CN109321776A - 一种利用激光增材技术制造铜铌合金的方法 - Google Patents

一种利用激光增材技术制造铜铌合金的方法 Download PDF

Info

Publication number
CN109321776A
CN109321776A CN201811419254.1A CN201811419254A CN109321776A CN 109321776 A CN109321776 A CN 109321776A CN 201811419254 A CN201811419254 A CN 201811419254A CN 109321776 A CN109321776 A CN 109321776A
Authority
CN
China
Prior art keywords
powder
copper
laser
gain material
laser gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811419254.1A
Other languages
English (en)
Inventor
任淑彬
赵洋
明飞
周东红
张百成
曲选辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201811419254.1A priority Critical patent/CN109321776A/zh
Publication of CN109321776A publication Critical patent/CN109321776A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种利用激光增材技术制造铜铌合金的方法。本发明利用激光增材制造技术具有快速凝固的特点,将几乎不互溶的Cu、Nb两种元素制成常规方法难以获得的晶粒细小且组织均匀的过饱和固溶体,并通过后续热处理工艺使Nb均匀弥散析出从而制得高强度的纳米弥散强化铜合金,此外,由于Nb在铜中固溶度极低,利用高浓度的纳米弥散Nb来强化基体的同时还可保证铜基体仍具有高纯度,使合金导电性也较好。激光增材制造技术不仅可以使Nb在Cu基体中均匀弥散分布,制备高强度、高导电合金,同时具有近净成形的特点,大大减小加工工序,提高生产效率。

Description

一种利用激光增材技术制造铜铌合金的方法
技术领域
本发明属于金属材料领域,涉及一种利用激光增材技术制造铜铌合金的方法。
背景技术
高强高导铜合金因其优良性能,被认为是极有发展潜力和应用前景的新型功能材料。其中,纯铜具有优异的导电性,但其力学强度偏低,而提高铜合金强度却要以损失电导率为代价。因此,如何在保持高导电性的同时,大幅度提高合金的强度是现代铜合金研究的主要方向。目前的解决措施侧重于使加入的第二相能均匀细小的分布在Cu基体中,从而提高合金的综合性能。Nb具有超导性,可通过制备工艺使Nb均匀细小的分布在Cu基体中对合金产生弥散强化作用,提高强度,同时由于Nb在Cu中固溶度极低,即使在1000℃下Nb在Cu中的平衡固溶度也仅为0.1%(摩尔分数),从而保证Cu基体仍具有高纯度,使合金导电性也较好。
目前,制备Cu-Nb合金的工艺主要有形变复合法和机械合金法。其中形变复合法在制坯过程中难以使铜铌两相均匀混合,并且成型工艺非常复杂,因此限制了广泛应用;机械合金法可获得在Cu基体上第二相均匀细小分布的合金,但由于需要长时间的球磨,不仅使得氧污染严重,而且细化后的粉末易引起粘结、团聚,这些将导致热压坯密度不高,从而降低合金的综合性能。激光增材制造技术基于分层—叠加制造的思想,利用高能量激光束将金属粉末逐层熔化并成形为金属零件,具有快速凝固、近净成形的特点。利用冷速快这一优势可以制备出第二相Nb在Cu基体中弥散分布的Cu-Nb合金,同时近净成形的特点使得加工工序大大减少,从而提高生产效率。
发明内容
本发明目的是为了利用激光增材制造技术具有快速凝固的特点,将几乎不互溶的Cu、Nb两种元素制成常规方法难以获得的晶粒细小且组织均匀的过饱和固溶体,并通过后续热处理工艺使Nb均匀弥散析出从而制得高强度的纳米弥散强化铜合金
一种利用激光增材技术制造铜铌合金的方法,其特征在于:首先通过球磨的方式制备Cu-Nb混合粉末,铌粉的添加量控制在总质量的5%到10%范围内。选择合适的球磨时间和转速使得复合粉末混合均匀且Nb粉粘附在Cu粉表面;将制备好的Cu-Nb混合粉末置于激光打印机中,所需的激光功率及扫描速度依据Nb含量的不同适当调节,利用激光打印的快速凝固的特点打印出晶粒细小且组织均匀的过饱和固溶体Cu-Nb;然后通过热处理使Nb弥散析出,析出的Nb一方面可以对铜基体产生弥散强化作用,提高强度,另一方面使Cu基体纯度提升,从而提高基体导电率。
进一步地,激光打印方式为粉末床式打印和同轴送粉式堆积打印两种;粉末床式打印时所用球形Cu粉粒度为5-45um,Nb粉粒度为1-10um,同轴送粉式打印时所用球形Cu粉粒度为50-100um,Nb粉粒度为5-20um;球磨时球料比为5:1,转速为150-300转/分钟,球磨时间为30-60分钟。
进一步地,采用粉床式激光打印时,打印过程中采用氩气保护,激光功率控制在100-250W范围内,扫描速度控制在230-300mm/s,激光束直径100μm。
进一步地,采用送粉堆积式打印时,打印过程中采用氩气保护,激光功率控制在600-900W,扫描速度控制在650-850mm/min,激光束直径控制在1-1.5mm,送粉速率控制在5-15g/min。
进一步地,所述后期热处理温度为400-600℃,热处理时间为60-120min。本发明的优点在于:
(1)利用激光打印的快速凝固的特点制备出晶粒细小且组织均匀的过饱和固溶体Cu-Nb;然后通过热处理使Nb弥散析出,析出的Nb一方面可以对铜基体产生弥散强化作用,提高强度,另一方面使Cu基体纯度提升,从而提高基体导电率,最终获得高强高导铜铌合金。
(2)激光打印技术具有近净成形的特点,使得加工工序大大减少,从而提高生产效率。
具体实施方式:
(1)采用粉床式激光打印含5wt%Nb的Cu-Nb合金
首先选用球形铜粉,粒度为5-45um,Nb粉粒度为1-10um。Cu粉与Nb粉的总重量为5kg,其中Nb的加入量占总质量的5%。采用球磨的方式使复合粉末混合均匀,球料比为5:1,球磨转速为150-300转/分钟,球磨时间为30-60分钟。然后将混合均匀的粉末置于送粉式激光打印机中进行打印,打印前将粉放于真空干燥箱中进行干燥,确保混合粉末具有良好的流动性,干燥温度为50℃,干燥时间为12小时。打印过程中采用氩气保护,激光功率控制在100-250W范围内,扫描速度控制在230-300mm/s,激光直径100μm,打印尺寸50mm(长)×20mm(宽)×20mm(高)。打印完成后取样进行后续热处理,热处理温度为400-600℃,热处理时间为60-120min。
(2)采用送粉堆积式打印含10wt%Nb的Cu-Nb合金
首先选用球形铜粉,粒度为50-100um,Nb粉粒度为5-20um。Cu粉与Nb粉的总重量为4kg,其中Nb的加入量占总质量的5%。采用球磨的方式使复合粉末混合均匀,球料比为5:1,球磨转速为150-300转/分钟,球磨时间为30-60分钟。然后将混合均匀的粉末置于送粉式激光打印机中进行打印,打印前将粉放于真空干燥箱中进行干燥,确保混合粉末具有良好的流动性,干燥温度为50℃,干燥时间为12小时。打印过程中采用氩气保护,激光功率控制在600-900W,扫描速度控制在650-850mm/min,激光光斑直径控制在1-1.5mm,送粉速率控制在5-15g/min,打印尺寸50mm(长)×20mm(宽)×20mm(高)。打印完成后取样进行后续热处理,热处理温度为400-600℃,热处理时间为60-120min。

Claims (5)

1.一种利用激光增材技术制造铜铌合金的方法,其特征在于:首先通过球磨的方式制备Cu-Nb混合粉末,铌粉的添加量控制在总质量的5%到10%范围内;选择合适的球磨时间和转速使得复合粉末混合均匀且Nb粉粘附在Cu粉表面;将制备好的Cu-Nb混合粉末置于激光打印机中,所需的激光功率及扫描速度依据Nb含量的不同适当调节,利用激光打印的快速凝固的特点打印出晶粒细小且组织均匀的过饱和固溶体Cu-Nb;然后通过热处理使Nb弥散析出,析出的Nb一方面可以对铜基体产生弥散强化作用,提高强度,另一方面使Cu基体纯度提升,从而提高基体导电率。
2.按照权利要求1所述的利用激光增材技术制造铜铌合金的方法,其特征在于:激光打印方式为粉末床式打印和同轴送粉式堆积打印两种;粉末床式打印时所用球形Cu粉粒度为5-45um,Nb粉粒度为1-10um,同轴送粉式打印时所用球形Cu粉粒度为50-100um,Nb粉粒度为5-20um;球磨时球料比为5:1,转速为150-300转/分钟,球磨时间为30-60分钟。
3.按照权利要求1所述的利用激光增材技术制造铜铌合金的方法,其特征在于:采用粉床式激光打印时,打印过程中采用氩气保护,激光功率控制在100-250W范围内,扫描速度控制在230-300mm/s,激光束直径100μm。
4.按照权利要求1所述的利用激光增材技术制造铜铌合金的方法,其特征在于:采用送粉堆积式打印时,打印过程中采用氩气保护,激光功率控制在600-900W,扫描速度控制在650-850mm/min,激光束直径控制在1-1.5mm,送粉速率控制在5-15g/min。
5.按照权利要求1所述的利用激光增材技术制造铜铌合金的方法,其特征在于:后期热处理温度为400-600℃,热处理时间为60-120min。
CN201811419254.1A 2018-11-26 2018-11-26 一种利用激光增材技术制造铜铌合金的方法 Withdrawn CN109321776A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811419254.1A CN109321776A (zh) 2018-11-26 2018-11-26 一种利用激光增材技术制造铜铌合金的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811419254.1A CN109321776A (zh) 2018-11-26 2018-11-26 一种利用激光增材技术制造铜铌合金的方法

Publications (1)

Publication Number Publication Date
CN109321776A true CN109321776A (zh) 2019-02-12

Family

ID=65258789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811419254.1A Withdrawn CN109321776A (zh) 2018-11-26 2018-11-26 一种利用激光增材技术制造铜铌合金的方法

Country Status (1)

Country Link
CN (1) CN109321776A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363948A (zh) * 2020-04-24 2020-07-03 浙江大学 一种高强高导铜合金的高效短流程制备方法
CN113543450A (zh) * 2021-06-25 2021-10-22 西安交通大学 一种用于超导腔的铜铌复合材料板的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040060683A1 (en) * 2002-09-27 2004-04-01 Sercombe Timothy Barry Infiltrated aluminum preforms
CN1639363A (zh) * 2002-03-04 2005-07-13 德累斯顿协会莱布尼茨固体材料研究所 铜-铌-合金和它的制备方法
CN102168201A (zh) * 2011-03-31 2011-08-31 西北有色金属研究院 一种Cu-Nb复合材料的短流程制备方法
CN106687234A (zh) * 2014-07-15 2017-05-17 贺利氏控股有限公司 用于由具有无定型相的金属合金制造构件的方法
CN107774999A (zh) * 2017-12-08 2018-03-09 浙江海洋大学 一种铜基合金的增材制造方法
CN107931607A (zh) * 2017-11-17 2018-04-20 北京科技大学 一种利用激光增材技术制造铜铬合金的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1639363A (zh) * 2002-03-04 2005-07-13 德累斯顿协会莱布尼茨固体材料研究所 铜-铌-合金和它的制备方法
US20040060683A1 (en) * 2002-09-27 2004-04-01 Sercombe Timothy Barry Infiltrated aluminum preforms
CN102168201A (zh) * 2011-03-31 2011-08-31 西北有色金属研究院 一种Cu-Nb复合材料的短流程制备方法
CN106687234A (zh) * 2014-07-15 2017-05-17 贺利氏控股有限公司 用于由具有无定型相的金属合金制造构件的方法
CN107931607A (zh) * 2017-11-17 2018-04-20 北京科技大学 一种利用激光增材技术制造铜铬合金的方法
CN107774999A (zh) * 2017-12-08 2018-03-09 浙江海洋大学 一种铜基合金的增材制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363948A (zh) * 2020-04-24 2020-07-03 浙江大学 一种高强高导铜合金的高效短流程制备方法
CN111363948B (zh) * 2020-04-24 2021-11-09 浙江大学 一种高强高导铜合金的高效短流程制备方法
CN113543450A (zh) * 2021-06-25 2021-10-22 西安交通大学 一种用于超导腔的铜铌复合材料板的制作方法

Similar Documents

Publication Publication Date Title
CN106216705B (zh) 一种3d打印用细颗粒单质球形金属粉末的制备方法
CN105624445B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN111097919B (zh) 一种多组元难熔合金球形粉末的制备方法
CN112222419B (zh) 一种调控形核和生长过程制备纳米钼粉的方法及应用
CN104772473A (zh) 一种3d打印用细颗粒球形钛粉的制备方法
CN108486398A (zh) 一种碳化钨-钴硬质合金的制备方法
CN103045925A (zh) 一种钼钠合金旋转溅射管形靶材的制备工艺
CN103331451B (zh) 一种生产Al2O3弥散强化铜合金粉体的方法
WO2023025280A1 (zh) 一种Fe基球形屏蔽合金粉末及其制备方法
CN112831733B (zh) 一种非晶包覆y2o3复合材料及其粉体制备方法
CN109321776A (zh) 一种利用激光增材技术制造铜铌合金的方法
CN113106281B (zh) 一种氧化钇掺杂钨基纳米复合粉体及其合金的制备方法
CN108356274A (zh) 一种热喷涂用TiB2-Ni基金属陶瓷复合结构喂料及其制备方法
CN112030025B (zh) W/wc复合晶粒增强钨铜复合材料及其制备方法
CN109321768A (zh) 一种ZrO2-Y2O3颗粒增强钼合金及其制备方法、复合粉体及其制备方法
CN105483413B (zh) 原位析出TiC纳米硬质相增强网状铜钛复合材料及其制备方法
Tan et al. In situ synthesis of spherical WMo Alloy powder for additive manufacturing by spray granulation combined with thermal plasma spheroidization
CN106011511B (zh) 一种碳化钛强化细晶钨材料的制备方法
CN111041318A (zh) 一种钨铜合金及其制备方法
CN113337747B (zh) 一种高强高导铜合金的制备方法
CN112410597B (zh) 一种纳米wc弥散强化铜的制备方法
CN108274011A (zh) 一种适用于3d打印的具有双峰分布金属粉末的制备方法
CN111515408B (zh) NiTi合金粉及其制备方法和应用
CN110014162B (zh) 一种制备球形钼基粉末的方法
CN102943185A (zh) 一种氧化铝弥散强化铜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190212

WW01 Invention patent application withdrawn after publication