CN108624316A - 基于稀土掺杂光致色变材料及其制备方法和应用 - Google Patents

基于稀土掺杂光致色变材料及其制备方法和应用 Download PDF

Info

Publication number
CN108624316A
CN108624316A CN201810474613.7A CN201810474613A CN108624316A CN 108624316 A CN108624316 A CN 108624316A CN 201810474613 A CN201810474613 A CN 201810474613A CN 108624316 A CN108624316 A CN 108624316A
Authority
CN
China
Prior art keywords
sno
light
hours
ball milling
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810474613.7A
Other languages
English (en)
Other versions
CN108624316B (zh
Inventor
章园园
罗来慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongying Ruigang Investment Service Co ltd
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201810474613.7A priority Critical patent/CN108624316B/zh
Publication of CN108624316A publication Critical patent/CN108624316A/zh
Application granted granted Critical
Publication of CN108624316B publication Critical patent/CN108624316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7716Chalcogenides
    • C09K11/7718Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N2021/634Photochromic material analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种基于稀土掺杂光致色变材料,在Sr2SnO4材料中掺杂稀土元素制得,其特征在于该光致色变材料的化学式为:Sr1.995Eu0.005SnO4或Sr2‑xErxSnO4,其中0.005≤x≤0.06,通过在A位添加稀土元素Eu3+或Er3+以取代Sr2SnO4材料中的Sr2+离子,进而实现材料的光致变色。本发明还公开了光致色变材料的制备方法和应用。与现有技术相比,本发明能实现材料的光致变色材料荧光强度的光调控,即通过不同光的辐照来控制荧光发光强度的可逆性变化,以达到不用应用的需求。此外掺杂Eu3+和Er3+的Sr2SnO4材料在X射线的作用下也可以发生变色,更有利于于该材料的多功能性应用。

Description

基于稀土掺杂光致色变材料及其制备方法和应用
技术领域
本发明属于光致色变材料技术领域,具体涉及一种基于稀土掺杂光致色变材料及其制备方法和应用。
背景技术
光致变色材料,是指受到光源辐照后能够发生颜色变化的一类材料。传统的光致变色材料包括传统无机光致变色材料和传统有机光致变色材料,其中传统无机光致变色材料主要有氧化钨、溴化物等,其没有荧光发光性能;传统有机光致变色材料虽然可以发光,但是热稳定性、抗腐蚀性较差。随着现在光致色变材料的应用范围越来越广,对材料的多功能化要求越来越高,传统的光致变色材料已经不能满足一些特殊场合的应用需求,应用受到了限制。
近年来,用稀土元素进行掺杂的光致色变材料越来越多,相关文献见专利号为ZL201410622062.6的中国发明专利《一种卤磷酸盐可逆光致变色材料及其制备方法》(授权公告号为CN104403659B);专利号为ZL201410622103.1的中国发明专利《一种无机可逆光致变色材料及其制备方法》(授权公告号为CN104449658B);同时还可以参考专利号为ZL201610395824.2的中国发明专利《荧光可控的光致变色多功能材料及其制备方法》(授权公告号为CN106085407B)。这些掺杂有稀土元素的光致色变材料在现代电子工业以及光学领域具有潜在的应用价值。
锡酸锶Sr2SnO4陶瓷材料由于在高温烧结的过程中会形成许多固有的点缺陷,例如氧空位、A/B位空位、激子等,这些缺陷对材料的光学性能会产生很重要的影响,由于缺陷的存在,会在材料的导带和价带之间引入缺陷能级,从而使Sr2SnO4成为潜在的光致变色材料。且通过在Sr2SnO4材料中添加稀土离子可以实现材料的光致发光,并且利用光致变色可以调制材料的荧光发光强度,从而可以实现光致变色材料应用在光存储中。现有的锡酸盐光致色变材料请参见申请号为CN201710142424.5的中国发明专利申请《一种钙钛矿结构的锡酸盐可逆光致变色材料及其制备方法》(申请公布号为CN106916579A),可应用于光信息存储、光调控、光学器件材料、感应器、防伪和自显影全息记录照相等领域。
目前锡酸盐光致色变材料的种类十分有限,其颜色变化也十分有限,这在很大程度上限制了该类色变材料的应用,因此研发出能对材料发光进行实时调控,且颜色变化不同的光致色变材料显得尤为重要。
发明内容
本发明所要解决的第一个技术问题是针对现有技术的现状,提供一种容易实现对材料发光作可逆性调控的基于稀土掺杂光致色变材料。
本发明所要解决的第二个技术问题是针对现有技术的现状,提供一种便于生产、成本较低的基于稀土掺杂光致色变材料的制备方法。
本发明所要解决的第三个技术问题是针对现有技术的现状,提供一种上述基于稀土掺杂光致色变材料的应用。
本发明解决上述第一个技术问题所采用的技术方案为:一种基于稀土掺杂光致色变材料,在Sr2SnO4材料中掺杂稀土元素制得,其特征在于该光致色变材料的化学式为:Sr1.995Eu0.005SnO4或Sr2-xErxSnO4,其中0.005≤x≤0.06,通过在A位添加稀土元素Eu3+或Er3+以取代Sr2SnO4材料中的Sr2+离子,进而实现材料的光致变色。
在上述方案中,所述Sr1.995Eu0.005SnO4材料在464nm波长激光激发下,产生可见红光;所述Sr2-xErxSnO4材料在980nm波长激光激发下,产生可见绿光。
作为优选,所述Sr1.995Eu0.005SnO4材料经过280nm紫外光或X射线光辐照后,颜色从白色转为紫色,在464nm光的激发下,Sr1.995Eu0.005SnO4材料发射出的可见光的强度降低80%以上;所述Sr2-xErxSnO4材料经过280nm紫外光或X射线光辐照后,颜色从白色转为粉红色,在980nm光的激发下,Sr2-xErxSnO4材料发射出的可见光的强度降低60%以上。
优选,所述Sr1.995Eu0.005SnO4材料经过280nm紫外光或X射线光辐照后,再通过450nm光辐照,颜色恢复到白色,且在464nm光的激发下,Sr1.995Eu0.005SnO4材料的发光强度恢复,其中发光强度为经过280nm紫外光或X射线光辐照后发光强度的5倍;所述Sr2-xErxSnO4材料经过280nm紫外光或X射线光辐照后,再通过450nm光辐照,颜色恢复到白色,且在980nm光的激发下,Sr2-xErxSnO4材料的发光强度部分恢复,其中发光强度为经过280nm紫外光或X射线光辐照后发光强度的2倍。
本发明解决上述第二个技术问题所采用的技术方案为:一种如上所述的基于稀土掺杂光致色变材料的制备方法,其特征在于所述Sr1.995Eu0.005SnO4的制备方法包括如下步骤:
①采用SrCO3,SnO2,Eu2O3为原料,按照化学式为Sr1.995Eu0.005SnO4的Sr,Sn,Eu的化学计量比进行称重配料;然后进行球磨混合,球磨2~15小时后的原料进行烘干、压片处理,且压片的压力为5~80Mpa;压片后得到的生胚在750~800℃下保温1~3小时,合成Sr1.995Eu0.005SnO4胚体;
