CN109332700A - 一种TiB增强医用多孔钛的制备方法 - Google Patents

一种TiB增强医用多孔钛的制备方法 Download PDF

Info

Publication number
CN109332700A
CN109332700A CN201811528721.4A CN201811528721A CN109332700A CN 109332700 A CN109332700 A CN 109332700A CN 201811528721 A CN201811528721 A CN 201811528721A CN 109332700 A CN109332700 A CN 109332700A
Authority
CN
China
Prior art keywords
tib
powder
porous titanium
preparation
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811528721.4A
Other languages
English (en)
Other versions
CN109332700B (zh
Inventor
宋秀
王磊
刘杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201811528721.4A priority Critical patent/CN109332700B/zh
Publication of CN109332700A publication Critical patent/CN109332700A/zh
Application granted granted Critical
Publication of CN109332700B publication Critical patent/CN109332700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1134Inorganic fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种TiB增强医用多孔钛的制备方法,首先将Ti粉、TiB2粉、造孔剂NH4HCO3按一定配比进行称量;然后在氩气保护下用行星式球磨机混合均匀;再利用放电等离子烧结炉进行真空烧结;最后经真空热处理后得到一种低弹性模量、高强度、孔隙率适中的TiB增强医用多孔钛。本发明将多孔结构设计与原位自生TiB增强相结合,可在保持与人体骨相近的弹性模量、维持合适孔隙率的同时显著提高多孔钛的力学性能,且少量添加TiB无生物毒性。该发明制备方法和工艺简单可行,可获得孔隙率可控(10~60%)、低弹性模量(10~20GPa)、高强度(200~1400MPa,添加TiB比未添加TiB同等参数下强度提高1~3倍)、良好生物相容性的多孔钛,是一种极具前景的生物医学领域硬组织修复及替换用多孔材料之一。

Description

一种TiB增强医用多孔钛的制备方法
技术领域
本发明属于生物医用多孔钛材料技术领域,特别涉及一种低弹性模量、高强度、孔隙率适中的TiB增强医用多孔钛的制备方法。
背景技术
纯钛由于较高的比强度高、良好的耐蚀性能、优异的生物相容性等优点,成为生物医学领域应用最早及最广泛的材料之一。然而,纯钛作为医用植入材料其硬度低、弹性模量高。较高的弹性模量会引起“应力屏蔽效应”,而导致植入和修复失败。因此如何提高医用纯钛的强度同时降低弹性模量成为目前亟待解决的关键问题。
研究表明,引入多孔结构可以有效降低弹性模量,不仅如此,对于生物材料而言,其独特的多孔结构可极大提高植入材料的生物相容性,促使骨长入孔隙、利于成骨细胞在孔隙处的粘附和生长、有利于水分和养料在植入体内传输。D.Yang等研究得到了含39%~50%孔隙率的Ti-Mo和Ti-Nb合金,弹性模量降低至5-18GPa,同时压缩强度也随之降至80-130Mpa;Wen等用空间占位法制备孔隙率高达78%的多孔钛,虽然其弹性模量为5.3GPa,但其抗压强度只有35MP。诸多研究表明,多孔钛的孔隙率在一定范围内(30-90%)越高越有利于人体组织长入,弹性模量与人体骨越接近,但其力学性能锐减以致于无法满足硬组织替换材料的承力要求,此成为限制医用多孔钛材料发展的瓶颈。
为解决上述问题,本发明借鉴复合材料的强化方法,将多孔结构设计与TiB增强相结合,利用TiB第二相纤维的增强作用使多孔材料的强度、韧性等力学性能有所提高。有研究者表明相比于其他增强相,TiB和Ti界面结合强度高、与人体无不良反应、稳定性好,然而目前的研究仅仅针对致密钛块体材料,尚未有引入TiB增强相设计研发并制备的多孔钛的相关制备方法。
值得注意的是,目前制备多孔钛的方法众多,而放电等离子烧结作为一种新型的制备块体材料的方式,具有技术烧结速度快、烧结温度低、保温时间短、组织结构可控等优点。因此,本发明通过放电等离子烧结技术提出一种原位自生合成TiB增强多孔钛的制备方法,以得到弹性模量接近人骨、孔隙率合适、和抗压强度高的多孔钛,对于硬组织植入材料的研发与应用具有重要意义。
发明内容
本发明针对现有技术存在的问题,提供一种TiB增强医用多孔纯钛的制备方法,所述方法通过多孔结构设计与原位自生TiB增强相结合,可制备低弹性模量、高强度、孔隙率适中的医用多孔材料。本发明的技术方案如下:
一种TiB增强医用多孔钛的制备方法,包括以下步骤:
(1)称量不同粉末:Ti粉末、TiB2粉末、造孔剂NH4HCO3,并进行配比;各类粉末的配比为:TiB2粉末质量百分比不高于10%,造孔剂NH4HCO3质量百分比10%~70%,其余为Ti粉;
(2)将步骤(1)配比好的粉末装入行星式球磨机中进行球磨混合,球磨开始前需抽真空并充入保护气氛氩气;
(3)将步骤(2)球磨混合好的粉末装入石墨磨具中,采用放电等离子烧结系统进行烧结;
(4)将步骤(3)烧结后的多孔钛在真空热处理炉中进行热处理,制备成TiB增强医用多孔钛。
进一步地,上述步骤(1)中,Ti金属粉末包括球形、不规则形两种,球形粉末粒度为30~100μm,不规则粉末粒度为20~60μm,纯度为99.5%;TiB2粉末的平均粒度为2~10μm,纯度≥98.5%;造孔剂NH4HCO3为分析纯。
进一步地,所述步骤(2)中,球磨过程在氩气保护气氛中进行,目的使防止Ti粉在球磨过程中发生氧化,需要在球磨前抽真空并冲入氩气进行保护;球磨球料比为10:1;每个球磨周期5min,暂停7min,以防止球磨过程中样品升温导致NH4HCO3发生分解,总的球磨时间为120~500min,球磨后静置一段时间后,使用100目的筛子把样品筛出;球磨转速选择为50~300r/min。
所述步骤(3)中,放电等离子烧结选择导电性好、耐热性好的石墨模具。为了保证粉末与模具内表面不发生粘结,使烧好的样品能从模具中顺利取出,在模具内表面与样品上下表面均放置一层碳纸。抽真空后进行烧结,烧结温度选择750~1050℃,升温速率控制为20~100℃/min,保温时间为5~10min,烧结完成后炉冷30min将样品取出。
所述步骤(4)中,真空热处理的温度为1100~1200℃,热处理时间为2~10h,热处理的目的使烧结过程中未完全反应的TiB2粉末与Ti粉发生完全充分的反应生成TiB纤维相,以提高多孔钛的力学性能。
本发明的特征和有益效果为:
本发明涉及一种TiB增强医用多孔钛的制备方法,采用放电等离子烧结,通过粉末称量、球磨混料、放电等离子烧结、真空热处理等工艺过程而获得。该发明的特征是将多孔结构设计与TiB增强相结合。多孔钛的设计可显著降低弹性模量,而TiB2颗粒的添加目的使获得多孔钛优异的力学性能:在烧结颈长大阶段,TiB2颗粒可作为形核剂并抑制晶核生长从而细化了Ti基体的晶粒,同时TiB2与Ti基体反应生成的TiB纤维增强相可起到阻碍位错运动、应力传递的作用,从而可以既能显著提高强度、又保持了良好的塑性的目的。
本发明中涉及的TiB增强医用多孔钛的制备方法中,TiB2颗粒的加入会阻碍烧结过程中Ti颗粒表面的原子扩散,从而阻碍Ti颗粒的粘结,这会造成钛粉颗粒间的孔隙增多,尺寸变大,因而TiB2的加入有利于高孔隙率多孔钛的形成,使TiB增强多孔钛的生物形容性提高。
本发明中涉及的TiB增强医用多孔钛的制备方法中,采用放电等离子烧结的制备方法,制备过程中不添加任何粘结剂和模板剂,材料成分纯净、无污染,NH4HCO3造孔剂可挥发完全、无残留,且放点等离子烧结具有升温速度快、烧结时间短、制备过程洁净等优点,且少量添加TiB无生物毒性,制备的多孔钛具有良好的生物相容性。
本发明中涉及的TiB增强医用多孔钛的制备方法中,采用烧结后真空热处理的方法,其目的是使未反应完全的TiB2可与Ti粉发生完全充分的反应生成纤维状的TiB增强相,且TiB可分布于Ti基体或者孔隙间,经充分反应生长的TiB纤维性能更好,承担载荷的能力更强,可进一步改善多孔钛的强度和塑性。
附图说明
图1是本发明实施例1中得到的TiB增强多孔钛的金相显微组织图;
图2是本发明实施例1中得到的TiB增强多孔钛的SEM图(孔隙形貌及TiB增强相形貌);
图3是本发明实施例1中TiB增强多孔钛经真空热处理前后的XRD图;
图4是本发明实施例1中TiB增强多孔钛的压缩应力-应变曲线。
具体实施方式
以下通过具体的实施对本发明的技术方案作进一步描述。应该理解的是这些实施方式仅仅是用于进一步说明本发明的实施方案,但本发明的保护范围并不限于所述内容。
实施例1
本实施例提供一种利用放电等离子烧结制备TiB增强医用多孔纯钛的方法,按照以下工艺步骤进行:
(1)按照TiB2粉末质量百分比1%、造孔剂NH4HCO3质量百分比50%的比例称量各粉末,选择不规则Ti粉粒度为20~60μm,纯度为99.5%;TiB2粉末的平均粒度为2~10μm,纯度≥98.5%;NH4HCO3为分析纯;
(2)将步骤(1)配比好的粉末装入行星式球磨机中进行球磨混合,采用氩气保护,球料比为10:1;球磨转速选择50~120r/min,每个球磨周期5min,暂停7min,球磨总时间4~6h;
(3)将步骤(2)中球磨后的混合粉在放电等离子烧结炉中烧结,烧结温度为750℃,升温速率40~60℃/min,保温时间为5min。
(4)将步骤(3)中烧结好的多孔钛进行1180℃真空热处理3h。最终得到TiB增强多孔钛材料。
金相显微镜观察制备的TiB增强医用多孔钛(图1),可见制备的多孔钛的孔隙率约为34%,图2显示了制备的TiB增强多孔钛中的孔隙形貌,且TiB存在于Ti基体或者孔隙之间,经真空热处理后可知(图3),多孔钛中TiB2已经完全反应生成TiB。由压缩应力应变曲线(图4)得到,该条件下制备的TiB增强多孔钛的抗压强度为585MPa,比未添加TiB2在同等工艺参数下制备得到的多孔钛(抗压强度为201MPa)提高了将近2倍。而弹性模量维持在12GPa,满足了人体硬组织修复用材料的应用要求。
实施例2
本实施例提供一种利用放电等离子烧结制备TiB增强医用多孔纯钛的方法,按照以下工艺步骤进行:
(1)按照TiB2粉末质量百分比3%、造孔剂NH4HCO3质量百分比60%的比例称量各粉末,选择不规则Ti粉粒度为20~60μm,纯度为99.5%;TiB2粉末的平均粒度为2~10μm,纯度≥98.5%;NH4HCO3为分析纯;
(2)将步骤(1)配比好的粉末装入行星式球磨机中进行球磨混合,采用氩气保护,球料比为10:1;球磨转速选择80~110r/min,每个球磨周期5min,暂停7min,球磨总时间5~8h;
(3)将步骤(2)中球磨后的混合粉在放电等离子烧结炉中烧结,烧结温度为900℃,升温速率40~70℃/min,保温时间为5min。
(4)将步骤(3)中烧结好的多孔钛进行1150℃真空热处理2.5h。最终得到TiB增强多孔钛材料。
本实施例中制备的TiB增强多孔钛的孔隙率约为28%,抗压强度为1454MPa,比未添加TiB2在同等参数下制备得到的多孔钛(抗压强度为543MPa)提高了将近3倍,而弹性模量维持在15GPa。
实施例3
本实施例提供一种利用放电等离子烧结制备TiB增强医用多孔纯钛的方法,按照以下工艺步骤进行:
(1)按照TiB2粉末质量百分比8%、造孔剂NH4HCO3质量百分比30%的比例称量各粉末,选择球形Ti粉粒度为30~100μm,纯度为99.5%;TiB2粉末的平均粒度为2~10μm,纯度≥98.5%;NH4HCO3为分析纯;
(2)将步骤(1)配比好的粉末装入行星式球磨机中进行球磨混合,采用氩气保护,球料比为10:1;球磨转速选择100~150r/min,每个球磨周期5min,暂停7min,球磨总时间4~7h;
(3)将步骤(2)中球磨后的混合粉在放电等离子烧结炉中烧结,烧结温度为1000℃,升温速率40~50℃/min,保温时间为5min。
(4)将步骤(3)中烧结好的多孔钛进行1130℃真空热处理1.5h。最终得到TiB增强多孔钛材料。
本实施例中制备的TiB增强多孔钛的孔隙率约为19%,抗压强度为865MPa,比未添加TiB2在同等参数下制备得到的多孔钛(抗压强度为583MPa)提高了约48%。而弹性模量维持在19GPa。

Claims (8)

1.一种TiB增强医用多孔钛的制备方法,其特征在于,包括以下步骤:
(1)称量不同粉末:Ti粉末、TiB2粉末、造孔剂NH4HCO3,并进行配比;各类粉末的配比为:TiB2粉末质量百分比不高于10%,造孔剂NH4HCO3质量百分比10%~70%,其余为Ti粉;
(2)将步骤(1)配比好的粉末装入球磨机中进行球磨混合,球磨开始前需抽真空并充入保护气氛氩气;
(3)将步骤(2)球磨混合好的粉末装入石墨磨具中,采用放电等离子烧结系统进行烧结;
(4)将步骤(3)烧结后的多孔钛在真空热处理炉中进行热处理,制备成TiB增强医用多孔钛。
2.根据权利要求1所述TiB增强医用多孔钛的制备方法,其特征在于:所述步骤(1)中,Ti金属粉末包括球形、不规则形两种,球形粉末粒度为30~100μm,不规则粉末粒度为20~60μm,纯度为99.5%;TiB2粉末的平均粒度为2~10μm,纯度≥98.5%;造孔剂NH4HCO3为分析纯。
3.根据权利要求1或2所述TiB增强医用多孔钛的制备方法,其特征在于:所述步骤(2)中,球磨球料比为10:1;每个球磨周期5min,暂停7min,总的球磨时间为120~500min;球磨转速为50~300r/min。
4.根据权利要求1或2所述TiB增强医用多孔钛的制备方法,其特征在于:所述步骤(3)中,放电等离子烧结温度750~1050℃,升温速率控制为20~100℃/min,保温时间为5~10min,烧结完成后炉冷30min将样品取出。
5.根据权利要求3所述TiB增强医用多孔钛的制备方法,其特征在于:所述步骤(3)中,放电等离子烧结温度750~1050℃,升温速率控制为20~100℃/min,保温时间为5~10min,烧结完成后炉冷30min将样品取出。
6.根据权利要求1或2或5所述TiB增强医用多孔钛的制备方法,其特征在于:所述步骤(4)中,真空热处理的温度为1100~1200℃,热处理时间为2~10h。
7.根据权利要求3所述TiB增强医用多孔钛的制备方法,其特征在于:所述步骤(4)中,真空热处理的温度为1100~1200℃,热处理时间为2~10h。
8.根据权利要求4所述TiB增强医用多孔钛的制备方法,其特征在于:所述步骤(4)中,真空热处理的温度为1100~1200℃,热处理时间为2~10h。
CN201811528721.4A 2018-12-14 2018-12-14 一种TiB增强医用多孔钛的制备方法 Active CN109332700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811528721.4A CN109332700B (zh) 2018-12-14 2018-12-14 一种TiB增强医用多孔钛的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811528721.4A CN109332700B (zh) 2018-12-14 2018-12-14 一种TiB增强医用多孔钛的制备方法

Publications (2)

Publication Number Publication Date
CN109332700A true CN109332700A (zh) 2019-02-15
CN109332700B CN109332700B (zh) 2020-03-20

Family

ID=65303731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811528721.4A Active CN109332700B (zh) 2018-12-14 2018-12-14 一种TiB增强医用多孔钛的制备方法

Country Status (1)

Country Link
CN (1) CN109332700B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111230128A (zh) * 2020-03-11 2020-06-05 昆明理工大学 一种基于TiH2添加CaO制备多孔钛及钛合金的方法
CN113263179A (zh) * 2021-05-25 2021-08-17 矿冶科技集团有限公司 一种医用多孔骨架用钽粉及其制备方法与应用
CN114182129A (zh) * 2021-12-16 2022-03-15 国网福建省电力有限公司 一种高强铝基复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114610A (ja) * 1989-09-27 1991-05-15 Showa Denko Kk 線引き用ダイス
CN101392338A (zh) * 2008-11-06 2009-03-25 上海交通大学 复合强化的高强度高弹性模量钛合金及其制备方法
CN104131195A (zh) * 2014-08-14 2014-11-05 昆明理工大学 一种生物医用多孔钛的制备方法
CN105002448A (zh) * 2015-06-16 2015-10-28 哈尔滨工业大学 表面具有TiAl3保护层的网状结构TiBw/Ti复合材料及其制备方法
CN108588520A (zh) * 2018-04-28 2018-09-28 淮阴工学院 激光原位强韧化镁基纳米复合材料骨植入体及其成形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114610A (ja) * 1989-09-27 1991-05-15 Showa Denko Kk 線引き用ダイス
CN101392338A (zh) * 2008-11-06 2009-03-25 上海交通大学 复合强化的高强度高弹性模量钛合金及其制备方法
CN104131195A (zh) * 2014-08-14 2014-11-05 昆明理工大学 一种生物医用多孔钛的制备方法
CN105002448A (zh) * 2015-06-16 2015-10-28 哈尔滨工业大学 表面具有TiAl3保护层的网状结构TiBw/Ti复合材料及其制备方法
CN108588520A (zh) * 2018-04-28 2018-09-28 淮阴工学院 激光原位强韧化镁基纳米复合材料骨植入体及其成形方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111230128A (zh) * 2020-03-11 2020-06-05 昆明理工大学 一种基于TiH2添加CaO制备多孔钛及钛合金的方法
CN113263179A (zh) * 2021-05-25 2021-08-17 矿冶科技集团有限公司 一种医用多孔骨架用钽粉及其制备方法与应用
CN114182129A (zh) * 2021-12-16 2022-03-15 国网福建省电力有限公司 一种高强铝基复合材料及其制备方法
CN114182129B (zh) * 2021-12-16 2022-08-05 国网福建省电力有限公司 一种高强铝基复合材料及其制备方法

Also Published As

Publication number Publication date
CN109332700B (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
CN104841009B (zh) 一种羟基磷灰石活化钛合金表层生物复合材料及其制备方法
CN108705092B (zh) 一种3d打印原位稀土掺杂钛基复合材料活性骨植入体及成形方法
CN107130138A (zh) 医用高耐磨钛合金复合材料及3d打印梯度原位纳米复相减磨医用钛合金的方法
CN109332700A (zh) 一种TiB增强医用多孔钛的制备方法
Yang et al. Mechanical properties of porous Ti-Mo and Ti-Nb alloys for biomedical application by gelcasting
CN103483768B (zh) 生物玻璃/聚醚醚酮复合材料、骨修复体及其制备方法和应用
CN104263996B (zh) 一种超高塑性、高强低模医用超细晶钛合金及其制备方法
CN108273126B (zh) 一种径向梯度医用复合材料的制备方法
CN106756238B (zh) 一种生物医用多孔钛合金及制备方法
CN105251057A (zh) 一种多孔钛/羟基磷灰石复合材料的制备方法
CN109332710A (zh) 一种医用连续梯度多孔纯钛的制备方法
CN105169471A (zh) 一种医用植入多孔铌钛合金材料及其制备方法
CN106513681A (zh) 一种分级多孔镍钛合金的制备方法
CN109666820A (zh) 一种径向结构-功能一体化的外层多孔骨科硬植入材料及其制备方法和应用
CN105002395B (zh) Ti基Ti-Fe-Zr-Y生物医用合金及其制备方法
CN104894420B (zh) 一种钛铌锆基焦磷酸钙生物复合材料的制备方法
CN101942581A (zh) 多孔镁和多孔镁合金的制备方法
EP4086022A1 (en) Oxide layer-containing zirconium-niobium alloy partitioned trabecular bone single-compartment femoral condyle and preparation method
CN108796305B (zh) Ti基Ti-Fe-Zr-Sn-Y生物医用合金及其制备方法
CN103205602B (zh) 氧化物颗粒增强的钛基多孔生物材料及其制备方法
CN109847110A (zh) 一种多孔Ti-Nb-Zr复合人造骨植入材料及其制备方法和应用
Peng et al. Facile fabrication of boronized Ti6Al4V/HA composites for load-bearing applications
Zhang et al. Designing a novel functional-structural NiTi/hydroxyapatite composite with enhanced mechanical properties and high bioactivity
Xie et al. Ti-10Mo/Hydroxyapatite composites for orthopedic applications: Microstructure, mechanical properties and biological activity
Li et al. Current developments of biomedical porous Ti–Mo alloys

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant