CN109321548B - Cas9 protein, CRISPR/Cas9 system, mushroom gene editing method and application - Google Patents

Cas9 protein, CRISPR/Cas9 system, mushroom gene editing method and application Download PDF

Info

Publication number
CN109321548B
CN109321548B CN201811256669.1A CN201811256669A CN109321548B CN 109321548 B CN109321548 B CN 109321548B CN 201811256669 A CN201811256669 A CN 201811256669A CN 109321548 B CN109321548 B CN 109321548B
Authority
CN
China
Prior art keywords
pleurotus eryngii
gene
cas9
seq
crispr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811256669.1A
Other languages
Chinese (zh)
Other versions
CN109321548A (en
Inventor
陆玲
岳尚
魏华
王亭立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN201811256669.1A priority Critical patent/CN109321548B/en
Publication of CN109321548A publication Critical patent/CN109321548A/en
Application granted granted Critical
Publication of CN109321548B publication Critical patent/CN109321548B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1247DNA-directed RNA polymerase (2.7.7.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07006DNA-directed RNA polymerase (2.7.7.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01023Orotidine-5'-phosphate decarboxylase (4.1.1.23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a Cas9 protein, a CRISPR/Cas9 system, a mushroom gene editing method and application. The invention optimizes the codon of the human Cas9 protein according to the preference of the pleurotus eryngii genome codon use to obtain a nucleotide sequence for encoding Cas9, screens 4 promoters which are used for transcribing sgRNA and can highly express U6snRNA genes, and establishes a genetic transformation system which takes resistance change caused by endogenous gene mutation as a selection marker. Experimental results show that the system established by the invention can successfully and efficiently carry out editing such as deletion, insertion, knockout and the like on the pleurotus eryngii gene pyrG. The gene editing technology can be applied and popularized to other mushroom varieties except pleurotus eryngii, and is applied to mushroom variety improvement and metabolic pathway regulation.

Description

Cas9 protein, CRISPR/Cas9 system, mushroom gene editing method and application
Technical Field
The invention relates to a gene editing technology, in particular to a Cas9 protein, a CRISPR/Cas9 system, a mushroom gene editing method and application in the gene editing technology.
Background
Edible fungi are a general term for higher fungi and the like having large-sized fleshy fruit bodies or sclerotium tissues, which are edible. The edible fungi have huge biological activity, can produce various secondary metabolites, and particularly find new active substances with great potential in the aspect of pharmaceutical research. In addition, compared with chemical drugs, the natural product extracted from the edible fungi has the characteristics of low toxicity and low side effect, so the edible fungi is a potential natural drug resource. Pleurotus eryngii (Pleurotus eryngii) belongs to the Basidiomycotina, Hymenomycetes, Basidiomycotina, Agaricales, Pleurotaceae, Pleurotus, and has high medicinal value. With the continuous and deep research of basic theory and application technology, it is very urgent to develop a set of efficient gene editing technology in Pleurotus eryngii.
With the improvement of the living standard of human beings, the demand of the edible fungi which has natural medicine and health care efficacy is huge. The development of a new technology for genetic modification of pleurotus eryngii has important significance for revealing the genetic improvement of important medicinal action mechanism and characters of the pleurotus eryngii. The gene editing technology realizes the accurate, site-specific and genetic modification of genes in situ of a genome, and is an ideal way for genetic improvement and molecular design of pleurotus eryngii.
As a new third-generation artificial nuclease technology, the RNA-mediated CRISPR-Cas9 system becomes a popular technology researched at home and abroad at present by virtue of the advantages that the system is simple and convenient to construct, the targeting accuracy is high, the construction cost is low, and the multiple designed sites can be edited at fixed points, and the technology is successfully applied to plants, bacteria, yeasts, fishes and mammalian cells. The research explores a technology for performing site-specific editing on pleurotus eryngii genomes by using a CRISPR-Cas9 system, and builds a technical platform for efficient site-specific editing of pleurotus eryngii and other mushroom genomes.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are an acquired system of self-immune defense formed by bacteria and archaea in the course of evolution. The CRISPR-Cas9 system is characterized in that an invasion sequence is selected as a new spacer sequence to be inserted into a gene locus of CRISPR-Cas9, the spacer sequence has a prototypical spacer-associated motif (PAM), CRISPR RNA (CRISPR-derived RNA, crRNA) and trans-acting RNA (trans-activating RNA, tracrRNA) are used for specifically recognizing a target sequence, and Cas9 protein is used for shearing at 3-4bp upstream of the PAM sequence to form a flat end, so that Non-homologous end repair (Non-homologous end join, NHEJ) and homologous-mediated end repair (HR) occur.
The technical problems currently existing include the following two points: (1) in the absence of an effective screening marker, a commonly used exogenous hygromycin resistance gene (hph) cannot be stably integrated into the genome of pleurotus eryngii, and a hph fragment of a transformant is lost after passage, so that the transformant after gene editing cannot be obtained. (2) Pleurotus eryngii is a diploid basidiomycete, and homozygotes cannot be obtained by gene knockout by using a traditional homologous recombination method, so that the prior art brings great difficulty to gene knockout. (3) At present, no established gene site-directed editing technology of pleurotus eryngii exists at home and abroad.
Disclosure of Invention
The purpose of the invention is as follows: the invention provides a Cas9 protein, and the Cas9 protein can be used in a CRISPR/Cas9 system. The invention also provides a CRISPR/Cas9 system composed of the Cas9 protein for editing a target genome. The invention also provides a method for editing the mushroom gene and a mushroom cell strain capable of editing the gene, wherein the cell strain is an pleurotus eryngii uracil auxotrophic strain losing the function of the orotidine-5' -phosphate decarboxylase.
The technical scheme is as follows: in order to overcome the defects of the prior art, the invention provides a Cas9 protein suitable for a CRISPR/Cas9 system in a first aspect, and the coding sequence of the Cas9 protein is shown as SEQ ID NO. 3. The Cas9 protein used in the invention is a human Cas9 protein with codon degeneracy characteristics optimized according to the codon preference of mushroom genome.
The second aspect of the invention provides a polynucleotide encoding the above Cas9 protein, the sequence of which is shown in SEQ ID No. 3.
In a third aspect, the invention provides an expression vector comprising a polynucleotide encoding a Cas9 protein.
The fourth aspect of the invention provides an editing tool of a DNA genome fragment, which is a CRISPR/Cas9 system, wherein the CRISPR/Cas9 system comprises the above Cas9 protein, a polynucleotide encoding the Cas9 protein, and an expression vector containing the polynucleotide of the Cas9 protein; to achieve editing of the DNA genome fragment, the CRISPR/Cas9 system further comprises one or more sgrnas for the DNA fragment of interest.
The fifth aspect of the invention provides a CRISPR/Cas9 vector for mushroom gene editing, wherein the CRISPR/Cas9 vector is a recombinant vector for mushroom gene editing obtained by loading a Cas9 protein, a U6 promoter and a nucleotide sequence of sgRNA on a plasmid; the nucleotide sequence of the U6 promoter is selected from SEQ ID NO.4, SEQ ID NO.5, SEQ ID NO.6 or SEQ ID NO. 7.
In order to improve the transcription efficiency and the identification of the target cell strain after gene editing, the recombinant vector also comprises a GFP nucleotide sequence and nucleotide sequences of left and right homologous arms of the target gene.
The sixth aspect of the invention provides a U6 promoter applying CRISPR/Cas9 vector, and the nucleotide sequence of the U6 promoter is selected from SEQ ID No.4, SEQ ID No.5, SEQ ID No.6 or SEQ ID No. 7. The invention identifies 4 pleurotus eryngii U6snRNA promoters for transcribing sgRNA, and can efficiently start the transcription of the sgRNA.
The seventh aspect of the invention provides an editing method of a mushroom cell strain genome fragment, which is to transfect a mushroom cell strain with the CRISPR/Cas9 vector and edit a target gene of the mushroom cell strain.
In order to improve the editing success rate of the genome segment of the mushroom cell line and the universality of the gene editing tool, resistance screening is carried out on a target cell line, wherein the mushroom cell line is CbxRResistant cell lines.
The CbxRThe resistant cell strain is obtained by carrying out site-directed mutagenesis on the 240 th bit group of amino acid in the sdhB gene sequence of the coding succinate dehydrogenase-iron-sulfur protein subunit, and the mutated sdhB gene sequence is shown as SEQ ID NO. 2.
The eighth aspect of the invention provides a mushroom cell line for gene editing, wherein the mushroom cell line is CbxRIn the resistant cell strain, the sdhB gene of a wild-type succinate dehydrogenase-iron-sulfur protein subunit is shown in SEQ ID No.1, the amino acid in the 240 th bit group coded in the sdhB gene sequence of the succinate dehydrogenase-iron-sulfur protein subunit is subjected to site-specific mutation (His to Leu, CAC to CTC), and the mutated sdhB gene sequence is shown in SEQ ID No. 2.
The genome editing tool of the present invention edits the pyrG gene of Pleurotus eryngii.
Screening a DNA sequence which is complementary with a specific DNA sequence base on an exon at the N end of the pyrG gene, wherein the DNA sequence is characterized by conforming to the arrangement sequence of 5' -GGN (17) GG, 5' -GGN (17) CGG or 5' -G (17) GGNGG and serving as sgRNA of a target gene, the pyrG-sgRNA target sequence is positioned on the exon, the sequence is unique, and the nucleotide sequence is shown as SEQ ID NO. 8.
The recombinant plasmid is prepared by utilizing the sgRNA, and is obtained by the following method: cas9 protein (shown in SEQ ID NO.3 in sequence), U6 promoter (with a nucleotide sequence selected from SEQ ID NO.4, SEQ ID NO.5, SEQ ID NO.6 or SEQ ID NO.7), sgRNA, pyrG Donor DNA (GFP fragment), and pyrG homologous arm sequence are loaded into the plasmid
Figure BDA0001842883480000031
-Blunt Zero Cloning Kit plasmid to obtain recombinant plasmid, transfecting Pleurotus eryngii cell strain with the recombinant plasmid, and editing pyrG gene of Pleurotus eryngii cell strain
The pleurotus eryngii cell strain is treated as follows: collecting Pleurotus eryngii mycelium, and sterilizing with ddH2And washing twice. Preparing a lywallzyme enzymolysis liquid for hydrolyzing the cell wall of the pleurotus eryngii, and carrying out enzymolysis on pleurotus eryngii hyphae to obtain protoplasts of the pleurotus eryngii for transfection.
Further, the gene sequence of the coding gene of the pleurotus eryngii succinate dehydrogenase-iron-sulfur protein subunit is obtained by cloning, and the site-specific mutation is carried out on the 240 th group amino acid of the coding region of the succinate dehydrogenase-iron-sulfur protein subunit and is connected with
Figure BDA0001842883480000032
Obtaining a recombinant plasmid from a Blunt Zero Cloning Kit plasmid, transfecting an Pleurotus eryngii strain to obtain CbxRResistant strains, in the use of CbxRThe resistant Pleurotus eryngii cell line was subjected to pyrG gene editing.
Has the advantages that: (1) the invention provides an optimized Cas9 protein, which has the codon preference of pleurotus eryngii genome and is used for genome editing of mushroom cell strains; (2) the invention provides 4U 6 promoters for transcribing sgRNA, which can efficiently start the transcription of the sgRNA; (3) the invention provides a system for completing screening by using resistance change caused by endogenous gene mutation as a selective marker of pleurotus eryngii, which overcomes the defect that a common exogenous hygromycin resistance gene (hph) cannot be stably integrated into a pleurotus eryngii genome so as to cause that a transformant with edited genes cannot be stably obtained; (4) the invention provides an sgRNA capable of specifically positioning pyrG gene and targeted knockout of pyrG gene.
Drawings
FIG. 1 is a schematic diagram of sequencing by site-directed mutagenesis of the succinate dehydrogenase-iron-sulfur protein subunit (SdhB) of Pleurotus eryngii according to the present invention;
FIG. 2 shows the Cbx of the present inventionRThe result shows that the gene coding the iron-sulfur protein subunit (SdhB) can grow on a culture medium containing the carboxin bacteriostatic agent after site-directed mutation;
FIG. 3 is a structural diagram of a fragment of the sgRNA transcribed by the U6 promoter according to the present invention;
FIG. 4 is a recombinant plasmid map of sgRNA for knocking out Pleurotus eryngii pyrG gene, optimized Cas9 protein encoding gene and exogenous GFP fragment to be inserted, constructed in the present invention;
FIG. 5 is a schematic diagram of a successful disruption of the function of the pyrG gene of Pleurotus eryngii according to the present invention, showing that the transformants were unable to grow on Minimal Medium (MM), indicating a loss of function of the pyrG gene; whereas WT and pyrG transformants grew normally in medium supplemented with UU (pyrimidine nucleotides).
Detailed Description
Example 1: construction of Pleurotus eryngii genetic system using resistance change caused by endogenous gene mutation as selection marker
1.1 cloning Gene sequence (including promoter and terminator) coding Pleurotus eryngii succinate dehydrogenase-iron-sulfur protein subunit (SdhB) into plasmid (3015 bp)
Figure BDA0001842883480000041
-Blunt Zero Cloning Kit) as shown in SEQ ID NO. 1.
1.2 designing a pair of reverse complementary primers containing mutation sites, wherein the primer sequences are as follows, and Mutant-F and Mutant-R represent a forward primer and a reverse primer respectively:
Mutant-F:GTTCCGCTGCCTCACCATCT
Mutant-R:AGATGGTGAGGCAGCGGAAC
1.3PCR system: 25 mul of high fidelity enzyme; 2. mu.l of each primer; 18 mul of water; plasmid template 3. mu.l.
1.4PCR reaction conditions are pre-denaturation at 95 ℃ for 5 min; denaturation at 95 ℃ for 15 s; annealing at 56 ℃ for 15 s; extending for 72 ℃ for 2 min; a total of 32 cycles; finally, the extension is carried out for 5 min.
1.5 after PCR reaction, 10. mu.l of PCR reaction solution was taken; 1 μ l of DpnI; 2. mu.l of 10xT Buffer; and 7. mu.l of water. The enzyme was inactivated by reaction at 37 ℃ for 1 hour in 20. mu.l of the reaction solution, followed by heat treatment at 70 ℃ for 15 min.
1.6 directly transforming the reaction solution in the previous step into escherichia coli competent cells, and coating the plate overnight; selecting a single colony with correct recombination, shaking the colony for 12-15h, extracting a plasmid, and sequencing to obtain CbxRResistant plasmids
Figure BDA0001842883480000051
Blunt-Zero-sdhB, sequencing results in SEQ ID No. 2.
1.7 sequencing and results prove that point mutation does occur at the histidine conserved site at position 240 of the iron-sulfur protein subunit (SdhB), the codon CAC is mutated into CTC, and a site-directed mutagenesis scheme of the pleurotus eryngii succinate dehydrogenase-iron-sulfur protein subunit (SdhB) is shown in a figure 1.
1.8 will express
Figure BDA0001842883480000052
Plasmid of-Blunt-Zero-sdhB was transfected by the PEG-mediated transfection of protoplasts and transformants were selected using a bacteriostatic carboxin.
1.9 selection of transformants, DNA extraction, sequencing and transfection
Figure BDA0001842883480000053
Successful transformant strains of the-Blunt-Zero-sdhB plasmid could indeed grow on resistant carboxin plates, as shown in FIG. 2, and were sequenced correctly. The established pleurotus eryngii endogenous transformation system is proved to be an important screening marker for pleurotus eryngii gene editing.
1.10 the endogenous transformation system constructed by the characteristic that the methionine point mutation of iron-sulfur protein subunit (SdhB)240 bit generates resistance to the carboxin is crucial to the later editing of Pleurotus eryngii related genes, and can be used as the basis for editing the Pleurotus eryngii related genes.
Example 2: construction of plasmid for transcribing sgRNA and expressing Cas9 protein
2.1 optimization of codon preference of human Cas9 protein
The preference of 64 codons for coding corresponding amino acids is analyzed according to the coding sequence of the pleurotus eryngii genome, the codons are rearranged on the human-derived Cas9 protein, and finally the sequence information of the Cas9 protein which can be stably expressed in pleurotus eryngii is optimized, and is shown in SEQ ID No. 3.
2.2 cloning of the Pgpd promoter, a high expression promoter of Pleurotus eryngii
The primers are as follows:
Pgpd-R:AGTCACAAGGGATGGGTGGT
Pgpd-F:GCGAACACTCAAAGCAAAG
the PCR system is as follows: 25 mul of high fidelity enzyme; 2. mu.l of each primer; 18 mul of water; WT template 3. mu.l.
The PCR reaction conditions are as follows: pre-denaturation at 95 deg.C for 5 min; denaturation at 95 ℃ for 15 s; annealing at 56 ℃ for 15 s; extending for 72 ℃ for 2 min; a total of 32 cycles; finally, the extension is carried out for 5 min.
2.3 cloning of the Aspergillus nidulans trpC terminator
The primers are as follows:
trpC-F:AAAGCCTTCGAGCGTCCCA
trpC-R:TCCTGCCCGTCACCGAGAT
the PCR system is as follows: 25 mul of high fidelity enzyme; 2. mu.l of each primer; 18 mul of water; plasmid template 3. mu.l.
The PCR reaction conditions are as follows: pre-denaturation at 95 deg.C for 5 min; denaturation at 95 ℃ for 15 s; annealing at 56 ℃ for 15 s; extending for 72 ℃ for 2 min; a total of 32 cycles; finally, the extension is carried out for 5 min.
2.4 fusion PCR
Three sections of Pgpd promoter, optimized human Cas9 protein with Pleurotus eryngii preference and aspergillus nidulans trpC terminator are fused and connected
Figure BDA0001842883480000061
A recombinant plasmid was formed in the Blunt Zero Cloning Kit plasmid
Figure BDA0001842883480000062
-Blunt Zero-Pgpd-Cas9-trpC。
2.5 selection of sgRNA targets
The target sequence of the sgRNA on the pyrG gene is located on the exon of the pyrG gene near the N-terminal, as shown in SEQ ID NO. 8.
2.6 identification of the sgRNA promoter Pol III RNA polymerase promoter
4U 6snRNA promoters (promoter) are identified from the genome of the pleurotus eryngii, and the sequences are shown as SEQ ID NO.4, SEQ ID NO.5, SEQ ID NO.6 and SEQ ID NO. 7.
2.7 cloning of the sgRNA splice fragment (scaffold).
sgRNA scaffold was amplified from PX330 plasmid (plasmid).
sgRNA scaffold-F:GTTTTAGAGCTAGAAATAGC
sgRNA scaffold-R:AAAAAAGCACCGACTCGGTGCC
2.8 according to the concentration of the U6 promoter and the sgRNA scaffold, the U6 promoter and the sgRNA scaffold are mixed in equal proportion, the two fragments are connected together by fusion PCR to form a U6-sgRNA-scaffold fragment, and NotI-U6-sgRNA-scaffold-NotI fragments are formed by adding NotI enzyme cutting sites at the two ends of the fusion fragment as shown in figure 3.
2.9
Figure BDA0001842883480000063
Single cleavage of the NotI site of Blunt Zero-Pgpd-Cas 9-trpC.
2.10 will
Figure BDA0001842883480000064
The single-digested fragment of NotI site of Blunt Zero-Pgpd-Cas9-trpC and the NotI-U6-sgRNA-scaffold-NotI fragment described in 2.9 were recombinantly ligated.
2.11 recombination System the following:
4 ul Single enzyme digestion vector
Figure BDA0001842883480000065
-Blunt Zero-Pgpd-Cas9-trpC
1. mu.l NotI-U6-sgRNA-scaffold-NotI fragment
2μl 5xCE II Buffer
1μl
Figure BDA0001842883480000071
Recombinant enzyme
Adding water to 10 μ l, incubating at 37 deg.C for 30min, directly converting Escherichia coli competent cells, and plating overnight; selecting the single colony successfully recombined, shaking the bacteria for 12-15h, and extracting the plasmid
Figure BDA0001842883480000072
-Blunt Zero-Pgpd-Cas9-trpC-U6-sgRNA-Scaffold。
2.12 cloning DNA fragments of the left and right homology arms (Donor) of the gene (pyrG) site to be edited, wherein the sequence of the left homology arm is shown as SEQ ID NO.17, the sequence of the right homology arm is shown as SEQ ID NO.18, and the sequence of the homology arms is accessed to both ends of the gene site to be edited.
2.13 fusion PCR three sections of pyrG left homology arm, GFP fragment, pyrG right homology arm were fused, the sequence was a GFP fragment inserted with pyrG Donor DNA (GFP fragment) as template repair, and the result is shown in SEQ ID NO. 19. The left and right arms carry the speI linker to form the speI-pyrG left arm-GFP-pyrG right arm-speI, respectively.
2.14 plasmids
Figure BDA0001842883480000073
Single cleavage of the speI site of Blunt Zero-Pgpd-Cas 9-trpC-U6-sgRNA-Scaffold.
2.15
Figure BDA0001842883480000074
-single-cut fragment of the speI site of Blunt Zero-Pgpd-Cas9-trpC-U6-sgRNA-Scaffold and pyrG left arm-GFP-pyrG right arm of the speI linker as described above in 2.13).
2.16 recombination system as follows:
4 ul Single enzyme digestion vector
Figure BDA0001842883480000075
-Blunt Zero-Pgpd-Cas9-trpC-U6-gRNA-Scaffold