②将步骤①所得的Sr1.995Eu0.005SnO4胚体碾碎并球磨5~10小时,球磨后进行烘干处理,得到Sr1.995Eu0.005SnO4烘干粉体;
③将步骤②所得的Sr1.995Eu0.005SnO4烘干粉体加入聚乙烯醇水溶液做粘结剂造粒,将造粒后的粉体在1~2MPa下压片成型;然后在650~800℃下保温2~4小时分解粘结剂;再在1300~1500℃下保温2~4小时,最终所得的陶瓷片就为Sr1.995Eu0.005SnO4荧光陶瓷材料。
所述Sr2-xErxSnO4的制备方法与上述Sr1.995Eu0.005SnO4的制备方法大致相同,包括如下步骤:
①采用SrCO3,SnO2,Er2O3为原料,按照化学式为Sr2-xErxSnO4中的Sr,Sn,Er的化学计量比进行称重配料;然后进行球磨混合,球磨2~15小时后的原料进行烘干、压片处理,且压片的压力为5~80Mpa;压片后得到的生胚在750~800℃下保温1~3小时,合成Sr2- xErxSnO4胚体;
②将步骤①所得的Sr2-xErxSnO4胚体碾碎并球磨5~10小时,球磨后进行烘干处理,得到Sr2-xErxSnO4烘干粉体;
③将步骤②所得的Sr2-xErxSnO4烘干粉体加入聚乙烯醇水溶液做粘结剂造粒,将造粒后的粉体在1~2MPa下压片成型;然后将胚体在650~800℃下保温2~4小时分解粘结剂;再在1300~1500℃下保温2~4小时,最终所得的陶瓷片就为Sr2-xErxSnO4荧光陶瓷材料。
在上述方案中,所述步骤①球磨混合中原料的体积:玛瑙球子体积:球磨介质无水乙醇的体积比为1:(1~1.2):(1~1.5)。
作为优选,所述步骤③中加入的聚乙烯醇的质量浓度为3~5%,且每10g烘干粉体滴入的聚乙烯醇的体积为1~2ml。
所述步骤③的粘结剂造粒为将烘干粉体和聚乙烯醇在研钵中充分混合后过80目筛。
本发明解决上述第三个技术问题所采用的技术方案为:一种如上所述的基于稀土掺杂光致色变材料在光存储、X射线探测、紫外线探测中的应用。
与现有技术相比,本发明的优点在于:本发明的Sr1.995Eu0.005SnO4与Sr2-xErxSnO4在烧结过程中,形成Sr,O空位缺陷能级,并分别利用稀土离子Eu3+和Er3+的能级,在464nm波长激光和近红外980nm波长激光激发下,分别可产生可见红光和绿光,并且材料在紫外光和X射线光辐照处理后荧光发光强度以及陶瓷颜色发生显著变化:当Sr1.995Eu0.005SnO4材料经过280nm光辐照后,在464纳米的红外光激发下,陶瓷发射出的可见光的强度降低80%以上;当Sr2-xErxSnO4材料经过280nm光辐照后,在980nm光的激发下,陶瓷发射出的可见光的强度降低60%以上。并且,经过280nm光辐照后的Sr1.995Eu0.005SnO4材料,再通过450nm光辐照,陶瓷的颜色以及发光强度几乎可以完全恢复,其中发光强度可以到达辐照后的5倍;经过280nm光辐照后的Sr2-xErxSnO4材料,再通过450nm光辐照,陶瓷的颜色完全恢复,发光强度可部分恢复,其中发光强度可以到达辐照后的2倍。实现材料的光致变色材料荧光强度的光调控,即通过不同光的辐照来控制荧光发光强度的可逆性变化,以达到不用应用的需求。此外掺杂Eu3+和Er3+的Sr2SnO4材料在X射线的作用下也可以发生变色,更有利于于该材料的多功能性应用。
且本发明的制备方法简单,所有化学反应都在空气中进行;所需原料的成本较低,制得产品的荧光强度调控具有良好的稳定性。
附图说明
图1为本发明实施例1中不同温度烧结的Sr1.995Eu0.005SnO4粉末的X射线衍射图谱(左上角为1500℃烧结Sr1.995Eu0.005SnO4粉末XRD测试后的照片);
图2为本发明实施例1中Sr2-xErxSnO4粉末的X射线衍射图谱(左上角为Sr1.99Er0.01SnO4粉末XRD测试后的照片);
图3为本发明实施例1中不同温度烧结的Sr1.995Eu0.005SnO4陶瓷经过280纳米光和450纳米光辐照后的照片;
图4为本发明实施例1中Sr2-xErxSnO4陶瓷经过280纳米光和450纳米光辐照后的照片;
图5为本发明实施例1中1500℃烧结的Sr1.995Eu0.005SnO4辐照前、280纳米光辐照和450纳米光辐照后的荧光光谱图;
图6为本发明实施例1中Sr1.99Er0.01SnO4辐照前、280纳米光辐照和450纳米光辐照后的荧光光谱图;
图7为本发明实施例1中1500℃烧结的Sr1.995Eu0.005SnO4陶瓷280纳米光与450纳米光切换辐照荧光发光归一化强度变化图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1:
采用纯度99.5%的SrCO3,99.9%的SnO2,99.9%的Eu2O3和99.9%的Er2O3为原料,分别按照Sr1.995Eu0.005SnO4和Sr2-xErxSnO4(x=0.005,0.01,0.02,0.04,0.06)计量比分别称重,放入球磨罐中混合球磨,球磨条件:原料的体积、玛瑙球体积、球磨介质无水乙醇的体积比大约等于1:1:1.5,将其球磨12小时,球磨后的原料放入烘箱在80℃烘4小时。之后,将烘干后原料利用压片机在20Mpa下压片成直径40mm的原料生胚,然后将压成的生胚放入KSL-1700X箱式炉中预烧,预烧条件为800℃保温1小时,之后将预烧好的块状样品碾碎,磨成粉末过筛,将其球磨10小时,再次放入烘箱80℃下4小时烘干。最后,将烘干后的粉料按10g粉料加1ml聚乙烯醇(聚乙烯醇的质量浓度为3%)的比例进行研磨,造粒,用80目筛子过筛3次,磨好粉料的称量质量为0.395-0.400克,在2MPa下压成直径为10mm的小片,然后在650℃下保温2小时以分解粘结剂聚乙烯醇,在Al2O3垫片上铺上母粉,并以母粉将压好的小片覆盖,将其放入箱式炉中烧结,Sr1.995Eu0.005SnO4的烧结条件为1300-1500℃保温4小时,Sr2- xErxSnO4的烧结条件为1500℃保温4小时。
将烧结的Sr1.995Eu0.005SnO4陶瓷和Sr2-xErxSnO4陶瓷进行相关测试,测试结果请参见图1~7。从图1和2中可以看出被X射线辐照后陶瓷的部分颜色发生了改变;图3和图4中看出不同温度烧结的Sr1.995Eu0.005SnO4和1500℃烧结的Sr2-xErxSnO4陶瓷样品的颜色经过280纳米光辐照后样品的颜色变深,通过450纳米光后样品又恢复了,陶瓷样品的颜色变化是可逆的(其中在Sr1.995Eu0.005SnO4材料中,当烧结温度为1500℃时,材料经过280nm紫外光辐照后颜色变化最显著;在Sr2-xErxSnO4材料中,当x固定在0.01时,材料经过280nm紫外光辐照后荧光发光变化最显著。);图5中可以看出Sr1.995Eu0.005SnO4在464纳米光的激发下,在587纳米以及613纳米处发光,这是由5D07F15D07F2能级跃迁导致的,经过280纳米光辐照4分钟,发光的强度大幅度地降低,再经过450纳米光辐照4分钟,发光强度又大幅度地增强;从图6中可以看出,Sr1.99Er0.01SnO4在980纳米光的激发下,在525纳米以及550纳米处发射出绿光,这是由Er3+稀土离子的2H11/24I15/24S3/24I15/2能级跃迁导致的,经过280纳米光辐照4分钟,发光的强度大幅度地降低,再经过450纳米光辐照4分钟,发光强度又增强;从图7中可以看出,虽然在前两个循环中,归一化的发光强度有所波动,但是在之后的循环中,归一化的发光强度趋于稳定,荧光强度调控体现出良好的稳定性。
实施例2:
采用纯度99.5%的SrCO3,99.9%的SnO2,99.9%的Eu2O3和99.9%的Er2O3为原料,分别按照Sr1.995Eu0.005SnO4和Sr2-xErxSnO4(x=0.005,0.01,0.02,0.04,0.06)计量比分别称重,放入球磨罐中混合球磨,球磨条件:原料的体积、玛瑙球体积、球磨介质无水乙醇的体积比大约等于1:1.2:1,将其球磨2小时,球磨后的原料放入烘箱在80℃烘4小时。之后,将烘干后原料利用压片机在5Mpa下压片成直径40mm的原料生胚,然后将压成的生胚放入KSL-1700X箱式炉中预烧,预烧条件为750℃保温3小时,之后将预烧好的块状样品碾碎,磨成粉末过筛,将其球磨5小时,再次放入烘箱80℃下4小时烘干。最后,将烘干后的粉料按10g粉料加2ml聚乙烯醇(聚乙烯醇的质量浓度为5%)的比例进行研磨,造粒,用80目筛子过筛3次,磨好粉料的称量质量为0.395-0.400克,在1MPa下压成直径为10mm的小片,然后在800℃下保温4小时以分解粘结剂聚乙烯醇,在Al2O3垫片上铺上母粉,并以母粉将压好的小片覆盖,将其放入箱式炉中烧结,Sr1.995Eu0.005SnO4的烧结条件为1300℃保温2小时,Sr2-xErxSnO4的烧结条件为1300℃保温2小时。
实施例3:
采用纯度99.5%的SrCO3,99.9%的SnO2,99.9%的Eu2O3和99.9%的Er2O3为原料,分别按照Sr1.995Eu0.005SnO4和Sr2-xErxSnO4(x=0.005,0.01,0.02,0.04,0.06)计量比分别称重,放入球磨罐中混合球磨,球磨条件:原料的体积、玛瑙球体积、球磨介质无水乙醇的体积比大约等于1:1.1:1.3,将其球磨15小时,球磨后的原料放入烘箱在80℃烘4小时。之后,将烘干后原料利用压片机在80Mpa下压片成直径40mm的原料生胚,然后将压成的生胚放入KSL-1700X箱式炉中预烧,预烧条件为780℃保温2小时,之后将预烧好的块状样品碾碎,磨成粉末过筛,将其球磨10小时,再次放入烘箱80℃下4小时烘干。最后,将烘干后的粉料按10g粉料加1.5ml聚乙烯醇(聚乙烯醇的质量浓度为4%)的比例进行研磨,造粒,用80目筛子过筛3次,磨好粉料的称量质量为0.395-0.400克,在2MPa下压成直径为10mm的小片,然后在700℃下保温3小时以分解粘结剂聚乙烯醇,在Al2O3垫片上铺上母粉,并以母粉将压好的小片覆盖,将其放入箱式炉中烧结,Sr1.995Eu0.005SnO4的烧结条件为1400℃保温3小时,Sr2- xErxSnO4的烧结条件为1400℃保温3小时。

Claims (10)

1.一种基于稀土掺杂光致色变材料,在Sr2SnO4材料中掺杂稀土元素制得,其特征在于该光致色变材料的化学式为:Sr1.995Eu0.005SnO4或Sr2-xErxSnO4,其中0.005≤x≤0.06,通过在A位添加稀土元素Eu3+或Er3+以取代Sr2SnO4材料中的Sr2+离子,进而实现材料的光致变色。
2.根据权利要求1所述的基于稀土掺杂光致色变材料,其特征在于:所述Sr1.995Eu0.005SnO4材料在464nm波长激光激发下,产生可见红光;所述Sr2-xErxSnO4材料在980nm波长激光激发下,产生可见绿光。
3.根据权利要求1所述的基于稀土掺杂光致色变材料,其特征在于:所述Sr1.995Eu0.005SnO4材料经过280nm紫外光或X射线光辐照后,颜色从白色转为紫色,在464nm光的激发下,Sr1.995Eu0.005SnO4材料发射出的可见光的强度降低80%以上;所述Sr2-xErxSnO4材料经过280nm紫外光或X射线光辐照后,颜色从白色转为粉红色,在980nm光的激发下,Sr2- xErxSnO4材料发射出的可见光的强度降低60%以上。
4.根据权利要求3所述的基于稀土掺杂光致色变材料,其特征在于:所述Sr1.995Eu0.005SnO4材料经过280nm紫外光或X射线光辐照后,再通过450nm光辐照,颜色恢复到白色,且在464nm光的激发下,Sr1.995Eu0.005SnO4材料的发光强度恢复,其中发光强度为经过280nm紫外光或X射线光辐照后发光强度的5倍;所述Sr2-xErxSnO4材料经过280nm紫外光或X射线光辐照后,再通过450nm光辐照,颜色恢复到白色,且在980nm光的激发下,Sr2-xErxSnO4材料的发光强度部分恢复,其中发光强度为经过280nm紫外光或X射线光辐照后发光强度的2倍。
5.一种权利要求1所述的基于稀土掺杂光致色变材料的制备方法,其特征在于所述Sr1.995Eu0.005SnO4的制备方法包括如下步骤:
①采用SrCO3,SnO2,Eu2O3为原料,按照化学式为Sr1.995Eu0.005SnO4的Sr,Sn,Eu的化学计量比进行称重配料;然后进行球磨混合,球磨2~15小时后的原料进行烘干、压片处理,且压片的压力为5~80Mpa;压片后得到的生胚在750~800℃下保温1~3小时,合成Sr1.995Eu0.005SnO4胚体;
②将步骤①所得的Sr1.995Eu0.005SnO4胚体碾碎并球磨5~10小时,球磨后进行烘干处理,得到Sr1.995Eu0.005SnO4烘干粉体;
③将步骤②所得的Sr1.995Eu0.005SnO4烘干粉体加入聚乙烯醇水溶液做粘结剂造粒,将造粒后的粉体在1~2MPa下压片成型;然后在650~800℃下保温2~4小时分解粘结剂;再在1300~1500℃下保温2~4小时,最终所得的陶瓷片就为Sr1.995Eu0.005SnO4荧光陶瓷材料。
6.一种权利要求1所述的基于稀土掺杂光致色变材料的制备方法,其特征在于所述Sr2-xErxSnO4的制备方法包括如下步骤:
①采用SrCO3,SnO2,Er2O3为原料,按照化学式为Sr2-xErxSnO4中的Sr,Sn,Er的化学计量比进行称重配料;然后进行球磨混合,球磨2~15小时后的原料进行烘干、压片处理,且压片的压力为5~80Mpa;压片后得到的生胚在750~800℃下保温1~3小时,合成Sr2-xErxSnO4胚体;
②将步骤①所得的Sr2-xErxSnO4胚体碾碎并球磨5~10小时,球磨后进行烘干处理,得到Sr2-xErxSnO4烘干粉体;
③将步骤②所得的Sr2-xErxSnO4烘干粉体加入聚乙烯醇水溶液做粘结剂造粒,将造粒后的粉体在1~2MPa下压片成型;然后将胚体在650~800℃下保温2~4小时分解粘结剂;再在1300~1500℃下保温2~4小时,最终所得的陶瓷片就为Sr2-xErxSnO4荧光陶瓷材料。
7.根据权利要求5或6所述的制备方法,其特征在于:所述步骤①球磨混合中原料的体积:玛瑙球子体积:球磨介质无水乙醇的体积比为1:(1~1.2):(1~1.5)。
8.根据权利要求5或6所述的制备方法,其特征在于:所述步骤③中加入的聚乙烯醇的质量浓度为3~5%,且每10g烘干粉体滴入的聚乙烯醇的体积为1~2ml。
9.根据权利要求5或6所述的制备方法,其特征在于:所述步骤③的粘结剂造粒为将烘干粉体和聚乙烯醇在研钵中充分混合后过80目筛。
10.一种权利要求1~4任一权项所述的基于稀土掺杂光致色变材料在光存储、X射线探测、紫外线探测中的应用。
CN201810474613.7A 2018-05-17 2018-05-17 基于稀土掺杂光致色变材料在x射线探测中的应用 Active CN108624316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810474613.7A CN108624316B (zh) 2018-05-17 2018-05-17 基于稀土掺杂光致色变材料在x射线探测中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810474613.7A CN108624316B (zh) 2018-05-17 2018-05-17 基于稀土掺杂光致色变材料在x射线探测中的应用

Publications (2)

Publication Number Publication Date
CN108624316A true CN108624316A (zh) 2018-10-09
CN108624316B CN108624316B (zh) 2021-05-07

Family

ID=63693640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810474613.7A Active CN108624316B (zh) 2018-05-17 2018-05-17 基于稀土掺杂光致色变材料在x射线探测中的应用

Country Status (1)

Country Link
CN (1) CN108624316B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964497A (zh) * 2019-12-18 2020-04-07 宁波大学 一种光学防伪材料及其制备方法
WO2021243728A1 (zh) * 2020-06-04 2021-12-09 中国科学院上海应用物理研究所 金属有机杂化晶格材料及其在辐照源检测中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200951203A (en) * 2008-06-09 2009-12-16 Univ Nat Taiwan Phosphor materials and methods for fabricating the same
JP2014047307A (ja) * 2012-08-31 2014-03-17 National Institute Of Advanced Industrial & Technology フォトクロミック材料、および、フォトクロミック材料の吸収スペクトルを可逆的に変化させる方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200951203A (en) * 2008-06-09 2009-12-16 Univ Nat Taiwan Phosphor materials and methods for fabricating the same
JP2014047307A (ja) * 2012-08-31 2014-03-17 National Institute Of Advanced Industrial & Technology フォトクロミック材料、および、フォトクロミック材料の吸収スペクトルを可逆的に変化させる方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUNAO KAMIMURA ET AL.,: "Photochromic properties in Eu3+ doped Sr2SnO4", 《MATER. RES. SOC. SYMP. PROC.》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964497A (zh) * 2019-12-18 2020-04-07 宁波大学 一种光学防伪材料及其制备方法
CN110964497B (zh) * 2019-12-18 2023-04-07 宁波大学 一种光学防伪材料及其制备方法
WO2021243728A1 (zh) * 2020-06-04 2021-12-09 中国科学院上海应用物理研究所 金属有机杂化晶格材料及其在辐照源检测中的应用

Also Published As

Publication number Publication date
CN108624316B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN108017390B (zh) 基于稀土掺杂的无铅铁电光致色变材料及其制备方法和应用
Nie et al. A novel Cr 3+-doped Lu 2 CaMg 2 Si 3 O 12 garnet phosphor with broadband emission for near-infrared applications
Cao et al. A double perovskite Ca2MgWO6: Bi3+ yellow-emitting phosphor: synthesis and luminescence properties
Kang et al. A new study on the energy transfer in the color-tunable phosphor CaWO 4: Bi
CN107057699B (zh) 无铅铁电上转换荧光材料及其制备方法和应用
KR102391310B1 (ko) 근적외선 형광 분말 및 상기 형광 분말을 함유하는 발광 장치
Zhu et al. Luminescence properties and energy transfer of Bi3+/Eu3+-codoped Ca10 (PO4) 6F2 phosphors
Shi et al. Highly efficient and thermally stable CaYMgSbO 6: Mn 4+ double perovskite red phosphor for indoor plant growth
Xue et al. Cr3+‐activated Li5Zn8Al5Ge9O36: A near‐infrared long‐afterglow phosphor
Zhang et al. The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors
CN104710173B (zh) 无铅铁电上转换荧光陶瓷材料及其制备方法和应用
Sun et al. High sensitivity thermometry and optical heating Bi-function of Yb3+/Tm3+ Co-doped BaGd2ZnO5 phosphors
Xue et al. A far-red phosphor LaSrZnNbO6: Mn4+ for plant growth lighting
Dhoble et al. Short review on recent progress in Mn4+‐activated oxide phosphors for indoor plant light‐emitting diodes
Cao et al. Synthesis and luminescence enhancement of CaTiO3: Bi3+ yellow phosphor by codoping Al3+/B3+ ions
CN112300797B (zh) 一种Cr3+掺杂的锶铟磷酸盐宽带近红外发光材料及制备方法
CN112457847B (zh) 一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法
Kang et al. Tunable NIR long persistent luminescence and discovery of trap-distribution-dependent excitation enhancement in transition metal doped weak-crystal-field CaZnGe2O6
Ding et al. Broadband UV-excitation and red/far-red emission materials for plant growth: tunable spectrum conversion in Eu3+, Mn4+ Co-doped LaAl0. 7Ga0. 3O3 phosphors
CN108624316A (zh) 基于稀土掺杂光致色变材料及其制备方法和应用
Kumari et al. Strong red emission in double perovskite Sr3LiSbO6: Eu3+ phosphor with high color purity for solid-state lighting applications
Li et al. Near-infrared emission in perovskite oxides MZrO3: Bi (M= Ba, Sr) by dopants’ selective site occupancy
Shao et al. Broadband near-infrared double-perovskite phosphor Sr2ScTaO6: Cr3+, Yb3+ for NIR pc-LED applications
Yin et al. X-ray-activated Bi3+/Pr3+ co-doped LiYGeO4 phosphor with UV and NIR dual-emissive persistent luminescence
CN110964497B (zh) 一种光学防伪材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220801

Address after: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.

Address before: 315211, Fenghua Road, Jiangbei District, Zhejiang, Ningbo 818

Patentee before: Ningbo University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221104

Address after: No. 99, Gangcheng Road, Dongying Port Economic Development Zone, Dongying City, Shandong Province 257237

Patentee after: Dongying Ruigang Investment Service Co.,Ltd.

Address before: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.