108017390B (zh) 基于稀土掺杂的无铅铁电光致色变材料及其制备方法和应用
Chen et al. Mn4+-activated double-perovskite-type Sr2LuNbO6 multifunctional phosphor for optical probing and lighting
Sun et al. High sensitivity thermometry and optical heating Bi-function of Yb3+/Tm3+ Co-doped BaGd2ZnO5 phosphors
Wang et al. Single band ratiometric luminescence thermometry based on Pr 3+ doped oxides containing charge transfer states
CN114656964B (zh) 一种自校准荧光测温材料及其制备方法
CN111019652B (zh) 一种荧光测温材料及其制备方法
Zhu et al. Lanthanide-doped lead-free double perovskite La 2 MgTiO 6 as ultra-bright multicolour LEDs and novel self-calibrating partition optical thermometer
Zhou et al. Ca2Na2La6 (SiO4) 4 (PO4) 2O: Eu2+/Eu3+: A visual dual‐emitting fluorescent ratiometric temperature sensor
CN107057699A (zh) 无铅铁电上转换荧光材料及其制备方法和应用
Poria et al. Lumino-structural properties of Dy 3+ activated Na 3 Ba 2 LaNb 10 O 30 phosphors with enhanced internal quantum yield for w-LEDs
Xie et al. Near-Infrared LuCa2ScZrGa2GeO12: Cr3+ garnet phosphor with ultra-broadband emission for NIR LED applications
Zhou et al. Site-selective excitation and photoluminescence properties of a cyan-emitting NaGd9 (SiO4) 6O2: Bi3+ phosphor for potential application in white light-emitting diodes
CN109336599B (zh) 无铅铁电上转换发光材料及其制备方法
Taleb et al. Dual-mode optical ratiometric thermometry using Pr 3+-doped NaSrGd (MoO 4) 3 phosphors with tunable sensitivity
Li et al. Designing dual-emission phosphors for temperature warning indication and dual-mode luminescence thermometry
Singh et al. Optical spectroscopic and thermal quenching behaviour of perovskite SrTiO 3: Sm 3+ orange emitting phosphors for lighting applications
Liu et al. Multi-mode excited upconversion and downshifting of Ho3+/Yb3+ doped lead-free double perovskite Cs2NaBiCl6 for anti-counterfeiting and thermometry
Yang et al. Photoluminescence property, energy transfer mechanism, and optical thermometric behavior of bismuth-europium codoped disordered melilite-type phosphor
CN111253941A (zh) 一种分温区纳米荧光温度计及其制备方法和荧光测温方法
CN111004031B (zh) 一种光学存储材料及其制备方法
Chen et al. Negative and positive thermal expansion effects regulate the upconversion and near-infrared downshift luminescence for multiparametric temperature sensing
Kiisk et al. Rare earth–doped oxide materials for photoluminescence-based gas sensors
CN108624316A (zh) 基于稀土掺杂光致色变材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220907

Address after: Room 2202, 22 / F, Wantong building, No. 3002, Sungang East Road, Sungang street, Luohu District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen dragon totem technology achievement transformation Co.,Ltd.

Address before: 315211, Fenghua Road, Jiangbei District, Zhejiang, Ningbo 818

Patentee before: Ningbo University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240314

Address after: 5th Floor, Office Building of Boyun Lugu Industrialization Base Testing Center, No. 500 Lusong Road, Lugu Street, Xiangjiang New District, Changsha City, Hunan Province, 410000

Patentee after: Changsha pocheng Technology Co.,Ltd.

Country or region after: China

Address before: Room 2202, 22 / F, Wantong building, No. 3002, Sungang East Road, Sungang street, Luohu District, Shenzhen City, Guangdong Province

Patentee before: Shenzhen dragon totem technology achievement transformation Co.,Ltd.

Country or region before: China