Mu.l of long homology arm pyrG Donor DNA (GFP fragment)
2μl 5xCE II Buffer
1μl
Figure BDA0001842883480000076
Recombinant enzyme
Adding water to 10 μ l, incubating at 37 deg.C for 30min, directly converting Escherichia coli competent cells, and plating overnight; selecting the single colony successfully recombined, shaking the bacteria for 12-15h, and extracting the plasmid
Figure BDA0001842883480000077
Blunt Zero-Pgpd-Cas9-trpC-U6-sgRNA-Scaffold-pyrG-Donor-DNA (GFP fragment), and the recombinant plasmid map constructed is shown in FIG. 4.
Example 3: acquisition of Pleurotus eryngii pyrG gene knockout vegetative mutant strain
In example 2
Figure BDA0001842883480000078
Transfection by means of PEG-mediated protoplast transfection of a plasmid of-Blunt-Zero-Pgpd-Cas 9-trpC-U6-gRNA-scaffold-pyrG-Donor-DNA (GFP fragment).
3.1 PEG mediated transfection of protoplasts was performed as follows:
3.1.1 collecting Pleurotus eryngii hyphae, sterilizing with ddH2And washing twice.
3.1.2 preparing a lywallzyme enzymolysis liquid for hydrolyzing the cell wall of the pleurotus eryngii, filtering and sterilizing, transferring the collected hypha into the enzymolysis liquid, and carrying out enzymolysis for about 3.5 hours in a shaking table at the temperature of 28 ℃ and the rotating speed of 80 rpm.
3.1.3 after the enzymatic hydrolysis is finished, the product is transferred into a 50ml centrifuge tube, 10ml of bridging Buffer is added, 5000rpm is carried out, and centrifugation is carried out for 15min at 4 ℃.
3.1.4 after centrifugation, the white protoplast layer was gently pipetted into another 50ml centrifuge tube using a pipette gun and centrifuged at 4 ℃ for 10min with the same volume of STC Buffer added at 5000 rpm.
3.1.5 remove the supernatant, add 1ml STC Buffer and mix the protoplast, put into the refrigerator for future use.
3.1.6 protoplasts and plasmids after vacuum concentration in a volume of 100. mu.l with a pipette
Figure BDA0001842883480000082
-Blunt-Zero-Pgpd-Cas9-trpC-U6-gRNA-scaffold-pyrG-Donor-DNA (GFP fragment) was gently mixed, placed on ice for 50min, added with 1.25ml of PEG solution, placed at room temperature for 25min, added with 10ml of the transformation upper medium, poured into the lower medium poured in advance, and cultured at 28 ℃ for 15 days.
3.2 selecting the pyrG edited transformant, and carrying out the inoculation on a basic culture medium (MM), wherein the result of the inoculation is shown in figure 5, which shows that the transformant can not grow in the basic culture medium (MM), and the pyrG gene function is lost; whereas WT and pyrG edited transformants grew normally in UU (pyrimidine nucleotide) supplemented medium.
3.3 DNA sequencing analysis is carried out on the transformant, the editing sites of the target genes are analyzed, and the analysis results are shown in Table 1.
TABLE 1 sequencing results of site-directed editing of auxotrophic strains with non-homologous end repair of the Pleurotus eryngii pyrG Gene
Figure BDA0001842883480000081
Figure BDA0001842883480000091
According to the sequencing results of Table 1, it was found that: the orotidine-5' -phosphate decarboxylase (OMPDC) encoded by the pyrG gene of Pleurotus eryngii is capable of converting orotate contained in the medium into pyrimidine nucleotides, so that Pleurotus eryngii which has impaired the function of pyrG gene cannot grow normally on basal medium (MM). A total of 30 transformants are selected, and sequencing results of the transformants prove that the pyrG gene does complete different types of editing such as insertion and deletion at an expected editing target spot, as shown in SEQ ID NO.9-16, 25 mutants causing frame shift mutation (10 mutants with non-homologous end repair and 15 mutants with homologous end repair and GFP sequence insertion) are detected at a cleavage site CGCTGTA of the Cas9 protein, the mutation rate is 83.3%, wherein sequencing results of a part of transformants are shown in Table 1, and the target gene pyrG is inserted and deleted at a sequence position targeted by sgRNA, so that the pyrG gene is subjected to frame shift mutation, and gene knockout is successful.
The complementary and paired DNA sequence of the target recognition sequence is SEQ ID NO.8, the sequence of the recruited Cas9 protein is SEQ ID NO.3, and the optimized Cas9 protein is accurately edited at the designed target site in a fixed point mode according to the preference of pleurotus eryngii genome codons. The optimized U6-Cas9 system can efficiently edit a series of genes such as pleurotus eryngii pyrG and the like, and the editing efficiency is very high.
Sequence listing
<110> university of Nanjing university
<120> Cas9 protein, CRISPR/Cas9 system, mushroom gene editing method and application
<160> 19
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3015
<212> DNA
<213> Pleurotus eryngii sdhB gene (Pleurotus eryngii-sdhB gene)
<400> 1
tggctccctt agtcacatac tgtcaaggct cttttagaga acttttctca agcagcgtga 60
aagcctagtt ggtatcgacg aaagcggaaa gataccaaga tatcacggca ttcgtagctt 120
cgccgaggga atgacatagg cgggtataac ctcctttgag ttgagacgaa agtgtggctt 180
caaactcacg tcctcaataa gcgctcgcga catcgcggat tcacatcaca ccactctcca 240
agaatctctc gttcaaaggt atcctgtatt tgtaagtcaa gccaacgttt attccatgat 300
acaaggctgg ccacattcat ggtattctct ccgtaaatag ccatttacca cccatgacac 360
gacatattcg gattcctgcc gcttgtgaac caaccgttca actgtgcaaa cgctaataca 420
tggcttctga gactcccaac gttgtttgga gaaaaattct caaaaacggc tgccgaagac 480
ctaagccagt gttgctccta cattttctca acactcgata gaagctgcaa ctaggtcaac 540
aaagttggca ttccatcgcc tttgactaca aattgattcg gggggttcga cgatggacac 600
catgagcgag ctttgtccgt tacgacgaga acatccgaag tcccatcctc tcctgaactc 660
ttcaagacca ccattcaagg gaatttcgag gtctcggagc gccgttgaac ccaggttttc 720
gggtgacacc tcaattgctt tccccctttt ctgaccagag tccccgaggt acagcccggg 780
tacggcacat attctacctt gtaaacctca ctcataacgt tccgaggaga gtggcatcac 840
acagcgcgct ggcctaatag tggtgtcaag ttggaaggga agcgagtcgg ggtcattggg 900
actggggcca gcgccgagtt cagatcatcc aagaagcagg caaattggca caagggctcg 960
tggtattcca gcgtacaccg aatctgacat tccgcttgcg acaacccacg caagccaaag 1020
tgtcagaagt tgtcgaaatg caatggaatc atgttcacga agaggccttg ggtagtgacc 1080
ctatcaggta aacaagtatc gtcgatttct tgacacttct agctgctccg tccacgtgta 1140
taccttcgac tcaccattga agagcatgat gggcgcaaag attacgttct atcgctcttc 1200
tctctttact ttgataatcg aaagctgcac tactcagcgc cgcaattata catgtttttc 1260
taaaaatcta ccgactcacc gctgacgcgc tgacggccgg taagcttcaa gtaacctgca 1320
gttccaatcg ggcaatttca aagtgtgccg gcatttaccg aagagtaaca tgcgccctct 1380
gattggttcg gatcgcgagg gctcctttcc cgctccgaat tcacgcgacg ggatcccgcc 1440
gcatctctcc tcttcaccgt cgtcgttgac gtccccgaaa cacagaaatc accgaatcat 1500
gcaggcgctc acctccaggt cgttggctcg ctcaccccgc tcgattcgtt ctttctccac 1560
ttcgtgtgga aggtggcagg ctgagctcct ccagaagccc gttctccaga aagaattcaa 1620
gatctaccgt tgggtgagct gagacgcttg tgtatccaga tgtgttgctc acattgtggc 1680
acagaatccg gatgaaccag ccaagaagcc tcatctccaa tcgtacacca ttgacttgaa 1740
ccagacgggc cccatggtac gtacaattcc aaggcgattg tctctatgct cacgggctcg 1800
tagattctgg acgctcttat caagatcaag aacgaaatcg atcctacgct cacattccgt 1860
cgttcgtgta gagaagggat ttgcggctcg tgcgcgatga atattgacgg acagaacacg 1920
ttggcttgcc tgtgccgaat tgaccgtaac gccagcaagg acagcaagat ctaccctttg 1980
ccgcacagta tgacatgtct tttggttcct aatagcattg actgacggtc agttacagtg 2040
tacatcgtga aagacctcgt acccgacctc acacttttct acaagcagta caagtccatc 2100
aagccttacc tgcagaacga caatgtcccc gagagggagc acctccagtc gccagaggac 2160
cgcaagaagc tggacgggat gtatgaatgc atcctgtgcg cgtgctgcag cacatcgtgt 2220
cccagctatt ggtggaacca agatgagtat ttggaccggc tgctttgatg gccgcgtata 2280
ggtggattgc ggactcacga gtgcgttatg ttgccgtcga tacatgctct cattcatagt 2340
ctaacatttc gcaggatacg tatggcgcac aacgcaagga acatttccag aatgagatga 2400
gtttgttccg ctgcctcacc atcttcaatt gtacgtcgct ttcgccttga tatggattgg 2460
ctgttaatca tatcccttct caaggctctc gcacttgtcc aaagggcctc aaccctgcga 2520
aagccattgc agagatcaag ctcgcgctcg ctactgagta aaccctagtc aacagccacg 2580
gatcaaaagc attaagtcag aggcagattt ctttcctgta gcagttcgca gttcttttca 2640
cttcatcgta tggtgtccat tgcagacatc taatcatatt cattctatca catccacttg 2700
ttcttgagcc actcttaagg taggcatacc ctcggtctca cttgcggtgc tgtacgaaac 2760
aagaacggat acatattcta tattctatgg gacatctaac gactcaggca attcatagtc 2820
tactaggctc aacatcgaga gcgaagaagg gatacgacgt gtagccgtcg gagtccacgc 2880
tgccaggtct gtagtaatcc tttctatcac ctttttccac ttgccaatca ttcttcagtc 2940
gcagcggcaa atcgggctat cgtccagcac tcgaactcag ccaacacctc tcctcaggac 3000
gaaggaaggc ttacg 3015
<210> 2
<211> 3015
<212> DNA
<213> Pleurotus eryngii sdhB gene (Pleurotus eryngii-sdhB gene)
<400> 2
tggctccctt agtcacatac tgtcaaggct cttttagaga acttttctca agcagcgtga 60
aagcctagtt ggtatcgacg aaagcggaaa gataccaaga tatcacggca ttcgtagctt 120
cgccgaggga atgacatagg cgggtataac ctcctttgag ttgagacgaa agtgtggctt 180
caaactcacg tcctcaataa gcgctcgcga catcgcggat tcacatcaca ccactctcca 240
agaatctctc gttcaaaggt atcctgtatt tgtaagtcaa gccaacgttt attccatgat 300
acaaggctgg ccacattcat ggtattctct ccgtaaatag ccatttacca cccatgacac 360
gacatattcg gattcctgcc gcttgtgaac caaccgttca actgtgcaaa cgctaataca 420
tggcttctga gactcccaac gttgtttgga gaaaaattct caaaaacggc tgccgaagac 480
ctaagccagt gttgctccta cattttctca acactcgata gaagctgcaa ctaggtcaac 540
aaagttggca ttccatcgcc tttgactaca aattgattcg gggggttcga cgatggacac 600
catgagcgag ctttgtccgt tacgacgaga acatccgaag tcccatcctc tcctgaactc 660
ttcaagacca ccattcaagg gaatttcgag gtctcggagc gccgttgaac ccaggttttc 720
gggtgacacc tcaattgctt tccccctttt ctgaccagag tccccgaggt acagcccggg 780
tacggcacat attctacctt gtaaacctca ctcataacgt tccgaggaga gtggcatcac 840
acagcgcgct ggcctaatag tggtgtcaag ttggaaggga agcgagtcgg ggtcattggg 900
actggggcca gcgccgagtt cagatcatcc aagaagcagg caaattggca caagggctcg 960
tggtattcca gcgtacaccg aatctgacat tccgcttgcg acaacccacg caagccaaag 1020
tgtcagaagt tgtcgaaatg caatggaatc atgttcacga agaggccttg ggtagtgacc 1080
ctatcaggta aacaagtatc gtcgatttct tgacacttct agctgctccg tccacgtgta 1140
taccttcgac tcaccattga agagcatgat gggcgcaaag attacgttct atcgctcttc 1200
tctctttact ttgataatcg aaagctgcac tactcagcgc cgcaattata catgtttttc 1260
taaaaatcta ccgactcacc gctgacgcgc tgacggccgg taagcttcaa gtaacctgca 1320
gttccaatcg ggcaatttca aagtgtgccg gcatttaccg aagagtaaca tgcgccctct 1380
gattggttcg gatcgcgagg gctcctttcc cgctccgaat tcacgcgacg ggatcccgcc 1440
gcatctctcc tcttcaccgt cgtcgttgac gtccccgaaa cacagaaatc accgaatcat 1500
gcaggcgctc acctccaggt cgttggctcg ctcaccccgc tcgattcgtt ctttctccac 1560
ttcgtgtgga aggtggcagg ctgagctcct ccagaagccc gttctccaga aagaattcaa 1620
gatctaccgt tgggtgagct gagacgcttg tgtatccaga tgtgttgctc acattgtggc 1680
acagaatccg gatgaaccag ccaagaagcc tcatctccaa tcgtacacca ttgacttgaa 1740
ccagacgggc cccatggtac gtacaattcc aaggcgattg tctctatgct cacgggctcg 1800
tagattctgg acgctcttat caagatcaag aacgaaatcg atcctacgct cacattccgt 1860
cgttcgtgta gagaagggat ttgcggctcg tgcgcgatga atattgacgg acagaacacg 1920
ttggcttgcc tgtgccgaat tgaccgtaac gccagcaagg acagcaagat ctaccctttg 1980
ccgcacagta tgacatgtct tttggttcct aatagcattg actgacggtc agttacagtg 2040
tacatcgtga aagacctcgt acccgacctc acacttttct acaagcagta caagtccatc 2100
aagccttacc tgcagaacga caatgtcccc gagagggagc acctccagtc gccagaggac 2160
cgcaagaagc tggacgggat gtatgaatgc atcctgtgcg cgtgctgcag cacatcgtgt 2220
cccagctatt ggtggaacca agatgagtat ttggaccggc tgctttgatg gccgcgtata 2280
ggtggattgc ggactcacga gtgcgttatg ttgccgtcga tacatgctct cattcatagt 2340
ctaacatttc gcaggatacg tatggcgcac aacgcaagga acatttccag aatgagatga 2400
gtttgttccg ctgcctcacc atcttcaatt gtacgtcgct ttcgccttga tatggattgg 2460
ctgttaatca tatcccttct caaggctctc gcacttgtcc aaagggcctc aaccctgcga 2520
aagccattgc agagatcaag ctcgcgctcg ctactgagta aaccctagtc aacagccacg 2580
gatcaaaagc attaagtcag aggcagattt ctttcctgta gcagttcgca gttcttttca 2640
cttcatcgta tggtgtccat tgcagacatc taatcatatt cattctatca catccacttg 2700
ttcttgagcc actcttaagg taggcatacc ctcggtctca cttgcggtgc tgtacgaaac 2760
aagaacggat acatattcta tattctatgg gacatctaac gactcaggca attcatagtc 2820
tactaggctc aacatcgaga gcgaagaagg gatacgacgt gtagccgtcg gagtccacgc 2880
tgccaggtct gtagtaatcc tttctatcac ctttttccac ttgccaatca ttcttcagtc 2940
gcagcggcaa atcgggctat cgtccagcac tcgaactcag ccaacacctc tcctcaggac 3000
gaaggaaggc ttacg 3015
<210> 3
<211> 4272
<212> DNA
<213> Gene sequence of Cas9 protein of Pleurotus eryngii (Pleurotus eryngii Cas9 protein gene)
<400> 3
atggactaca aggaccacga cggcgactac aaggatcacg acatcgacta caaagacgac 60
gacgacaaga tggcgcccaa gaagaagcgc aaggtcggca tccacggcgt ccccgcagct 120
gacaagaaat actccatcgg cctggacatc ggcaccaaca gcgtcggatg ggctgttatc 180
accgacgaat acaaagtccc atccaagaag ttcaaggtcc tcggtaacac cgacagacac 240
tccatcaaga agaacctcat cggagctctc ctcttcgact ccggagaaac cgctgaagcc 300
accagactca aaagaaccgc ccgccgccgc tacacccgca gaaaaaaccg catctgctac 360
ctccaagaaa tcttctccaa cgaaatggct aaggtcgacg actccttctt ccaccgcctc 420
gaagaatcct tcctcgtcga agaagacaag aagcacgaac gccaccctat cttcggcaac 480
atcgtcgacg aagtcgctta ccacgaaaag taccctacca tctaccacct ccgcaagaag 540
ctcgtcgact ccaccgacaa ggctgacctc cgcctcatct acctcgctct cgctcacatg 600
atcaagttcc gcggccactt cctcatcgaa ggcgacctca accctgacaa ctccgacgtc 660
gacaagctct tcatccaact cgtccaaacc tacaaccaac tcttcgaaga aaaccctatc 720
aacgcttccg gcgtcgacgc taaggctatc ctctccgctc gcctctccaa gtcccgccgc 780
ctcgaaaacc tcatcgctca actccctggc gaaaagaaga acggcctctt cggcaacctc 840
atcgctctct ccctcggcct cacccctaac ttcaagtcca acttcgacct cgctgaagac 900
gctaagctcc aactctccaa ggacacctac gacgacgacc tcgacaacct cctcgctcaa 960
atcggcgacc aatacgctga cctcttcctc gctgctaaga acctctccga cgctatcctc 1020
ctctccgaca tcctccgcgt caacaccgaa atcaccaagg ctcctctctc cgcttccatg 1080
atcaagcgct acgacgaaca ccaccaagac ctcaccctcc tcaaggctct cgtccgccaa 1140
caactccctg aaaagtacaa ggaaatcttc ttcgaccaat ccaagaacgg ctacgctggc 1200
tacatcgacg gcggcgcttc ccaagaagaa ttctacaagt tcatcaagcc tatcctcgaa 1260
aagatggacg gcaccgaaga actcctcgtc aagctcaacc gcgaagacct cctccgcaag 1320
caacgcacct tcgacaacgg ctccatccct caccaaatcc acctcggcga actccacgct 1380
atcctccgcc gccaagaaga cttctaccct ttcctcaagg acaaccgcga aaagatcgaa 1440
aagatcctca ccttccgcat cccttactac gtcggccctc tcgctcgcgg caactcccgc 1500
ttcgcttgga tgacccgcaa gtccgaagaa accatcaccc cttggaactt cgaagaagtc 1560
gtcgacaagg gcgcttccgc tcaatccttc atcgaacgca tgaccaactt cgacaagaac 1620
ctccctaacg aaaaggtcct ccctaagcac tccctcctct acgaatactt caccgtctac 1680
aacgaactca ccaaggtcaa gtacgtcacc gaaggcatgc gcaagcctgc tttcctctcc 1740
ggcgaacaaa agaaggctat cgtcgacctc ctcttcaaga ccaaccgcaa ggtcaccgtc 1800
aagcaactca aggaagacta cttcaagaag atcgaatgct tcgactccgt cgaaatctcc 1860
ggcgtcgaag accgcttcaa cgcttccctc ggcacctacc acgacctcct caagatcatc 1920
aaggacaagg acttcctcga caacgaagaa aacgaagaca tcctcgaaga catcgtcctc 1980
accctcaccc tcttcgaaga ccgcgaaatg atcgaagaac gcctcaagac ctacgctcac 2040
ctcttcgacg acaaggtcat gaagcaactc aagcgccgcc gctacaccgg ctggggccgc 2100
ctctcccgca agctcatcaa cggcatccgc gacaagcaat ccggcaagac catcctcgac 2160
ttcctcaagt ccgacggctt cgctaaccgc aacttcatgc aactcatcca cgacgactcc 2220
ctcaccttca aggaagacat ccaaaaggct caagtctccg gccaaggcga ctccctccac 2280
gaacacatcg ctaacctcgc tggctcccct gctatcaaga agggcatcct ccaaaccgtc 2340
aaggtcgtcg acgaactcgt caaggtcatg ggccgccaca agcctgaaaa catcgtcatc 2400
gaaatggctc gcgaaaacca aaccacccaa aagggccaaa agaactcccg cgaacgcatg 2460
aagcgcatcg aagaaggcat caaggaactc ggctcccaaa tcctcaagga acaccctgtc 2520
gaaaacaccc aactccaaaa cgaaaagctc tacctctact acctccaaaa cggccgcgac 2580
atgtacgtcg accaagaact cgacatcaac cgcctctccg actacgacgt cgaccacatc 2640
gtccctcaat ccttcctcaa ggacgactcc atcgacaaca aggtcctcac ccgctccgac 2700
aagaaccgcg gcaagtccga caacgtccct tccgaagaag tcgtcaagaa gatgaagaac 2760
tactggcgcc aactcctcaa cgctaagctc atcacccaac gcaagttcga caacctcacc 2820
aaggctgaac gcggcggcct ctccgaactc gacaaggctg gcttcatcaa gcgccaactc 2880
gtcgaaaccc gccaaatcac caagcacgtc gctcaaatcc tcgactcccg catgaacacc 2940
aagtacgacg aaaacgacaa gctcatccgc gaagtcaagg tcatcaccct caagtccaag 3000
ctcgtctccg acttccgcaa ggacttccaa ttctacaagg tccgcgaaat caacaactac 3060
caccacgctc acgacgctta cctcaacgct gtcgtcggca ccgctctcat caagaagtac 3120
cctaagctcg aatccgaatt cgtctacggc gactacaagg tctacgacgt ccgcaagatg 3180
atcgctaagt ccgaacaaga aatcggcaag gctaccgcta agtacttctt ctactccaac 3240
atcatgaact tcttcaagac cgaaatcacc ctcgctaacg gcgaaatccg caagcgccct 3300
ctcatcgaaa ccaacggcga aaccggcgaa atcgtctggg acaagggccg cgacttcgct 3360
accgtccgca aggtcctctc catgcctcaa gtcaacatcg tcaagaagac cgaagtccaa 3420
accggcggct tctccaagga atccatcctc cctaagcgca actccgacaa gctcatcgct 3480
cgcaagaagg actgggaccc taagaagtac ggcggcttcg actcccctac cgtcgcttac 3540
tccgtcctcg tcgtcgctaa ggtcgaaaag ggcaagtcca agaagctcaa gtccgtcaag 3600
gaactcctcg gcatcaccat catggaacgc tcctccttcg aaaagaaccc tatcgacttc 3660
ctcgaagcta agggctacaa ggaagtcaag aaggacctca tcatcaagct ccctaagtac 3720
tccctcttcg aactcgaaaa cggccgcaag cgcatgctcg cttccgctgg cgaactccaa 3780
aagggcaacg aactcgctct cccttccaag tacgtcaact tcctctacct cgcttcccac 3840
tacgaaaagc tcaagggctc ccctgaagac aacgaacaaa agcaactctt cgtcgaacaa 3900
cacaagcact acctcgacga aatcatcgaa caaatctccg aattctccaa gcgcgtcatc 3960
ctcgctgacg ctaacctcga caaggtcctc tccgcttaca acaagcaccg cgacaagcct 4020
atccgcgaac aagctgaaaa catcatccac ctcttcaccc tcaccaacct cggcgctcct 4080
gctgctttca agtacttcga caccaccatc gaccgcaagc gctacacctc caccaaggaa 4140
gtcctcgacg ctaccctcat ccaccaatcc atcaccggcc tctacgaaac ccgcatcgac 4200
ctctcccaac tcggcggcga caagcgccct gctgctacca agaaggctgg ccaagctaag 4260
aagaagaagt aa 4272
<210> 4
<211> 695
<212> DNA
<213> Pleurotus eryngii U6 Promoter 1(Pleurotus eryngii U6 Promoter1)
<400> 4
cccatatgag catcttgatc aaccaacgaa ggccaagtgg ggcacaggtc ttctaccgtc 60
ctgggtgtgt caggttgcgc cggctacaaa tcatcctgct ccgatgtaga ttacgaccac 120
ggggatggaa gaatgtggac tggagacgtc cgcgtggtat acccgtaccg gctgggaggg 180
agcgagagac agagatggtg gcggaagcag acactaggga ttgcccaacg gcaatggaca 240
taccttgctt agaattgtgt ttgcaatgag actttactac gaaggacacc ccgtcgctca 300
acttgcggtc gaacttactc aatggttgag gagaacgaga actttgaaaa ttcagaataa 360
gtggattctt gtgcctacag ttggcgcagt gcgggctacc gaaaatctgt gccatttgtc 420
attcttcgaa ccactatcgc aatgtttttg gtagtaagtt caaggtggag tggtgtgtcg 480
acatcttttg tcaacctcgt cgaacttcac gcaaagcgtc ggagcggaga tactgccatt 540
caacaagagt acggtgcgca agtacggtga gagagtcaag actgcgcgcg attcgagccc 600
acgtgctacc aggcactgcc actgtgatcg aacccagtga gctggacaaa acacagcact 660
cagtggacgc cgtagcaaca gtactaacaa agact 695
<210> 5
<211> 453
<212> DNA
<213> Pleurotus eryngii U6 Promoter 2(Pleurotus eryngii U6 Promoter2)
<400> 5
gacctccgcc aactatacat ctaagcacac gccttggaaa atccaagtct ggagaggcga 60
ggacgggttt gttaagagaa tggtgaatgt tgatagtctt gttgtgtcgc ccagtcctgt 120
tgaaaagtta ctccaccccc gttctgaata ttgcagtcaa cctaacacac aggtacgcgt 180
aaagtattta cgccttcgtg acctatcgaa tgttccacgg ccccaaactt ccatgctcta 240
tcaggtacag acacaatcaa acttccgtga tatacgtgcc attcttgaca agtttcctca 300
ggaaatagat caagtcgaaa atacccctac acaaggacag acaataggta tcgcaatgag 360
cccctttcag ttggcgggta cccctgggaa gctcgcgcgc tgaacaaaac gcacaagtca 420
tgttgtatcc agtcaacacg agcaacaact att 453
<210> 6
<211> 707
<212> DNA
<213> Pleurotus eryngii U6 Promoter 3(Pleurotus eryngii U6 Promoter3)
<400> 6
agaaagccca gagttaccgt cagtcattgt cagcaccact gcttgtcaat gtcaatcgct 60
tcttgttgtt cctatatata tactagggat cgcccggcgg cgcttcaaaa tataccttgc 120
gtgggttggc atctcggttt cagtcctgct gcctccgttg ttttgcacac ccatctgtgt 180
cgaacgtcct gctttccaga atcccgcaca gcctcggagc atttcccaac gtctttctgg 240
gttgttatgg taggatacca ttcatttgcc gcgtccatac agaacgttgc tgttgacacg 300
gcacccgagt gaggatctct attccgaaga tgcaaggttg gcggcgctca acaaagatac 360
tgcgcagaag ttcggcaagc agtagggggg actcagagat tcagtgaagg gaacagtaca 420
ttgcgagcga cagtgcaggg agcattcctg tatacaagat taatattatt gtatgaatgt 480
aaattaggtg tgacttctga gggagcgtgg tagcgttgac gaccaccagc gcttcaaacg 540
tgggaatgtg cttgttgaga atcccgacga attgggcgag ttccagggag ggggacctag 600
ctttccaagc aaggtaatat atatataggg gtacacgtga tggacttcgc gaactgaaca 660
aaatacgaag ctcaggtcca gggctccttc ttcatacatt aattaat 707
<210> 7
<211> 793
<212> DNA
<213> Pleurotus eryngii U6 Promoter 4(Pleurotus eryngii U6 Promoter4)
<400> 7
gcgtgtcatc cttgcgcagg ggccatgcta atcttctctg tatcgttcca attttttcgt 60
atgtcacccc gaaggggaca atagttgttg ctcgtgttga ctggatacaa catgacttgt 120
gcgttttgtt cagcgcgcga gcttcccagg ggtacccgcc aactgaaagg ggctcattgc 180
gattacctat tgtctgtcct tgtgtagggg tattttcgac ttgatctatt tcctgaggaa 240
acttgtcaag aatggcacgt atatcacgga agtttgattg tgtctgtacc tgatagagca 300
tggaagtttg gggccgtgga acattcgata ggtcacgaag gcgtaaatac tttacgcgta 360
cctgtgtgtt agttgactgc aatattcaga acgggggtgg agtaactttt caacaggact 420
gggcgacaca acaagactat caacattcac cattctctaa caaacccgtc ctcgcctctc 480
cagactggat ttttccaagg cgtgtgctta gatgtatagt tggcggaggt ctcgcggacg 540
agctgttcgt tgatttctat accgattcca ggacctgcga aacaaggcgt cagatataaa 600
gtcttagaca acgaagatgc agttgacttg ccatggagca acccaagatg gccttccttg 660
atctcaaaca ccgatgggtg cgaaaggtag gtgtacaagt cagcctcttg atcactttca 720
ggagatacat tgtagtgtat ctatgcaatt acaatatgtt actgcgttaa gcaacgggag 780
tgtgtgataa cgc 793
<210> 8
<211> 19
<212> DNA
<213> target site of Pleurotus eryngii pyrG Gene (Pleurotus eryngii pyrG sgRNA)
<400> 8
ggcaatcatc gacgctgta 19
<210> 9
<211> 920
<212> DNA
<213> WT type Pleurotus eryngii pyrG gene (wild type Pleurotus eryngii pyrG)
<400> 9
atgagctcaa agggagtcca ggcattgtca tatgtccaaa gggctgacaa ctacaccaat 60
cctgctgcga aggaactgct tctcaccatg gaacgcaaga agtccaacct ttccgttagc 120
gtggatgtga cgaaatcaag agatttcctg gcaatcatcg acgctgtagg gccatatgcc 180
tgtttaatca aggtaaaccg acctcatttg ttgcacaata ctcgggatct gatgcccaga 240
tctgcgaaag actcatgttg atatacttga agattttgac tttacgttga ttgaaagctt 300
gcaagctttg agcaaaaaac atgacttcat gatcttcgag gacagaaagt ttgcagacat 360
aggtgccact cttcgtagct caacttgaat cgccgttcac agcgcttgta ggaaacaccg 420
ttgcgttaca gtattcaagt ggcgtgcatc gcatcgcgag ttggtcgcag atcacgaatg 480
cccactcagt ccctggtcca tccatcgtcg cagggctttc ttcagtaggc ttacccctcg 540
gacggggtct cctcctcttg gcagaaatga gcacggcggg aaaccttgct gtgggccaat 600
acacagaaga gacttatcag atggctcgcg atcaccggga cttcgtaatc gggttcattg 660
gacaaagacg cccatctggc gagggagatg aggatttcct agtcctgaca cccggagtag 720
gattggatgt gaaggcagat ggtatggggc agcagtacag aacgcctcgc gaagtcatct 780
tggaatcagg ttgcgatgtg attattgtag gacgagggat atatgggaaa gattacagct 840
tgactgaagc catcgctcag caagcggaga ggtaccggga atcggggtgg agcgcatact 900
tagaaaggtg taaatcgtaa 920
<210> 10
<211> 54
<212> DNA
<213> transformant 1 of Pleurotus eryngii pyrG gene fragment (transformation 1 of Plieurotus eryngii pyrG gene segment)
<400> 10
aatcaagaga tttcctggca atcatcgacc gcttgtaggg ccatatgcct gttt 54
<210> 11
<211> 51
<212> DNA
<213> transformant 2 of Pleurotus eryngii pyrG gene fragment (transformation 2 of Plieurotus eryngii pyrG gene segment)
<400> 11
aatcaagaga tttcctggca atcatcgacg gtagggccat atgcctgttt a 51
<210> 12
<211> 43
<212> DNA
<213> transformant 3 of Pleurotus eryngii pyrG gene fragment (transformation 3 of Plieurotus eryngii pyrG gene segment)
<400> 12
aatcaagaga tttcctggca atgtagggcc atatgcctgt tta 43
<210> 13
<211> 46
<212> DNA
<213> transformant 4 of Pleurotus eryngii pyrG gene fragment (transformation 4 of Plieurotus eryngii pyrG gene segment)
<400> 13
aatcaagaga tttcctggca atcattgtag ggccatatgc ctgttt 46
<210> 14
<211> 46
<212> DNA
<213> transformant 5 of Pleurotus eryngii pyrG gene fragment (transformation 5 of Pleurotus eryngii pyrG gene fragment)
<400> 14
aatcaagaga tttcctggca atcatgtagg gccatatgcc tgttta 46
<210> 15
<211> 120
<212> DNA
<213> transformant 6 of the Pleurotus eryngii pyrG gene fragment (transformation 6 of the Pleurotus eryngii pyrG gene fragment)
<400> 15
aatcaagaga tttcctggca atcatcgacg ctaataatat taatcttgta tacaggaatg 60
ctccctgcac tgtcgctcgc aatgtactgt tcccttcacg tagggccata tgcctgttta 120
<210> 16
<211> 173
<212> DNA
<213> transformant 7 of Pleurotus eryngii pyrG gene fragment (transformation 7 of Pleurotus eryngii pyrG gene segment)
<400> 16
aatcaagaga tttcctggca atcatcgacg ctaaagctcg aggaacggac agtaactctg 60
cccgatccca aaccgaagct gaaactagca cacaaaccta tcattgagac tataggtgat 120
actaacgcgg aaaagtcgag cttgaattcg aagtagggcc atatgcctgt tta 173
<210> 17
<211> 923
<212> DNA
<213> left homology arm sequence of Pleurotus eryngii pyrG gene (Pleurotus eryngii pyrG Upstream homologus sequence)
<400> 17
gaatcaaggc tcacctctgc tttataatcc cctcgatctg ggagactccg cgaccgacgt 60
attctgatat ccctacatca gtctctctga acttgtaccc agagccgtct tcagccttct 120
caggtcgagg tacgcctagg agaacgtggc ttgggggtag aatgtcgtcg gcatgcccat 180
ctttgggcgg ggcagtatct gtcgtgactt cgggatcgga ttcctcggaa ggggacgtgg 240
gttctagaga atcctctaat ctagcacgtt ttgaggcgcg ttcaagactc tccgcctcgg 300
cttcgtgttt gagagacatg atcgaagtta ttttgcgaga tggcaagatc acgcgccaga 360
ttgaactcga accatcacca tctcgaggtt tcccacggtt gactcccagt tctcgaggct 420
catcgtcagc cacgcacagg cttccaatgc ctctcttgca ctacgacgac gaggaaaggc 480
agcatggtct cctgccaggg ggtgcttctt ctttaaggag cttaaatgaa gttcacgccc 540
tctgagtcct ggaagggcta tagacttcct ggtgtcggtg ctcccttggt aaaggagctt 600
aaactgggta tatccacgcc tgagtcctgg aatgatgaaa cttccttcgc tatgcctcta 660
tgtccaacac taccttacca accattatca tgcccaccgt ccttgcctgc agcgttaatt 720
cgttgtactc aacccgtacc gcgtcttagt agctttagca tacctgctgc ggtatataaa 780
tgcagacatt aatgaaaata aaaataaaag gcatgatcac gcgcttagta gatgttagat 840
ttcacagccc ctgtctttca ccaaaacgtc ggagccatgt cgaaggttca tccacttccc 900
gaaggcacct actttcaacc atc 923
<210> 18
<211> 996
<212> DNA
<213> sequence of right homology arm of Pleurotus eryngii pyrG gene (Pleurotus eryngii pyrG downstream homologus sequence)
<400> 18
ccgacctcat ttgttgcaca atactcggga tctgatgccc agatctgcga aagactcatg 60
ttgatatact tgaagatttt gactttacgt tgattgaaag cttgcaagct ttgagcaaaa 120
aacatgactt catgatcttc gaggacagaa agtttgcaga cataggtgcc actcttcgta 180
gctcaacttg aatcgccgtt cacagcgctt gtaggaaaca ccgttgcgtt acagtattca 240
agtggcgtgc atcgcatcgc gagttggtcg cagatcacga atgcccactc agtccctggt 300
ccatccatcg tcgcagggct ttcttcagta ggcttacccc tcggacgggg tctcctcctc 360
ttggcagaaa tgagcacggc gggaaacctt gctgtgggcc aatacacaga agagacttat 420
cagatggctc gcgatcaccg ggacttcgta atcgggttca ttggacaaag acgcccatct 480
ggcgagggag atgaggattt cctagtcctg acacccggag taggattgga tgtgaaggca 540
gatggtatgg ggcagcagta cagaacgcct cgcgaagtca tcttggaatc aggttgcgat 600
gtgattattg taggacgagg gatatatggg aaagattaca gcttgactga agccatcgct 660
cagcaagcgg agaggtaccg ggaatcgggg tggagcgcat acttagaaag gtgtaaatcg 720
taaaaaggtg taaatcgtaa ttgatccatt acacccttgc aaactagaaa agcgtatatc 780
tgcacagaca gtctatcggc cacttcaggc ttttgtcgta gaagaaagga aaataacgta 840
caaagagtgg tttccgctta acccgcccta ttgatttggt tcgtattgta cacatggcgc 900
agctcaatca tcgatatcga agacatcttc attatcttgt ttcgaccgtg aagcggacga 960
aaccttgtaa agctgatcta tctggtttgt tggcgc 996
<210> 19
<211> 2636
<212> DNA
<213> insertion of GFP sequence into the left and right homology arms of the Pleurotus eryngii pyrG gene (Pleurotus eryngii pyrG gene homologus sequence and GFP)
<400> 19
gaatcaaggc tcacctctgc tttataatcc cctcgatctg ggagactccg cgaccgacgt 60
attctgatat ccctacatca gtctctctga acttgtaccc agagccgtct tcagccttct 120
caggtcgagg tacgcctagg agaacgtggc ttgggggtag aatgtcgtcg gcatgcccat 180
ctttgggcgg ggcagtatct gtcgtgactt cgggatcgga ttcctcggaa ggggacgtgg 240
gttctagaga atcctctaat ctagcacgtt ttgaggcgcg ttcaagactc tccgcctcgg 300
cttcgtgttt gagagacatg atcgaagtta ttttgcgaga tggcaagatc acgcgccaga 360
ttgaactcga accatcacca tctcgaggtt tcccacggtt gactcccagt tctcgaggct 420
catcgtcagc cacgcacagg cttccaatgc ctctcttgca ctacgacgac gaggaaaggc 480
agcatggtct cctgccaggg ggtgcttctt ctttaaggag cttaaatgaa gttcacgccc 540
tctgagtcct ggaagggcta tagacttcct ggtgtcggtg ctcccttggt aaaggagctt 600
aaactgggta tatccacgcc tgagtcctgg aatgatgaaa cttccttcgc tatgcctcta 660
tgtccaacac taccttacca accattatca tgcccaccgt ccttgcctgc agcgttaatt 720
cgttgtactc aacccgtacc gcgtcttagt agctttagca tacctgctgc ggtatataaa 780
tgcagacatt aatgaaaata aaaataaaag gcatgatcac gcgcttagta gatgttagat 840
ttcacagccc ctgtctttca ccaaaacgtc ggagccatgt cgaaggttca tccacttccc 900
gaaggcacct actttcaacc atcatgagta aaggagaaga acttttcact ggagttgtcc 960
caattcttgt tgaattagat ggtgatgtta atgggcacaa attttctgtc agtggagagg 1020
gtgaaggtga tgcaacatac ggaaaactta cccttaaatt tatttgcact actggaaaac 1080
tacctgttcc atggccaaca cttgtcacta ctttctctta tggtgttcaa tgcttttcaa 1140
gatacccaga tcatatgaag cggcacgact tcttcaagag cgccatgcct gagggatacg 1200
tgcaggagag gaccatcttc ttcaaggacg acgggaacta caagacacgt gctgaagtca 1260
agtttgaggg agacaccctc gtcaacagga tcgagcttaa gggaatcgat ttcaaggagg 1320
acggaaacat cctcggccac aagttggaat acaactacaa ctcccacaac gtatacatca 1380
tggccgacaa gcaaaagaac ggcatcaaag ccaacttcaa gacccgccac aacatcgaag 1440
acggcggcgt gcaactcgct gatcattatc aacaaaatac tccaattggc gatggccctg 1500
tccttttacc agacaaccat tacctgtcca cacaatctgc cctttcgaaa gatcccaacg 1560
aaaagagaga ccacatggtc cttcttgagt ttgtaacagc tgctgggatt acacatggca 1620
tggatgaact atacaaataa ccgacctcat ttgttgcaca atactcggga tctgatgccc 1680
agatctgcga aagactcatg ttgatatact tgaagatttt gactttacgt tgattgaaag 1740
cttgcaagct ttgagcaaaa aacatgactt catgatcttc gaggacagaa agtttgcaga 1800
cataggtgcc actcttcgta gctcaacttg aatcgccgtt cacagcgctt gtaggaaaca 1860
ccgttgcgtt acagtattca agtggcgtgc atcgcatcgc gagttggtcg cagatcacga 1920
atgcccactc agtccctggt ccatccatcg tcgcagggct ttcttcagta ggcttacccc 1980
tcggacgggg tctcctcctc ttggcagaaa tgagcacggc gggaaacctt gctgtgggcc 2040
aatacacaga agagacttat cagatggctc gcgatcaccg ggacttcgta atcgggttca 2100
ttggacaaag acgcccatct ggcgagggag atgaggattt cctagtcctg acacccggag 2160
taggattgga tgtgaaggca gatggtatgg ggcagcagta cagaacgcct cgcgaagtca 2220
tcttggaatc aggttgcgat gtgattattg taggacgagg gatatatggg aaagattaca 2280
gcttgactga agccatcgct cagcaagcgg agaggtaccg ggaatcgggg tggagcgcat 2340
acttagaaag gtgtaaatcg taaaaaggtg taaatcgtaa ttgatccatt acacccttgc 2400
aaactagaaa agcgtatatc tgcacagaca gtctatcggc cacttcaggc ttttgtcgta 2460
gaagaaagga aaataacgta caaagagtgg tttccgctta acccgcccta ttgatttggt 2520
tcgtattgta cacatggcgc agctcaatca tcgatatcga agacatcttc attatcttgt 2580
ttcgaccgtg aagcggacga aaccttgtaa agctgatcta tctggtttgt tggcgc 2636

Claims (5)

1. A CRISPR/Cas9 vector for pleurotus eryngii gene editing is characterized in that the CRISPR/Cas9 vector is a recombinant vector for editing pleurotus eryngii genes, which is obtained by loading a Cas9 protein, a U6 promoter and a nucleotide sequence of sgRNA on a plasmid; the nucleotide sequence of the U6 promoter is selected from SEQ ID NO.4, SEQ ID NO.5, SEQ ID NO.6 or SEQ ID NO. 7; the nucleotide sequence of the Cas9 protein is shown as SEQ ID NO. 3; the nucleotide sequence of the sgRNA is shown in SEQ ID NO. 8.
2. The CRISPR/Cas9 vector for Pleurotus eryngii gene editing according to claim 1, wherein the recombinant vector further comprises a GFP nucleotide sequence and nucleotide sequences of left and right homologous arms of a target gene.
3. A U6 promoter applied to the CRISPR/Cas9 vector of claim 1 or claim 2, wherein the nucleotide sequence of the U6 promoter is selected from SEQ ID No.4, SEQ ID No.5, SEQ ID No.6 or SEQ ID No. 7.
4. A method for editing genome fragments of Pleurotus eryngii strains, which is characterized in that the Pleurotus eryngii strains are transformed by the CRISPR/Cas9 vector as claimed in claim 1 or claim 2, and target genes of the Pleurotus eryngii strains are edited.
5. The method for editing genomic fragments of Pleurotus eryngii strain according to claim 4, wherein said strain is Pleurotus eryngii strainCbx R Resistant strains.
CN201811256669.1A 2018-10-26 2018-10-26 Cas9 protein, CRISPR/Cas9 system, mushroom gene editing method and application Active CN109321548B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811256669.1A CN109321548B (en) 2018-10-26 2018-10-26 Cas9 protein, CRISPR/Cas9 system, mushroom gene editing method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811256669.1A CN109321548B (en) 2018-10-26 2018-10-26 Cas9 protein, CRISPR/Cas9 system, mushroom gene editing method and application

Publications (2)

Publication Number Publication Date
CN109321548A CN109321548A (en) 2019-02-12
CN109321548B true CN109321548B (en) 2021-02-09

Family

ID=65262847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811256669.1A Active CN109321548B (en) 2018-10-26 2018-10-26 Cas9 protein, CRISPR/Cas9 system, mushroom gene editing method and application

Country Status (1)

Country Link
CN (1) CN109321548B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825532B (en) * 2019-03-04 2019-12-10 中国科学院昆明植物研究所 Application of CRISPR/Cas12a gene editing system in physcomitrella patens gene editing
CN111349649B (en) * 2020-03-16 2020-11-17 三峡大学 Method for gene editing of agaricus bisporus and application
CN111575291B (en) * 2020-05-29 2022-06-14 南京师范大学 Promoter capable of efficiently driving exogenous gene expression in pleurotus eryngii
CN112111507B (en) * 2020-08-10 2022-08-23 江苏大学 Grifola frondosa CRISPR-Cas9 gene editing system, method and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106318947A (en) * 2016-10-17 2017-01-11 北京大北农科技集团股份有限公司 Genome editing system and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106318947A (en) * 2016-10-17 2017-01-11 北京大北农科技集团股份有限公司 Genome editing system and application thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AII16583.1 Cas9 endonuclease [Expression vector pCas9];Wagner J.C et al;《GenBank》;20140809;参见标题、"FEATURES"和"Origin"部分 *
Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus;Y. Honda et al;《Curr Genet》;20000315;第37卷;参见摘要、第211页右栏第2段 *
Gene-edited CRISPR mushroom escapes US regulation;EMILY WALTZ;《nature》;20160421;第532卷;全文 *
Y. Honda et al.Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus.《Curr Genet》.2000,第37卷参见摘要、第211页右栏第2段. *
基于CRISPR/Cas9系统的金针菇基因组编辑载体构建;罗润等;《食品工业科技》;20160726;第37卷(第20期);参见摘要以及第1.2.1-1.2.4部分、第233页左栏最后一段至右栏第1段 *
罗润等.基于CRISPR/Cas9系统的金针菇基因组编辑载体构建.《食品工业科技》.2016,第37卷(第20期),参见摘要以及第1.2.1-1.2.4部分、第233页左栏最后一段至右栏第1段. *

Also Published As

Publication number Publication date
CN109321548A (en) 2019-02-12

Similar Documents

Publication Publication Date Title
CN109321548B (en) Cas9 protein, CRISPR/Cas9 system, mushroom gene editing method and application
CN110527697B (en) RNA fixed-point editing technology based on CRISPR-Cas13a
CN110747187B (en) Cas12a protein for identifying TTTV and TTV double-PAM sites, plant genome directed editing vector and method
CN108546716A (en) A kind of genome edit methods
US20170088845A1 (en) Vectors and methods for fungal genome engineering by crispr-cas9
CN109136248B (en) Multi-target editing vector and construction method and application thereof
CN107446924A (en) A kind of Kiwi berry Gene A cPDS based on CRISPR Cas9 edits carrier and its construction method and application
CN110331146A (en) It is a kind of regulation sgRNA transcription promoter, expression vector and its genome editing system and application
CN112522125B (en) Hyaluronidase engineering bacterium and construction method and application thereof
CN107603980A (en) A kind of Kiwi berry Gene A cPDS based on PTG Cas9 edits carrier and its construction method and application
CN115011616A (en) Acetaldehyde dehydrogenase gene RKALDH and application thereof
CN111088275A (en) Cloning method of DNA large fragment
US20240084285A1 (en) Method for producing target dna sequence and cloning vector
EP0321488B1 (en) Production of phenylalanine ammonia lyase
CN111733160A (en) Method for performing CKIP-1 gene knockout on mesenchymal stem cells by using CRISPR-Cas9 system
CN116716298A (en) Guide editing system and fixed-point modification method of target gene sequence
CN111019967A (en) Application of GmU3-19g-1 and GmU6-16g-1 promoters in soybean polygene editing system
CN111662932B (en) Method for improving homologous recombination repair efficiency in CRISPR-Cas9 gene editing
CN113429467B (en) Application of NPF7.6 protein in regulation and control of nitrogen tolerance of leguminous plant root nodule
CN111334523A (en) In-vivo multi-round iterative assembly method for large-scale DNA
CN102212546B (en) Integrative Candida maltose gene expression system and applications thereof
KR102551064B1 (en) Novel U6 promoter separated form grapevine and use of the same
JP2008507266A (en) Malate synthase regulatory sequence for heterologous gene expression in Pichia
CN111235185B (en) Method for realizing gene editing and screening based on LAC4 gene
CN112831517B (en) Lycopene gene-mediated modification cloning vector and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant