KR102551064B1 - Novel U6 promoter separated form grapevine and use of the same - Google Patents

Novel U6 promoter separated form grapevine and use of the same Download PDF

Info

Publication number
KR102551064B1
KR102551064B1 KR1020230023709A KR20230023709A KR102551064B1 KR 102551064 B1 KR102551064 B1 KR 102551064B1 KR 1020230023709 A KR1020230023709 A KR 1020230023709A KR 20230023709 A KR20230023709 A KR 20230023709A KR 102551064 B1 KR102551064 B1 KR 102551064B1
Authority
KR
South Korea
Prior art keywords
promoter
vviu6
grape
dna
present
Prior art date
Application number
KR1020230023709A
Other languages
Korean (ko)
Other versions
KR20230041978A (en
Inventor
김군보
문정환
유희주
Original Assignee
명지대학교 산학협력단
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단, 가톨릭대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to KR1020230023709A priority Critical patent/KR102551064B1/en
Publication of KR20230041978A publication Critical patent/KR20230041978A/en
Application granted granted Critical
Publication of KR102551064B1 publication Critical patent/KR102551064B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

본 발명은 포도속 식물에서 분리되고 가이드 RNA(gRNA)의 전사 활성이 높은 신규 U6 프로모터를 제공한다. 본 발명에서 제공하는 포도속 식물에서 분리된 신규한 U6 프로모터는 애기장대에서 분리된 AtU6-26 프로모터에 비해 포도 식물체에서 표적 가이드 RNA(gRNA) 전사 활성이 현저하게 우수하다. 따라서, 본 발명에서 제공하는 포도속 식물에서 분리된 신규한 U6 프로모터는 CRISPR 체계를 이용한 포도속 식물 유전체 편집의 효율성과 용이성을 높일 수 있다. 나아가, 본 발명에서 제공하는 포도속 식물에서 분리된 신규한 U6 프로모터 및 이를 포함하는 재조합 벡터 시스템을 사용하면 잡종 품종인 포도의 유전자 기능 연구나 신품종 개발을 용이하게 수행할 수 있다.The present invention provides a novel U6 promoter isolated from grape genus plants and having high guide RNA (gRNA) transcriptional activity. The novel U6 promoter isolated from grape plants provided in the present invention has significantly superior target guide RNA (gRNA) transcriptional activity in grape plants compared to the AtU6-26 promoter isolated from Arabidopsis. Therefore, the novel U6 promoter isolated from the vine plant provided in the present invention can increase the efficiency and ease of genome editing of the vine plant using the CRISPR system. Furthermore, using the novel U6 promoter isolated from grape genus plants provided in the present invention and a recombinant vector system including the same, it is possible to easily perform research on gene function or development of new varieties of grapes, which are hybrid varieties.

Description

포도에서 분리된 신규 U6 프로모터 및 이의 용도{Novel U6 promoter separated form grapevine and use of the same}Novel U6 promoter separated form grapevine and use of the same}

본 발명은 신규 U6 프로모터 및 이의 용도에 관한 것으로서, 더 상세하게는 포도에서 분리되고 가이드 RNA(gRNA)의 발현 효율이 높은 신규 U6 프로모터 및 이를 이용하여 포도속 식물의 유전체를 편집하기 위한 재조합 벡터 및 포도속 식물의 유전체를 편집하는 방법에 관한 것이다.The present invention relates to a novel U6 promoter and its use, and more particularly, to a novel U6 promoter isolated from grapes and having high guide RNA (gRNA) expression efficiency, and a recombinant vector for editing the genome of grape plants using the same, and It relates to a method for editing the genome of vine plants.

포도는 포도과(family Vitaceae), 포도속(genus Vitis), 진정포도아속(subgenus Euvitis)에 속하는 식물로서, 영양성분이 풍부한 과실을 생산하여 생과로 이용되거나 와인, 건포도, 잼, 주스, 젤리, 식초, 기름 등의 가공식품 제조에 활용된다. 포도는 세계적으로 7백만 ha 이상의 농지에서 재배되고 있으며, 연간 7천 9백만 톤 이상이 생산되고 있는 등, 경제적 비중이 매우 과실이다. 2007년과 2011년에 피노누아(Pinot Noir) 참조 품종의 포도 유전체 정보가 발표되었고, 이를 바탕으로 전통 육종과 생명공학 기술을 이용하여 다양한 품종이 개량되고 있다. 포도 품종 개량의 주된 목표는 와인 양조 특성, 향기와 미각 성분, 종자의 유무(무핵 또는 무핵 과실), 과실의 크기, 병저항성 등이 있다.Grape is a plant belonging to the family Vitaceae, genus Vitis , and subgenus Euvitis . It produces fruit rich in nutrients and is used as raw fruit or used as wine, raisins, jam, juice, jelly, and vinegar. It is used in the manufacture of processed foods such as , oil, etc. Grapes are grown on more than 7 million hectares of farmland worldwide, and more than 79 million tons are produced annually. In 2007 and 2011, the grape genome information of the Pinot Noir reference variety was announced, and based on this, various varieties are being improved using traditional breeding and biotechnology. The main goals of grape variety improvement include winemaking characteristics, aroma and taste components, presence or absence of seeds (nuclear or non-nuclear fruit), fruit size, and disease resistance.

식물체의 유전 개량을 위한 생명공학 기술로는 아그로박테리움 균을 이용하거나 유전자총(biolistic bombardment)을 이용한 형질전환 식물체 제작 기술, 또는 바이러스를 매개로 하는 일시적인 유전자발현 저해(Virus-induced Gene Silencing, VIGS) 기술 등이 이용되어 왔다. 이 기술들은 포도 유전자의 기능을 분석하거나, 유전자의 도입 또는 발현 조절을 통해 새로운 품종을 개발하는데 이용된다. 최근에 제시된 크리스퍼(Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR) 유전체 편집(genome editing) 기술은 유전자의 기능결손(knock-out), 치환(displacement), 발현조절 등이 가능하여, 유전자 기능 분석과 품종 개발 등에 활용될 수 있다.Biotechnology for genetic improvement of plants includes the use of Agrobacterium bacteria, the production of transgenic plants using a biolistic bombardment, or virus-induced gene silencing (VIGS). ) techniques have been used. These techniques are used to analyze the function of grape genes or to develop new varieties through gene introduction or regulation of expression. The recently proposed CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR) genome editing technology is capable of gene knock-out, displacement, expression control, etc. It can be used for development, etc.

유전체 편집 기술의 요소는 표적 부분인 20개 내외의 염기서열을 포함하고 있는 CRISPR RNA(crRNA)와 회문 구조를 가지는 trans-activating CRISPR RNA(tracrRNA), 또는 이 둘을 하나로 합친 sgRNA(single guide RNA)와; Cas9 효소 등과 같이 핵산을 절단하는 CRISPR-associated systems(Cas) 단백질이다. 이 요소들을 T-DNA 플라스미드 벡터에 유전자 형태로 도입하여 식물체 내에서 발현시키거나; 또는 RNA와 단백질 형태로 식물체 내에 주입시킴으로써 소기의 목적을 얻을 수 있다. 이 경우, 기존의 기술들과 달리 외래유전자의 도입 없이 유전자 기능 결손을 얻을 수 있기 때문에 신품종 포도 개발에 적극적으로 활용되고 있다[Wang X, et al. (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16: 844-855; Ren C, et al. (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports 6: 32289; Sunitha and Rock (2020) CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine rootstock 101-14. Transgenic Research 29: 355-367; Wan, et al. (2020) CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Hortic Res 7: 116)]. 아그로박테리움을 이용한 형질전환에 의해 식물체 염색체에 T-DNA의 일부분으로 도입된 CRISPR 요소들은 이후 형질전환 식물체를 교배시킴으로써 제거될 수 있을 것으로 기대된다. 최근에는 원형질체에 Cas9 등의 CRISPR 제한효소와 표적을 지시하는 가이드 RNA(guide RNA)를 일시적으로 주입하여 유전자를 편집하고, 이 세포들로부터 식물체를 재생하는 핵산-비의존적 유전체 편집(DNA-free genome editing) 기술로 유전자 조작 식물에 대해 제기되는 사회적 우려를 회피하는 방안도 제시되었다[Malnoy, et al. (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7: 1904].The elements of genome editing technology are CRISPR RNA (crRNA) containing around 20 nucleotide sequences as a target part, trans-activating CRISPR RNA (tracrRNA) having a palindromic structure, or sgRNA (single guide RNA) combining the two into one and; It is a CRISPR-associated systems (Cas) protein that cleave nucleic acids, such as the Cas9 enzyme. These elements are introduced in the form of genes into T-DNA plasmid vectors to be expressed in plants; Alternatively, the intended purpose can be obtained by injecting it into the plant in the form of RNA and protein. In this case, unlike existing technologies, gene function defects can be obtained without introduction of foreign genes, so it is actively used in the development of new grape varieties [Wang X, et al. (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16: 844-855; Ren C, et al. (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay ( Vitis vinifera L.). Scientific Reports 6: 32289; Sunitha and Rock (2020) CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine rootstock 101-14. Transgenic Research 29: 355-367; Wan, et al. (2020) CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine ( Vitis vinifera ). Hortic Res 7: 116)]. It is expected that the CRISPR elements introduced as part of the T-DNA into the plant chromosome by transformation using Agrobacterium can be removed by crossing the transgenic plants thereafter. Recently, nucleic acid-independent genome editing (DNA-free genome editing), in which genes are edited by temporarily injecting CRISPR restriction enzymes such as Cas9 and target-directing guide RNA into protoplasts, and plants are regenerated from these cells. editing) technology was also proposed to avoid social concerns raised about genetically modified plants [Malnoy, et al. (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7: 1904].

한편, 유전체 편집의 성공 효율은 crRNA의 선택과 CRISPR 요소들의 활성 농도에 의존적이다. 현재 포도에서 sgRNA의 발현은 애기장대(Arabidopsis thaliana)에서 분리한 AtU6-26 프로모터를 주로 사용하고 있다. U6 snRNA(small nuclear RNA) 유전자 프로모터, 간단하게는 U6 프로모터에는 RNA 중합효소 Ⅲ(RNA polymerase Ⅲ)가 작용하는데[Waibel and Filipowicz (1990) U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase II-transcribed U-snRNA genes. Nucleic Acids Res 18: 3451-3458], U6 프로모터의 전사활성은 프로모터 영역에 공통적으로 존재하는 근위서열요소(Proximal Sequence Element, PSE 또는 USE)와 그보다 더 상위에 덜 보존적으로 존재하는 원위서열요소(Distal Sequence Element, DSE)에 의해서 영향을 받는다[Danzeiser, et al. (1993) Functional characterization of elements in a human U6 small nuclear RNA gene distal control region. Molecular and cellular biology 13: 4670-4678; Waibel and Filipowicz (1990) RNA-polymerase specificity of transcription of Arabidopsis U snRNA genes determined by promoter element spacing. Nature 346: 199-202). U6 프로모터의 전사활성은 종 간에 차이가 있고, 종 내에서도 어느 U6 snRNA 유전자인가에 따라 차이가 있다[Wang, et al. (2008) Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. RNA 14: 903-913.; Li, et al. (2007) Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. Journal of Integrative Plant Biology 49: 222-229; Kim and Nam (2013) Isolation and characterization of Medicago truncatula U6 promoters for the construction of small hairpin RNA-mediated gene silencing vectors. Plant Molecular Biology Reporter 31: 581-593]. 또한, 프로모터 부위의 재설계를 통해 전사활성을 높일 수도 있다[Xia, et al. (2003). An enhanced U6 promoter for synthesis of short hairpin RNA. Nucleic Acids Research 31: e100-e100.; Preece, et al. (2020) 'Mini' U6 Pol III promoter exhibits nucleosome redundancy and supports multiplexed coupling of CRISPR/Cas9 effects. Gene therapy 27: 451-458]. 인간 U6 프로모터에 존재하는 원위서열요소(DSE)는 ‘ATTTGCAT’서열과 같이 8개의 염기로 구성된 Oct-1 결합자리가 중요하다[Danzeiser, et al. (1993). Functional characterization of elements in a human U6 small nuclear RNA gene distal control region. Molecular and cellular biology 13: 4670-4678]. Oct-1 결합자리는 식물 중에서 메디카고 트렁카툴라(Medicago truncatula)에도 보존되어 있으나 애기장대와 벼에는 존재하지 않는다[Kim and Nam (2013) Isolation and characterization of Medicago truncatula U6 promoters for the construction of small hairpin RNA-mediated gene silencing vectors. Plant Molecular Biology Reporter 31: 581-593]. 또한, 메디카고 트렁카툴라의 MtU6-6 프로모터, 애기장대의 AtU6-26 프로모터 및 벼의 OsU6.11-1 프로모터에는 ‘AATCTGAA’의 서열과 같이 8개의 염기로 구성된 보존 서열인 DSE5가 공통적으로 존재한다. DSE5가 제외된 메디카고 트렁카툴라 MtU6-6 프로모터는 전사활성이 39% 수준으로 감소하였기 때문에 DSE5는 적어도 메디카고 트렁카툴라에서 MtU6 프로모터의 전사활성을 조절하는 핵심적인 요소일 것으로 제안되었다[Kim and Nam (2013) Isolation and characterization of Medicago truncatula U6 promoters for the construction of small hairpin RNA-mediated gene silencing vectors. Plant Molecular Biology Reporter 31: 581-593].On the other hand, the success efficiency of genome editing depends on the selection of crRNA and the active concentration of CRISPR elements. Currently, the expression of sgRNA in grapes mainly uses the AtU6-26 promoter isolated from Arabidopsis thaliana . U6 snRNA (small nuclear RNA) gene promoter, in short, RNA polymerase Ⅲ (RNA polymerase Ⅲ) acts on the U6 promoter [Waibel and Filipowicz (1990) U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase II-transcribed U-snRNA genes. Nucleic Acids Res 18: 3451-3458], the transcriptional activity of the U6 promoter is determined by the proximal sequence element (PSE or USE) commonly present in the promoter region and the distal sequence element (PSE or USE) that is less conserved higher than that. Distal Sequence Element, DSE) [Danzeiser, et al. (1993) Functional characterization of elements in a human U6 small nuclear RNA gene distal control region. Molecular and cellular biology 13: 4670-4678; Waibel and Filipowicz (1990) RNA-polymerase specificity of transcription of Arabidopsis U snRNA genes determined by promoter element spacing. Nature 346: 199-202). The transcriptional activity of the U6 promoter differs between species and within a species depending on which U6 snRNA gene is used [Wang, et al. (2008) Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. RNA 14: 903-913.; Li, et al. (2007) Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. Journal of Integrative Plant Biology 49: 222-229; Kim and Nam (2013) Isolation and characterization of Medicago truncatula U6 promoters for the construction of small hairpin RNA-mediated gene silencing vectors. Plant Molecular Biology Reporter 31: 581-593]. In addition, transcriptional activity can be increased by redesigning the promoter region [Xia, et al. (2003). An enhanced U6 promoter for synthesis of short hairpin RNA. Nucleic Acids Research 31: e100-e100.; Preece, et al. (2020) 'Mini' U6 Pol III promoter exhibits nucleosome redundancy and supports multiplexed coupling of CRISPR/Cas9 effects. Gene therapy 27: 451-458]. The distal sequence element (DSE) present in the human U6 promoter is important for the Oct-1 binding site consisting of 8 bases, such as the 'ATTTGCAT' sequence [Danzeiser, et al. (1993). Functional characterization of elements in a human U6 small nuclear RNA gene distal control region. Molecular and cellular biology 13: 4670-4678]. The Oct-1 binding site is also conserved in Medicago truncatula among plants, but does not exist in Arabidopsis and rice [Kim and Nam (2013) Isolation and characterization of Medicago truncatula U6 promoters for the construction of small hairpin RNA-mediated gene silencing vectors. Plant Molecular Biology Reporter 31: 581-593]. In addition, the MtU6-6 promoter of Medicago truncatula, the AtU6-26 promoter of Arabidopsis, and the OsU6.11-1 promoter of rice have DSE5, a conserved sequence consisting of 8 bases, similar to the sequence of 'AATCTGAA'. do. Since the transcriptional activity of the Medicago truncatula MtU6-6 promoter excluding DSE5 was reduced by 39%, DSE5 was suggested to be a key factor regulating the transcriptional activity of the MtU6 promoter, at least in Medicago truncatula [Kim and Nam (2013) Isolation and characterization of Medicago truncatula U6 promoters for the construction of small hairpin RNA-mediated gene silencing vectors. Plant Molecular Biology Reporter 31: 581-593].

이처럼 종마다 또는 종내의 U6 유전자마다 프로모터의 구조가 다르기 때문에, U6 프로모터별로 유전체 편집을 위한 가이드 RNA(guide RNA, gRNA)를 전사시키는 활성이 다를 수 있다. 종에 특이적인 U6 프로모터를 사용한 유전체 편집 효율 향상은 대두, 면화, 메디카고 트렁카툴라, 감자, 치커리 등과 같이 여러 식물들에서 실험적으로 확인되고 있다[Sun, et al. (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5: 10342; Long, et al. (2018). Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14: 85-85; Kim, et al. (2019) MtGA2ox10 encoding C20-GA2-oxidase regulates rhizobial infection and nodule development in Medicago truncatula. Sci Rep 9: 5952; Johansen, (2019). High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 9: 17715-17715; Bernard, et al. (2019) Efficient genome editing using CRISPR/Cas9 technology in chicory. Int J Mol Sci 20: 1155].As such, since the promoter structure is different for each species or for each U6 gene within a species, the activity of transcribing guide RNA (gRNA) for genome editing may be different for each U6 promoter. Improvement in genome editing efficiency using a species-specific U6 promoter has been experimentally confirmed in several plants, such as soybean, cotton, Medicago truncatula, potato, and chicory [Sun, et al. (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5: 10342; Long, et al. (2018). Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14: 85-85; Kim, et al. (2019) MtGA2ox10 encoding C20-GA2-oxidase regulates rhizobial infection and nodule development in Medicago truncatula . Sci Rep 9: 5952; Johansen, (2019). High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 9: 17715-17715; Bernard, et al. (2019) Efficient genome editing using CRISPR/Cas9 technology in chicory. Int J Mol Sci 20: 1155].

U6 프로모터에 의한 가이드 RNA(guide RNA, gRNA)의 고발현은 특히 원형질체 유전체 편집에서 중요하다. 원형질체 유전체 편집은 가이드 RNA(guide RNA, gRNA) 후보의 유전체 편집 효율을 평가하는 방법이 될 수도 있으며[Lin, et al. (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnology Journal 16: 1295-1310], 유전체로 T-DNA를 삽입하지 않고 유전체가 편집된 식물체를 얻는 DNA-free 유전체 편집 기술로도 사용될 수 있다[Woo, et al. (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol. 33:1162-1164].High expression of guide RNA (gRNA) by the U6 promoter is particularly important in protoplast genome editing. Protoplast genome editing can also be a method to evaluate the genome editing efficiency of guide RNA (gRNA) candidates [Lin, et al. (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnology Journal 16: 1295-1310], and can also be used as a DNA-free genome editing technology to obtain genome-edited plants without inserting T-DNA into the genome [Woo, et al. (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol. 33:1162-1164].

원형질체 유전체 편집은 포도를 비롯하여 잡종으로 품종이 유지되는 다년생 식물의 유전체 편집에 특히 유용하다. 외래유전자가 삽입된 아그로박테리움을 이용한 형질전환 방법은 염색체 재조합에 의해서 그 삽입된 T-DNA가 없어진 후대를 선발해야 비로소 외래유전자가 삽입되지 않은 개체를 얻게 된다. 그런데 이 과정에서 원래의 품종이 가진 유전형이 달라지는 문제가 있다. 이에 반해 원형질체 유전체 편집은 원형질체에 주입하는 CRISPR 요소인 Cas9 단백질과 sgRNA가 일시적으로만 존재하고, 이후 그로부터 재생되는 유전체 편집 식물체는 외래유전자가 없는 상태가 되는 장점이 있다. 즉, 포도는 대부분의 품종이 잡종이기 때문에 품종 개량 측면에서 원형질체 유전체 편집이 유용하며, 포도 원형질체 유전체의 편집을 위해 sgRNA를 고효율 발현시키거나 전달하는 방법이 필요하다.Protoplast genome editing is particularly useful for genome editing of grapes and other perennial plants that are maintained as hybrids. In the transformation method using Agrobacterium into which the foreign gene has been inserted, individuals without the foreign gene are obtained only after selection of progeny in which the inserted T-DNA has been eliminated through chromosomal recombination. However, in this process, there is a problem that the original breed has a different genotype. On the other hand, protoplast genome editing has the advantage that the Cas9 protein and sgRNA, which are CRISPR elements injected into the protoplast, exist only temporarily, and then the genome-edited plant regenerated therefrom is free of foreign genes. That is, since most grape varieties are hybrids, protoplast genome editing is useful in terms of breed improvement, and a method for highly efficient expression or delivery of sgRNA is required for grape protoplast genome editing.

포도 품종은 대부분 유전적 배경이 다른 부모 개체를 교잡시켜 육성한 잡종 유전형이며 외래유전자 삽입문제를 고려할 때, 아그로박테리움을 이용한 형질전환에 비해 원형질체 형질주입(transfection)이 더 나은 방법이다. 이때 원형질체에 형질주입되는 CRISPR 요소의 형태는 Cas 단백질과 가이드 RNA(guide RNA, gRNA) 형태, 또는 플라스미드나 mRNA 형태일 수 있다. 이중 Cas 단백질과 합성 가이드 RNA(guide RNA)를 혼합하여 원형질체에 주입하는 DNA-free 유전체 편집 방법은 식물 유전체에 외래유전자가 도입될 가능성이 없기 때문에 최선의 유전체 편집 방법으로 제안되었고[Woo, et al. (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol. 33:1162-1164)], 포도 원형질체에서도 검증되었다[Malnoy, et al. (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7: 1904]. 다른 한편으로, 원형질체 유전체 편집을 위해 Cas 단백질 유전자와 가이드 RNA(guide RNA) 유전자가 클로닝 된 재조합 플라스미드를 이용할 수도 있다[Lin, et al. (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnology J 16: 1295-1310]. 재조합 플라스미드를 이용한 포도 유전체 편집에서 U6 프로모터로 현재 애기장대의 U6 프로모터가 사용되고 있다. 앞에서 언급한 바와 같이 여러 식물 종에서 전사능력이 높은 고유한 U6 프로모터를 사용함으로써 유전체 편집 효율을 높일 수 있는 가능성이 있으나, 아직 포도 고유의 U6 프로모터는 발표되지 않았다.Most grape varieties are hybrid genotypes bred by crossing parents with different genetic backgrounds, and protoplast transfection is a better method than transformation using Agrobacterium considering the problem of inserting foreign genes. At this time, the form of the CRISPR element transfected into the protoplast may be in the form of Cas protein and guide RNA (guide RNA, gRNA), or plasmid or mRNA form. A DNA-free genome editing method in which a double Cas protein and a synthetic guide RNA are mixed and injected into protoplasts has been proposed as the best genome editing method because there is no possibility of foreign genes being introduced into the plant genome [Woo, et al. . (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol. 33:1162-1164)], and also verified in grape protoplasts [Malnoy, et al. (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7: 1904]. On the other hand, a recombinant plasmid in which a Cas protein gene and a guide RNA gene are cloned can be used for protoplast genome editing [Lin, et al. (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnology J 16: 1295-1310]. Currently, the U6 promoter of Arabidopsis is used as the U6 promoter in grape genome editing using a recombinant plasmid. As mentioned above, there is a possibility that the efficiency of genome editing can be increased by using the unique U6 promoter with high transcription ability in various plant species, but the U6 promoter unique to grapes has not been published yet.

포도 원형질체의 유전체 편집 사례는 드물며, RNP 복합체(ribonucleoprotein complex)를 사용하는 DNA-free 유전체 편집 방법을 통해 포도의 주요 병해인 흰가루병 저항성 연관 유전자인 MLO-7을 결손시키는 연구가 보고된 바 있다[Malnoy, et al. (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7: 1904]. 그러나, 상기 연구에서 딥 시퀀싱(Deep sequencing)을 이용하여 표적 결손율을 조사한 결과 매우 낮은 적중 효율을 나타내었다. 또한, Cas9 단백질과 sgRNA를 합성 및 정제하는 비용 때문에 많은 수의 후보 sgRNA를 자유롭게 적용하기 어렵다. 또한, 유전체 편집 적중 효율이 낮으면 그에 비례하여 후속의 식물체 재생 단계에서 유전체 편집 세포 또는 캘러스 군집의 선발이 어렵고 최종적인 성공 가능성이 낮아진다. 이러한 현실적인 이유들로 인하여, 현재 유전체가 편집된 포도 식물체 획득은 대부분 아그로박테리움을 이용한 형질전환에 의존하고 있다.Cases of genome editing in grape protoplasts are rare, and a study has been reported to delete MLO-7, a gene associated with resistance to powdery mildew, a major disease of grapes, through a DNA-free genome editing method using a RNP complex (ribonucleoprotein complex) [Malnoy , et al. (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7: 1904]. However, as a result of examining the target deletion rate using deep sequencing in the above study, the targeting efficiency was very low. In addition, it is difficult to freely apply a large number of candidate sgRNAs due to the cost of synthesizing and purifying the Cas9 protein and sgRNAs. In addition, if the genome editing hit efficiency is low, it is difficult to select genome-edited cells or callus populations in the subsequent plant regeneration step and the final probability of success is lowered in proportion thereto. For these practical reasons, most of the current genome-edited grape plants are obtained through transformation using Agrobacterium.

원형질체 유전체 편집의 적중 효율을 높이기 위해서, RNP 복합체(ribonucleoprotein complex)외에 플라스미드를 이용할 수 있다. 이때 기대되는 장점은 생체내(in-vivo) 상태에서 sgRNA(single guide RNA)가 전사되고 Cas9 단백질이 생성되기 때문에 합성과 정제의 과정이 필요없으며, 플라스미드가 상당기간 원형질체 세포 안에 존재하며 반복적으로 DNA 주형 역할을 하기 때문에 CRISPR 요소들의 수준이 높을 수 있다는 점 등이다. 이를 위해서 sgRNA(single guide RNA) 또는 가이드 RNA(guide RNA, gRNA)의 발현 수준을 높이기 위한 고유 프로모터의 개발이 필요하다.In order to increase the targeting efficiency of protoplast genome editing, plasmids other than RNP complexes (ribonucleoprotein complexes) can be used. The expected advantage at this time is that sgRNA (single guide RNA) is transcribed and Cas9 protein is produced in vivo, so there is no need for synthesis and purification processes, and the plasmid exists in the protoplast cell for a considerable period of time and repeatedly DNA Because they serve as templates, the level of CRISPR elements can be high. To this end, it is necessary to develop a unique promoter to increase the expression level of sgRNA (single guide RNA) or guide RNA (gRNA).

본 발명은 종래의 기술적 배경하에서 도출된 것으로서, 본 발명의 목적은 포도에서 분리되고 가이드 RNA(gRNA)의 발현 효율이 높은 신규 U6 프로모터를 제공하는 데에 있다.The present invention was derived under the conventional technical background, and an object of the present invention is to provide a novel U6 promoter isolated from grapes and having high expression efficiency of guide RNA (gRNA).

또한, 본 발명의 목적은 신규 U6 프로모터의 용도로서, 포도속 식물의 유전체를 편집하기 위한 재조합 벡터 또는 포도속 식물의 유전체를 편집하는 방법을 제공하는 데에 있다.Another object of the present invention is to provide a recombinant vector for editing the genome of a grape plant or a method for editing the genome of a grape plant, as a use of the novel U6 promoter.

본 발명의 발명자들은 CRISPR 체계를 이용한 포도 유전자 편집에서 표적 guide RNA의 발현 효율이 높은 유전자 프로모터를 개발하기 위해 포도 U6 snRNA 유전자 상위의 프로모터 서열을 규명하고, 원형질체 유전체 편집을 이용하여 guide RNA에 대한 전사 활성이 높은 신규 포도 U6 프로모터를 선발하였다. 또한, 이로부터 선발된 포도 U6 프로모터를 이용하여 두 개의 single guide RNA(sgRNA)를 하나의 플라스미드로 용이하게 클로닝하기 위한 벡터 체계를 제작하였다. 신규 포도 U6 프로모터의 효능을 실증하기 위하여, 포도의 유전자 2개를 대상으로 2개의 single guide RNA(sgRNA)와 CaMV 35S 프로모터 하위에 Cas9 유전자를 클로닝한 플라스미드를 1)아그로박테리움에 도입 후 잎 절편을 형질전환하거나, 2)원형질체에 형질주입하고, 그 유전형을 분석한 결과 높은 효율로 유전자 결실이 일어났음을 증명하였다.The inventors of the present invention identified the promoter sequence above the grape U6 snRNA gene in order to develop a gene promoter with high expression efficiency of target guide RNA in grape gene editing using the CRISPR system, and transcription of the guide RNA using protoplast genome editing. A novel grape U6 promoter with high activity was selected. In addition, a vector system was constructed for easy cloning of two single guide RNAs (sgRNAs) into one plasmid using the grape U6 promoter selected therefrom. In order to demonstrate the efficacy of the new grape U6 promoter, a plasmid cloned with two single guide RNAs (sgRNAs) and the Cas9 gene under the CaMV 35S promoter targeting two grape genes was 1) introduced into Agrobacterium and then leaf slices was transformed or 2) protoplasts were transfected and the genotype was analyzed, proving that gene deletion occurred with high efficiency.

상기 목적을 해결하기 위하여 본 발명의 일 예는 서열번호 2의 염기서열로 이루어지거나, 서열번호 2의 염기서열과 90% 이상의 상동성을 갖는 염기서열로 이루어지는, 포도속 식물에서 분리된 U6 프로모터를 제공한다. 또한, 본 발명의 일 예는 서열번호 5의 염기서열로 이루어지거나, 서열번호 5의 염기서열과 90% 이상의 상동성을 갖는 염기서열로 이루어지는, 포도속 식물에서 분리된 U6 프로모터를 제공한다.In order to solve the above object, an example of the present invention consists of a nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having 90% or more homology with the nucleotide sequence of SEQ ID NO: 2, a U6 promoter isolated from a grape genus plant to provide. In addition, one example of the present invention provides a U6 promoter isolated from a plant of the genus Grape, consisting of the nucleotide sequence of SEQ ID NO: 5 or a nucleotide sequence having 90% or more homology with the nucleotide sequence of SEQ ID NO: 5.

상기 목적을 해결하기 위하여 본 발명의 일 예는 포도속 식물에서 분리된 U6 프로모터 및 상기 U6 프로모터와 작동가능하게 연결되고 가이드 RNA를 코딩하는 뉴클레오티드 서열을 포함하는 재조합 벡터를 제공한다. 또한, 본 발명의 일 예는 포도속 식물에서 분리된 U6 프로모터 및 상기 U6 프로모터와 작동가능하게 연결되고 가이드 RNA를 코딩하는 폴리뉴클레오티드 서열을 포함하는 가이드 RNA 발현 카세트; 및 Cas 엔도뉴클라아제 발현 카세트를 포함하는 재조합 벡터를 제공한다. 또한, 본 발명의 일 예는 포도속 식물에서 분리된 제1 U6 프로모터, 상기 제1 U6 프로모터와 작동가능하게 연결되고 제1 가이드 RNA를 코딩하는 제1 폴리뉴클레오티드 서열, 포도속 식물에서 분리된 제2 U6 프로머터 및 상기 제2 U6 프로모터와 작동가능하게 연결되고 제2 가이드 RNA를 코딩하는 제2 폴리뉴클레오티드 서열을 포함하는 이중 가이드 RNA 발현 카세트; 및 Cas 엔도뉴클라아제 발현 카세트를 포함하는 재조합 벡터를 제공한다.In order to solve the above object, one embodiment of the present invention provides a U6 promoter isolated from a grape genus plant and a recombinant vector comprising a nucleotide sequence operably linked to the U6 promoter and encoding a guide RNA. In addition, an example of the present invention is a guide RNA expression cassette comprising a U6 promoter isolated from a grape genus plant and a polynucleotide sequence operably linked to the U6 promoter and encoding a guide RNA; and a Cas endonuclease expression cassette. In addition, an example of the present invention is a first U6 promoter isolated from a grape plant, a first polynucleotide sequence operably linked to the first U6 promoter and encoding a first guide RNA, a first isolated from a grape plant a dual guide RNA expression cassette comprising 2 U6 promoters and a second polynucleotide sequence operably linked to the second U6 promoter and encoding a second guide RNA; and a Cas endonuclease expression cassette.

상기 목적을 해결하기 위하여, 본 발명의 일 예는 포도속 식물의 외식편(Explant)을 전술한 재조합 벡터가 도입된 아그로박테리움속 균과 공동배양하여 아그로박테리움속 균에 감염시키는 단계; 및 상기 아그로박테리움속 균에 감염된 외식편을 캘러스 형성용 배지에서 배양하여 캘러스를 형성하는 단계를 포함하는 포도속 식물 유전체 편집 방법을 제공한다. 또한, 본 발명의 전술한 재조합 벡터를 포도속 식물의 원형질체에 도입하여 원형질체를 형질전환하는 단계; 및 상기 형질전환된 원형질체를 배양하는 단계를 포함하는 포도속 식물 유전체 편집 방법을 제공한다.In order to solve the above object, an example of the present invention is to co-culture an explant of a plant of the genus Agrobacterium into which the above-described recombinant vector has been introduced, thereby infecting the bacteria of the genus Agrobacterium; and culturing the explant infected with the Agrobacterium genus in a medium for forming callus to form a callus. In addition, transforming the protoplasts by introducing the above-described recombinant vector of the present invention into protoplasts of grape genus plants; And it provides a grape genus plant genome editing method comprising culturing the transformed protoplasts.

본 발명에서 제공하는 포도속 식물에서 분리된 신규한 U6 프로모터는 애기장대에서 분리된 AtU6-26 프로모터에 비해 포도 식물체에서 표적 가이드 RNA(gRNA)를 높은 활성으로 전사시킬 수 있다. 따라서, 본 발명에서 제공하는 포도속 식물에서 분리된 신규한 U6 프로모터는 CRISPR 체계를 이용한 포도속 식물 유전체 편집의 효율성과 용이성을 높일 수 있다. 나아가, 본 발명에서 제공하는 포도속 식물에서 분리된 신규한 U6 프로모터 및 이를 포함하는 재조합 벡터 시스템을 사용하면 잡종 품종인 포도의 유전자 기능 연구나 신품종 개발을 용이하게 수행할 수 있다.The novel U6 promoter isolated from grape plants provided in the present invention can transcribe target guide RNA (gRNA) with high activity in grape plants compared to the AtU6-26 promoter isolated from Arabidopsis. Therefore, the novel U6 promoter isolated from the vine plant provided in the present invention can increase the efficiency and ease of genome editing of the vine plant using the CRISPR system. Furthermore, using the novel U6 promoter isolated from grape genus plants provided in the present invention and a recombinant vector system including the same, it is possible to easily perform research on gene function or development of new varieties of grapes, which are hybrid varieties.

도 1은 포도 참조 유전체에서 동정된 U6 snRNA 유전자 및 상위 영역에 존재하는 프로모터 모티프를 도식적으로 나타낸 것이다.
도 2는 본 발명의 실시예에서 sgRNA 클로닝 및 Cas9 발현을 위해 제작한 플라스미드 벡터 pGK1064, pGK1066, pGK1067, pGK1068 및 pGK1069의 지도이다.
도 3은 본 발명의 실시예에서 제작한 포도 U6 프로모터 및 sgRNA 클로닝 카세트의 연결 구조를 나타낸 것이다.
도 4는 본 발명의 실시예에서 플라스미드 벡터 pGK1064, pGK1066, pGK1067, pGK1068, pGK1069, pGK2201 및 pGK1025가 형질주입에 의해 도입된 이탈리아(Italia) 품종 포도의 원형질체를 배양한 후 gRNA 전사체의 발현량을 통해 U6 프로모터를 전사 활성을 비교한 그래프이다.
도 5는 본 발명의 실시예에서 제작한 pVgR6-3 플라스미드 및 pVgR6-7 플라스미드의 지도(A)와 이를 주형으로 사용하기 위한 PCR 프라이머 설계 모식도(B)이다.
도 6은 본 발명의 실시예에서 MADS5를 표적하는 gR1(gRNA1)의 및 gR2(gRNA2)의 위치(A)와 ZAT10을 표적하는 gR1(gRNA1)의 및 gR2(gRNA2)의 위치(B)를 나타낸 것이다.
도 7은 본 발명의 실시예에서 pGK1064에 ZAT10을 표적하기 위한 2개의 sgRNA가 클로닝된 재조합 플라스미드 pGK1064-crZAT10-221.273D의 U6-sgRNA 구조(C)와, pGK1064에 MADS5를 표적하기 위한 2개의 sgRNA가 클로닝된 재조합 플라스미드 pGK1064-crMADS5-1493.1599D의 U6-sgRNA 구조(D)를 나타낸 것이다.
도 8은 본 발명의 실시예에서 제작한 재조합 바이너리 플라스미드인 pBGW-crMADS5-1493.1599D와 pBGW-crZAT10-221.273D의 지도이다.
도 9는 본 발명의 실시예에서 아그로박테리움으로 감염시킨 후 배양하여 얻은 MADS5 유전자 편집 캘러스(시료번호 : crM5-4-1 내지 crM5-4-4)의 IDAA 분석 결과 피크이고, 도 10은 도9에서 보이는 결실(deletion) 유전형별 피크 면적 및 삽입/결실(InDel) 유전형 빈도를 정량화한 결과이다.
도 11은 본 발명의 실시예에서 아그로박테리움으로 감염시킨 후 배양하여 얻은 ZAT10 유전자 편집 캘러스(시료번호 : crZ10-4-1 내지 crZ10-4-4)의 IDAA 분석 결과 피크이고, 도 12는 도 11에서 보이는 결실(deletion) 유전형별 피크 면적 및 삽입/결실(InDel) 유전형 빈도를 정량화한 결과이다.
도 13은 본 발명의 실시예에서 이탈리아 품종 포도의 캘러스 유래 원형질체에 형질주입한 플라스미드의 Cas9-2A-GFP 유전자 발현을 GFP 형광으로 관찰한 사진이다.
도 14는 본 발명의 실시예에서 pGK1064-crMADS5-1493.1599D 플라스미드가 형질주입된 원형질체의 IDAA 분석 결과 피크이고, 도 15는 도 14에서 보이는 삽입/결실(InDel) 관련 피크 면적 및 삽입/결실(InDel) 유전형 빈도를 정량화한 결과이다.
도 16은 본 발명의 실시예에서 pGK1064-crZAT10-221.273D 플라스미드가 형질주입된 원형질체의 IDAA 분석 결과 피크이고, 도 17는 도 16에서 보이는 삽입/결실(InDel) 관련 피크 면적 및 삽입/결실(InDel) 유전형 빈도를 정량화한 결과이다.
도 18은 본 발명의 실시예에서 포도 원형질체에 2개의 플라스미드 pGK1064-crMADS5-1493.1599D 및 pGK1064-crZAT10-221.273D를 각각 형질주입하여 유전체 편집을 하였을 때 발생하는 large deletion의 염기서열 구조를 확인한 결과이다.
Figure 1 schematically shows the U6 snRNA gene identified in the grape reference genome and the promoter motif present in the upper region.
2 is a map of plasmid vectors pGK1064, pGK1066, pGK1067, pGK1068 and pGK1069 constructed for sgRNA cloning and Cas9 expression in Examples of the present invention.
Figure 3 shows the connection structure of the grape U6 promoter and sgRNA cloning cassette prepared in Example of the present invention.
Figure 4 shows the expression level of gRNA transcripts after culturing protoplasts of grapes of Italian variety, into which plasmid vectors pGK1064, pGK1066, pGK1067, pGK1068, pGK1069, pGK2201 and pGK1025 were introduced by transfection in an embodiment of the present invention. This is a graph comparing the transcriptional activity of the U6 promoter.
Figure 5 is a map (A) of the pVgR6-3 plasmid and pVgR6-7 plasmid prepared in Examples of the present invention and a schematic diagram (B) of PCR primer design for using them as templates.
Figure 6 shows the positions (A) of gR1 (gRNA1) and gR2 (gRNA2) targeting MADS5 and the positions (B) of gR1 (gRNA1) and gR2 (gRNA2) targeting ZAT10 in an embodiment of the present invention. will be.
Figure 7 shows the U6-sgRNA structure (C) of the recombinant plasmid pGK1064-crZAT10-221.273D in which two sgRNAs for targeting ZAT10 were cloned in pGK1064 in an example of the present invention, and two sgRNAs for targeting MADS5 in pGK1064 shows the U6-sgRNA structure of the cloned recombinant plasmid pGK1064-crMADS5-1493.1599D (D).
8 is a map of pBGW-crMADS5-1493.1599D and pBGW-crZAT10-221.273D, which are recombinant binary plasmids prepared in Examples of the present invention.
Figure 9 is the peak of IDAA analysis of MADS5 gene edited callus (sample number: crM5-4-1 to crM5-4-4) obtained by culturing after infection with Agrobacterium in an example of the present invention. This is the result of quantifying the peak area and insertion/deletion (InDel) genotype frequency for each deletion genotype shown in Fig. 9.
FIG. 11 is the IDAA analysis peak of ZAT10 gene-edited callus (sample number: crZ10-4-1 to crZ10-4-4) obtained by culturing after infection with Agrobacterium in an example of the present invention. FIG. 11 is a result of quantifying the peak area for each deletion genotype and the frequency of insertion/deletion (InDel) genotypes.
13 is a photograph of the Cas9-2A-GFP gene expression observed by GFP fluorescence of the plasmid transfected into protoplasts derived from callus of Italian grapes in an example of the present invention.
Figure 14 is the peak of the IDAA analysis of the protoplasts transfected with the pGK1064-crMADS5-1493.1599D plasmid in an example of the present invention, and Figure 15 is the insertion / deletion (InDel) related peak area and insertion / deletion (InDel) shown in FIG. ) is the result of quantifying the genotype frequency.
FIG. 16 shows peaks as a result of IDAA analysis of protoplasts transfected with the pGK1064-crZAT10-221.273D plasmid in an example of the present invention, and FIG. 17 shows peak areas related to insertion/deletion (InDel) and insertion/deletion (InDel) shown in FIG. ) is the result of quantifying the genotype frequency.
18 is a result of confirming the nucleotide sequence structure of a large deletion that occurs when genome editing is performed by transfecting two plasmids, pGK1064-crMADS5-1493.1599D and pGK1064-crZAT10-221.273D, respectively, into grape protoplasts in an example of the present invention. .

이하, 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 사용되는 용어 "프로모터"는 코딩 서열 또는 기능적 RNA의 발현을 조절할 수 있는 DNA 서열을 지칭한다. 프로모터는 RNA 중합효소에 대한 결합 부위를 포함하고 프로모터 다운스트림(downstream) 유전자의 RNA로의 전사 개시 활성을 가지는, 상위(upstream)의 핵산 서열을 말한다. 예를 들어, 프로모터 서열은 근위 상류 요소 및 원위 상류 요소로 구성되고, 원위 상류 요소는 종종 인핸서(enhancer)로 지칭된다. "인핸서"는 프로모터 활성을 자극할 수 있는 DNA 서열이고, 프로모터의 선천적인 요소 또는 프로모터의 수준 또는 조직 특이성을 향상시키기 위해 삽입된 이종 요소일 수 있다. 프로모터는 고유 유전자로부터 그 전체가 유래될 수도 있거나, 자연에서 발견되는 상이한 프로모터들로부터 유래된 상이한 요소들로 구성될 수 있거나, 심지어 합성 DNA 세그먼트를 포함할 수 있다. 상이한 프로모터가 상이한 조직 또는 세포 유형으로, 또는 발달의 상이한 단계에서 또는 상이한 환경 조건에 반응하여 유전자의 발현을 유도할 수 있음이 당업자에게 이해된다. 또한, 대부분의 경우, 조절 서열의 정확한 경계가 완전히 정의되지 않았기 때문에, 일부 변이체의 DNA 단편이 동일한 프로모터 활성을 가질 수 있음이 또한 인식된다. 당업계에 잘 알려진 것처럼, 프로모터들은 이들의 강도 및/또는 이들이 활성인 조건, 예컨대 항시성(constitutive) 프로모터, 강한 프로모터, 약한 프로모터, 유도성/억제성 프로모터, 조직 특이적/발달 조절 프로모터, 세포주기 의존성 프로모터 등에 따라 분류될 수 있다.As used herein, the term "promoter" refers to a DNA sequence capable of regulating the expression of a coding sequence or functional RNA. A promoter refers to an upstream nucleic acid sequence that includes a binding site for RNA polymerase and has an activity of initiating transcription of a gene downstream of the promoter into RNA. For example, a promoter sequence consists of a proximal upstream element and a distal upstream element, with the distal upstream element often referred to as an enhancer. An "enhancer" is a DNA sequence capable of stimulating promoter activity, and may be a native element of a promoter or a heterologous element inserted to enhance the level or tissue specificity of the promoter. A promoter may be derived in its entirety from a native gene, or may be composed of different elements derived from different promoters found in nature, or may even contain synthetic DNA segments. It is understood by those skilled in the art that different promoters can direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. It is also recognized that, in most cases, DNA fragments of some variants may have the same promoter activity, since the exact boundaries of regulatory sequences have not been fully defined. As is well known in the art, promoters can be determined by their strength and/or the conditions in which they are active, such as constitutive promoters, strong promoters, weak promoters, inducible/repressible promoters, tissue specific/developmental regulatory promoters, cell It can be classified according to cycle-dependent promoters and the like.

본 발명에서 사용되는 용어 "포도 U6 프로모터"는 포도속 식물의 U6 snRNA(small nuclear RNA) 유전자 상위에 존재하는 U6 snRNA 프로모터를 의미한다.The term "grape U6 promoter" used in the present invention refers to the U6 snRNA promoter present on top of the U6 small nuclear RNA (snRNA) gene of grape plants.

본 발명에서 사용되는 용어 "가이드 RNA(guide RNA, gRNA)"는 표적 DNA에 특이적인 RNA로, 세포 내로 전달된 선형 이중가닥 DNA의 전사를 통해 발현되어 표적 유전자를 인식하고 Cas 엔도뉴클라아제(예를 들어 Cas9 단백질)과 복합체를 형성할 수 있고 Cas 엔도뉴클라아제를 표적 DNA에 가져오는 RNA이다. 따라서, 상기 가이드 RNA는 표적 DNA를 인식할 수 있는 스페이서; 및 표적과 무관한 불변 서열(non-variable sequence)로 이루어진 가이드 RNA 스캐폴드를 포함한다. 상기 스페이서는 가이드 RNA가 표적 DNA를 인식할 수 있게 하는 서열을 의미하며, 표적 DNA 위치의 근처에 있는 protospacer adjacent motifs(PAMs) 서열의 일부 또는 전체를 포함할 수 있다. 바람직하게는, 상기 PAMs에 인접한 서열을 사용할 수 있다. 상기 가이드 RNA 스캐폴드는 두 개의 RNA, 즉, CRISPR RNA(crRNA) 및 트랜스활성화 crRNA(transactivating crRNA, tracrRNA)로 이루어져 있는 것일 수 있으며, 또는 crRNA 및 tracrRNA의 필수적 부분의 융합에 의해 생성된 단일 가이드 RNA (single guide RNA, sgRNA)일 수 있다. 상기 가이드 RNA는 crRNA 및 tracrRNA를 포함하는 이중 RNA (dual RNA)일 수 있다. 만약 상기 가이드 RNA 스캐폴드가 crRNA 및 tracrRNA의 필수적인 부분 및 표적과 상보적인 부분을 포함한다면, 어떠한 가이드 RNA 스캐폴드라도 본 발명에 사용될 수 있다. 상기 crRNA는 혼성화를 위해 타겟 서열에 충분히 상보적인 서열을 포함하여 표적 DNA와 혼성화될 있으며, CRISPR 복합체 (Cas9+crRNA+tracrRNA)가 타겟 서열에 특이적으로 결합하도록 지시한다. 또한, crRNA 및 tracrRNA 특징들을 모두 포함하는 단일 가이드 RNA (sgRNA)의 설계 방법은 당해 기술 분야에 공지되어 있다.As used herein, the term "guide RNA (guide RNA, gRNA)" is an RNA specific to target DNA, which is expressed through transcription of linear double-stranded DNA delivered into cells to recognize a target gene and activate Cas endonuclease ( RNA that can form a complex with the Cas9 protein) and bring the Cas endonuclease to the target DNA. Accordingly, the guide RNA may include a spacer capable of recognizing the target DNA; and a guide RNA scaffold consisting of a non-variable sequence independent of the target. The spacer refers to a sequence that allows the guide RNA to recognize the target DNA, and may include part or all of protospacer adjacent motifs (PAMs) sequences near the target DNA position. Preferably, sequences adjacent to the PAMs may be used. The guide RNA scaffold may be composed of two RNAs, namely CRISPR RNA (crRNA) and transactivating crRNA (tracrRNA), or a single guide RNA generated by fusion of essential parts of crRNA and tracrRNA. (single guide RNA, sgRNA). The guide RNA may be a dual RNA including crRNA and tracrRNA. Any guide RNA scaffold can be used in the present invention, provided that the guide RNA scaffold includes essential parts of crRNA and tracrRNA and a part complementary to the target. The crRNA contains a sequence sufficiently complementary to the target sequence for hybridization to hybridize with the target DNA, and directs the CRISPR complex (Cas9+crRNA+tracrRNA) to specifically bind to the target sequence. In addition, methods for designing a single guide RNA (sgRNA) containing both crRNA and tracrRNA features are known in the art.

본 발명에서 사용되는 용어 "Cas 엔도뉴클라아제"는 하나 이상의 가이드 RNA와 기능적으로 결합시, Cas 단백질이 표적 DNA 서열을 절단할 수 있는 Cas 유전자에 의해 인코딩된 CRISPR 관련(Cas) 폴리펩티드에 관한 것으로서[("CRISPR-Cas systems and methods for altering expression of gene products" 미국등록특허 제8697359호 참조) Cas 단백질 또는 이의 편을 의미한다. 가이드 RNA 유도 엔도뉴클레아제 활성을 보유한 Cas 엔도뉴클레아제의 변이체들도 본 정의에 포함된다. 본 발명에서 Cas 엔도뉴클레아제는 이중 가닥 절단을 표적 부위에서 DNA로 도입하는 엔도뉴클레아제이다. Cas 엔도뉴클레아제는, 예컨대 세포의 게놈 내 표적 부위에서 이중 가닥 DNA 내 특정 표적 부위를 인식하여 절단하는 가이드 RNA 의해 안내된다. Cas 엔도뉴클라아제의 대표적인 예인 Cas9은 CRISPR/Cas (clustered regularly interspaced short palindromic repeats 및 이와 조합된 시스템) 게놈 편집 시스템의 구성 성분으로서, DNA 타겟 서열을 타겟으로 하여 절단함으로써 가이드 RNA의 안내 하에 DNA 이중 가닥 절단 (DSB)을 형성한다.As used herein, the term "Cas endonuclease" relates to a CRISPR-associated (Cas) polypeptide encoded by a Cas gene in which, upon functional binding to one or more guide RNAs, the Cas protein is capable of cleaving a target DNA sequence. [(See "CRISPR-Cas systems and methods for altering expression of gene products" US Patent No. 8697359) Cas protein or its side. Variants of Cas endonuclease that possess guide RNA-guided endonuclease activity are also included in this definition. Cas endonuclease in the present invention is an endonuclease that introduces double-strand breaks into DNA at the target site. Cas endonucleases are guided by guide RNAs that recognize and cleave specific target sites in double-stranded DNA, such as at target sites in the genome of a cell. Cas9, a representative example of a Cas endonuclease, is a component of the CRISPR/Cas (clustered regularly interspaced short palindromic repeats and systems combined therewith) genome editing system, which targets and cleave a DNA target sequence to generate DNA duplexes under the guidance of a guide RNA. strand break (DSB).

본 발명에서 사용되는 용어 "작동가능하게 연결된"은 뉴클레오티드 서열의 전사가 전사 조절 요소에 의해 조절 및 통제되도록, 조절 요소(비-제한적으로, 프로모터 서열, 전사 종결 서열 등)가 핵산 서열 (코딩 서열 또는 오픈 리딩 프레임)에 조합되는 것을 의미한다. 조절 요소 영역을 핵산 분자에 작동가능하게 연결시키는 기법들은 당해 기술 분야에 공지되어 있다. 예를 들어, 인핸서 부위, 종결인자, 신호 서열, 에피토프 태그 등과 같이 공지된 또는 원하는 활성을 갖는 폴리펩티드 또는 폴리뉴클레오티드 서열의 조절 영역 또는 기능적 도메인이 그의 공지된 또는 원하는 활성에 따라 그 표적의 발현, 분비 또는 기능을 조절할 수 있는 방식으로 표적(예컨대, 유전자 또는 폴리펩티드)에 작동가능하게 연결된다. 프로모터는, 코딩 서열의 발현을 조절할 수 있는 경우(즉, 코딩 서열이 프로모터의 전사 조절 하에 있을 때), 코딩 서열과 작동가능하게 연결된다.As used herein, the term "operably linked" means that a regulatory element (including but not limited to, a promoter sequence, transcription termination sequence, etc.) or an open reading frame). Techniques for operably linking regulatory element regions to nucleic acid molecules are known in the art. For example, a regulatory region or functional domain of a polypeptide or polynucleotide sequence having a known or desired activity, such as an enhancer site, terminator, signal sequence, epitope tag, etc. or is operably linked to a target (eg, gene or polypeptide) in such a way that it can modulate its function. A promoter is operably linked with a coding sequence if it is capable of controlling expression of the coding sequence (ie, the coding sequence is under the transcriptional control of the promoter).

본 발명에서 사용되는 용어 "플라스미드", "벡터" 및 "카세트"는 관심 폴리뉴클레오티드 서열, 예컨대 세포에서 발현되는 관심 유전자("발현 벡터" 또는 "발현 카세트")를 운반하는 여분의 염색체 요소를 지칭한다. 이러한 요소는 일반적으로 이중 가닥 DNA의 형태를 가지며, 임의의 근원으로부터 유래된 단일 또는 이중 가닥 DNA 또는 RNA의 서열, 게놈 통합 서열, 파지 또는 뉴클레오티드 서열을 선형 또는 원형 형태로 자동으로 복제할 수 있고, 여기서 다수의 뉴클레오티드 서열이 세포 내로 관심 폴리뉴클레오티드를 도입할 수 있는 독특한 구조로 결합되거나 재조합되었다. 관심 폴리뉴클레오티드 서열은 표적 세포 내에서 발현될 폴리펩티드 또는 기능적 RNA를 인코딩하는 유전자일 수 있다. 발현 카세트/벡터는 일반적으로 숙주 세포 내에서 그 유전자의 발현을 허용하는 작동가능하게 연결된 요소를 가진 유전자를 포함한다. As used herein, the terms “plasmid,” “vector,” and “cassette” refer to an extra chromosomal element that carries a polynucleotide sequence of interest, such as a gene of interest (“expression vector” or “expression cassette”) that is expressed in a cell. do. These elements are generally in the form of double-stranded DNA and are capable of automatically replicating in linear or circular form a sequence of single- or double-stranded DNA or RNA, genomic integration sequence, phage or nucleotide sequence derived from any source, Here, multiple nucleotide sequences have been combined or recombined into unique structures capable of introducing the polynucleotide of interest into cells. A polynucleotide sequence of interest may be a gene encoding a polypeptide or functional RNA to be expressed in a target cell. Expression cassettes/vectors generally contain a gene with operably linked elements allowing expression of that gene in a host cell.

본 발명에서 사용되는 용어 "재조합"은 생물학적 성분 또는 조성물과 관련하여 사용되는 경우, 생물학적 성분 또는 조성물이 자연에서 발견되지 않는 상태로 있다는 것을 나타낸다. 예를 들어 재조합 벡터는 하나 이상의 뉴클레오티드에 의해 천연 서열과 다를 수 있으며, 이종 서열(예컨대, 이종 프로모터, 비-천연 또는 변이체 신호 서열을 인코딩하는 서열 등)에 작동가능하게 연결될 수 있고, 인트론 서열이 없을 수 있고/있거나 단리 된 형태로 존재할 수있다. 재조합 벡터는 CRISPR/Cas9 시스템을 사용하여 특정 유전자 부위에 염기서열 이중나선 결손을 유도하여 유전자 편집을 실시하고, 적절한 숙주 세포에서 효율적으로 타겟 유전자를 변형시키는 벡터로서 사용될 수 있다. 숙주 세포는 바람직하게는 진핵세포일 수 있으며, 숙주세포의 종류에 따라 프로모터(promoter), 종결자(terminator), 인핸서(enhancer) 등과 같은 발현 조절 서열, 막 표적화 또는 분비를 위한 서열 등을 적절히 선택하고 목적에 따라 다양하게 조합할 수 있다.As used herein, the term "recombinant" when used in reference to a biological component or composition refers to the biological component or composition in a state not found in nature. For example, a recombinant vector may differ from its native sequence by one or more nucleotides, may be operably linked to a heterologous sequence (eg, a heterologous promoter, a sequence encoding a non-native or variant signal sequence, etc.), and may contain intronic sequences. may be absent and/or may be present in an isolated form. The recombinant vector can be used as a vector that efficiently transforms a target gene in an appropriate host cell by performing gene editing by inducing a nucleotide sequence double helix defect at a specific gene site using the CRISPR/Cas9 system. The host cell may preferably be a eukaryotic cell, and expression control sequences such as a promoter, terminator, and enhancer, sequences for membrane targeting or secretion, etc. are appropriately selected according to the type of host cell. and can be combined in various ways depending on the purpose.

본 발명에서 사용되는 용어 "발현"은 전구체 또는 성숙한 형태의 기능적 최종 생성물(예컨대, mRNA, 가이드 RNA 또는 단백질)의 생산을 지칭한다. 예를 들어, 뉴클레오티드 서열의 발현은 뉴클레오티드 서열의 전사 (예, mRNA 또는 기능성 RNA를 생산하도록 전사함) 및/또는 RNA의 단백질 전구체 또는 성숙 단백질로의 번역을 의미할 수 있다.As used herein, the term "expression" refers to the production of a functional end product (eg, mRNA, guide RNA or protein) in precursor or mature form. For example, expression of a nucleotide sequence can refer to transcription of the nucleotide sequence (eg, transcription to produce mRNA or functional RNA) and/or translation of the RNA into a protein precursor or mature protein.

본 발명에서 사용되는 용어 "표적 서열", "표적 부위", "표적 유전자", "표적 DNA" 등은 Cas 엔도뉴클레아제 절단이 게놈 변형, 예컨대 표적 부위에서 DNA 서열의 변형을 촉진시키도록 요구되는 진핵 세포의 게놈 내 폴리뉴클레오티드 서열을 지칭한다. 그러나, 본 용어가 사용되는 문맥은 이의 의미가 약간 변경될 수 있다. 예를 들어, Cas 엔도뉴클레아제의 표적 부위는 일반적으로 매우 특이적이고 종종 정확한 뉴클레오티드 위치로 정의될 수 있는 반면, 일부 경우에는 원하는 게놈 변형을 위한 표적 부위가 단지 DNA 절단이 일어나는 부위보다 더 광범위하게 정의될 수 있다. 표적 부위는 진핵 세포 게놈 내의 내인성 부위일 수 있거나 또는 대안적으로 표적 부위는 진핵 세포에 이종일 수 있어서 게놈에서 자연 발생하지 않을 수 있거나 또는 자연에서 일어나는 경우에 비해 표적 부위가 이종 게놈 위치에서 발견될 수 있다.As used herein, the terms "target sequence", "target site", "target gene", "target DNA" and the like require Cas endonuclease cleavage to promote genomic modification, such as modification of a DNA sequence at a target site. refers to a polynucleotide sequence within the genome of a eukaryotic cell that becomes However, the context in which the term is used may slightly change its meaning. For example, while the target site of a Cas endonuclease is generally very specific and can often be defined by precise nucleotide positions, in some cases the target site for a desired genomic modification is more extensive than just the site where DNA cleavage occurs. can be defined The target site can be an endogenous site within the eukaryotic cell genome or alternatively the target site can be heterologous to the eukaryotic cell so that it does not occur naturally in the genome or the target site can be found at a heterologous genomic location as compared to where it occurs in nature. there is.

본 발명에서 사용되는 용어 "폴리뉴클레오티드", "핵산 서열", "뉴클레오티드 서열", 또는 "핵산 단편"은 상호 호환적으로 선택적으로 합성, 비-천연 또는 변형된 뉴클레오티드 염기를 포함하는, 단일 가닥 또는 이중 가닥의 RNA 또는 DNA의 폴리머를 의미한다. 뉴클레오티드(통상적으로 이의 5'-모노포스페이트 형태에서 발견됨)는 다음과 같이 1문자로 언급된다: 아데닐레이트 또는 데옥시아데닐레이트 (각각 RNA 또는 DNA)의 경우 "A", 시티딜레이트 또는 데옥시시티딜레이트의 경우 "C", 구아닐레이트 또는 데옥시구아닐레이트의 경우 "G", 우리딜레이트의 경우 "U", 데옥시티미딜레이트의 경우 "T", 퓨린 (A 또는 G)의 경우 "R", 피리미딘 (C 또는 T)의 경우 "Y", G 또는 T의 경우 "K", A 또는 C 또는 T의 경우 "H", 이노신의 경우 "I", 및 임의 뉴클레오티드의 경우 "N".As used herein, the term "polynucleotide", "nucleic acid sequence", "nucleotide sequence", or "nucleic acid fragment" refers to a single-stranded or A polymer of double-stranded RNA or DNA. Nucleotides (usually found in their 5'-monophosphate form) are referred to by one letter: "A" for adenylate or deoxyadenylate (RNA or DNA, respectively), cytidylate or “C” for oxycytidylate, “G” for guanylate or deoxyguanylate, “U” for uridylate, “T” for deoxythymidylate, purine (A or G "R" for ), "Y" for pyrimidine (C or T), "K" for G or T, "H" for A or C or T, "I" for inosine, and any nucleotide For "N".

본 발명에서 사용되는 용어 "상동성"은 단백질을 코딩하는 유전자의 염기서열이나 아미노산 서열의 유사한 정도를 의미하는데, 상동성이 충분히 높은 경우 해당 유전자의 발현 산물은 동일하거나 유사한 활성을 가질 수 있다. 상동성은 백분율로 정량화되는데, 상동성 백분율은 비교창에서 최적으로 정렬된 2개의 서열을 비교하여 결정된 값을 지칭하며, 이때, 비교창 내의 폴리뉴클레오티드 또는 폴리펩티드 서열의 부분은 2개의 서열의 최적 정렬을 위한 (삽입 또는 결실을 포함하지 않는) 기준 서열과 비교하여 삽입 또는 결실(즉, 갭)을 포함할 수 있다. 백분율은, 두 서열에서 동일한 핵산 염기 또는 아미노산 잔기가 나타나는 위치의 개수를 결정하여 일치하는 위치의 개수를 산출하고, 일치하는 위치의 개수를 비교창 내의 위치의 총 개수로 나누고, 그 결과에 100을 곱하여 서열 동일성의 백분율을 산출함으로써 계산한다.As used herein, the term "homology" refers to the degree of similarity of the nucleotide sequence or amino acid sequence of a gene encoding a protein. If the homology is sufficiently high, the expression product of the gene may have the same or similar activity. Homology is quantified as a percentage, which refers to a value determined by comparing two sequences that are optimally aligned in a comparison window, wherein the portion of the polynucleotide or polypeptide sequence within the comparison window is the optimal alignment of the two sequences. may contain insertions or deletions (i.e., gaps) compared to a reference sequence (which does not contain insertions or deletions). The percentage is calculated by determining the number of positions where the same nucleic acid base or amino acid residue appears in the two sequences to calculate the number of identical positions, dividing the number of identical positions by the total number of positions in the comparison window, and dividing the result by 100. It is calculated by multiplying to yield the percentage of sequence identity.

본 발명에서 사용되는 용어 "도입"은 폴리뉴클레오티드 또는 폴리펩티드(예컨대, 재조합 DNA 작제물/발현 작제물)를 숙주 세포에 삽입하는 것을 의미한다. 원하는 생체 분자의 도입을 달성하기 위한 방법에는 "형질감염(transfection; 또는 형질주입이라고도 함)", "형질전환(transformation)", "형질도입(transduction)", 물리적 수단 등의 다양한 수단이 포함된다. 핵산 분자 (예, 플라스미드, 선형의 핵산 단편, RNA 등) 또는 단백질을 식물에 "도입"하는 것은, 핵산 또는 단백질이 식물 세포에서 기능할 수 있도록 핵산 또는 단백질로 식물 세포를 형질전환하는 것을 의미한다.As used herein, the term “introduction” refers to the insertion of a polynucleotide or polypeptide (eg, a recombinant DNA construct/expression construct) into a host cell. Methods for achieving the introduction of the desired biomolecule include various means such as "transfection" (also referred to as transfection), "transformation", "transduction", and physical means. . "Introducing" a nucleic acid molecule (eg, plasmid, linear nucleic acid fragment, RNA, etc.) or protein into a plant means transforming a plant cell with a nucleic acid or protein so that the nucleic acid or protein can function in the plant cell. .

본 발명에서 사용되는 용어 "형질전환"은 외부로부터 주어진 DNA에 의하여 생물의 유전적인 성질이 변하는 것으로, 즉 생물의 어떤 계통의 세포에서 추출된 핵산의 일종인 DNA를 다른 계통의 살아있는 세포에 도입하였을 때 DNA가 그 세포에 들어가서 유전형질이 변화하는 현상이다. 이란 유전자를 숙주세포 내에 도입하여 숙주세포 내에서 발현시킬 수 있도록 하는 것을 의미한다. 본 발명에서, "형질전환"은 안정적인 형질전환 및 일시적인 형질감염을 포함한다. "안정적인 형질전환"은 외인성 뉴클레오티드 서열을 식물 게놈에 도입하여 유전자적으로 안정적인 유전을 형성하는 것을 의미한다. 안정적으로 형질전환되면, 외인성 핵산 서열은 식물 및 이의 임의의 연속 세대들의 게놈에 안정적으로 삽입된다. "일시적인 형질감염"은 식물 세포에 핵산 분자 또는 단백질을 도입하여 그 기능을 수행하지만, 안정적으로 유전되지 않는 것을 의미한다. 일시적인 형질감염에서, 외인성 핵산 서열은 식물 게놈에 삽입되지 않는다. 본 발명에서 핵산 또는 재조합 벡터를 유기체, 세포, 조직 또는 기관에 도입하여 형질전환 하는 방법으로는 일시적인 형질감염(transient transfection), 미세주입법, 형질도입(transduction), 세포 융합, 칼슘 포스페이트 침전법, 리포좀 매개된 형질감염(liposem-mediated transfection), DEAE 덱스트란-매개된 형질감염(DEAE Dextran-mediated transfection), 폴리브렌-매개된 형질감염(polybrene-mediated transfection), 전기 침공법(electroporation), 유전자총 (particle bombardment), 인산칼슘 침전, 염화칼슘 침전, 실리콘 카바이드 섬유를 이용한 교반, PEG-매개 원형질체 형질전환 (PEG-mediated protoplast transformation), 아그로박테리움-매개 형질전환 (Agrobacterium-mediated transformation), 식물 바이러스-매개 형질전환 (plant virus-mediated transformation), 화분관 접근법 (pollen tube approach) 및 씨방 주입 방식 (ovary injection approach) 등이 있으나, 이에 제한되는 것은 아니다.As used herein, the term "transformation" refers to a change in the genetic properties of an organism by DNA given from the outside, that is, introduction of DNA, a type of nucleic acid extracted from cells of one lineage, into living cells of another lineage. When DNA enters the cell, the genetic material is changed. It means introducing a gene into a host cell so that it can be expressed in the host cell. In the present invention, "transformation" includes stable transformation and transient transfection. "Stable transformation" means the introduction of an exogenous nucleotide sequence into the plant genome to form a genetically stable inheritance. Once stably transformed, the exogenous nucleic acid sequence is stably integrated into the genome of the plant and any successive generations thereof. "Transient transfection" means introducing a nucleic acid molecule or protein into a plant cell to perform its function, but not stably inherited. In transient transfection, exogenous nucleic acid sequences are not inserted into the plant genome. Transformation methods by introducing nucleic acids or recombinant vectors into organisms, cells, tissues or organs in the present invention include transient transfection, microinjection, transduction, cell fusion, calcium phosphate precipitation, and liposomes. Liposem-mediated transfection, DEAE Dextran-mediated transfection, polybrene-mediated transfection, electroporation, gene gun (particle bombardment), calcium phosphate precipitation, calcium chloride precipitation, agitation using silicon carbide fibers, PEG-mediated protoplast transformation, Agrobacterium-mediated transformation, plant virus- mediated transformation (plant virus-mediated transformation), pollen tube approach (pollen tube approach) and ovary injection method (ovary injection approach), etc., but are not limited thereto.

본 발명에서 사용되는 용어 "터미네이터"는 가이드 RNA를 코딩하는 폴리뉴클레오티드의 전사를 종결하기 위해 가이드 RNA를 코딩하는 폴리뉴클레오티드 말단에 연결되는 것으로, 프로모터에 맞게 당업자의 적정 선택 수준에서 채택하여 사용할 수 있어 특별히 제한하지는 않으며, 예컨대, RNA Polymerase III terminator 또는 -TTTTTT- 서열일 수 있다.The term "terminator" used in the present invention is linked to the end of a polynucleotide encoding a guide RNA to terminate transcription of the polynucleotide encoding the guide RNA, and can be selected and used at an appropriate level of selection by those skilled in the art according to the promoter. It is not particularly limited, and may be, for example, RNA Polymerase III terminator or -TTTTTT- sequence.

본 발명에서 사용되는 용어 "공여 DNA"는 Cas/가이드 RNA 복합체의 활성과 관련하여, 표적 부위에 또는 표적 부위 근처에 삽입되거나 표적 부위에 또는 표적 부위 근처의 영역을 대체할 관심 폴리뉴클레오티드 서열을 포함하는 폴리뉴클레오티드를 지칭한다. 이와 같이, 공여 DNA에서 관심 폴리뉴클레오티드 서열은, 표적 부위에 또는 표적 부위 부근에서 치환되거나/편집될 뉴클레오티드 서열과 비교할때, 표적 부위에 또는 표적 부위 근처에 삽입되는 신규한 영역 및/또는 변형된 폴리뉴클레오티드 서열을 포함할수 있다. 특정 구현예에서, 공여 DNA 작제물은 관심 폴리뉴클레오티드 서열에 인접한 상동성의 제1 및 제2 영역을 더 포함한다. 또한, 공여 DNA는 치환 후 같은 코돈을 갖는 PAM을 포함하도록 설계하여 염기 변이가 발생한 후 PAM 서열 의 추가적인 인지가 일어나지 않도록 공여 DNA 서열 내에 PAM 서열을 포함하도록 할 수 있다.As used herein, the term "donor DNA" includes a polynucleotide sequence of interest to be inserted at or near the target site or to replace a region at or near the target site, with respect to the activity of the Cas/guide RNA complex. refers to a polynucleotide that As such, a polynucleotide sequence of interest in the donor DNA can be compared to a nucleotide sequence to be substituted or/or edited at or near the target site for novel regions and/or modified polynucleotides to be inserted at or near the target site. A nucleotide sequence may be included. In certain embodiments, the donor DNA construct further comprises first and second regions of homology adjacent to the polynucleotide sequence of interest. In addition, the donor DNA may be designed to include a PAM having the same codon after substitution, such that the PAM sequence is included in the donor DNA sequence to prevent additional recognition of the PAM sequence after a base mutation occurs.

본 발명에서 사용되는 용어 "유전체 편집(genome editing)"은 특별한 언급이 없는 한, 표적 유전자의 표적 부위에서의 절단에 의한 핵산 분자(하나 이상, 예컨대 1-100,000bp, 1-10,000bp, 1-1000bp, 1-100bp, 1-70bp, 1-50bp, 1-30bp, 1-20bp 또는 1-10bp)의 결실, 삽입, 치환 등에 의하여 유전자 기능을 상실, 변경, 및/또는 회복(수정) 시키는 것을 의미한다.As used herein, the term "genome editing" refers to nucleic acid molecules (one or more, such as 1-100,000bp, 1-10,000bp, 1-10,000bp, 1- Loss, alteration, and/or recovery (correction) of gene function by deletion, insertion, substitution, etc. it means.

본 발명에서 사용되는 용어 "식물"은 전체 식물 (whole plant) 및 식물의 모든 후대, 세포, 조직 또는 일부를 포함한다. 예를 들어 식물에는 비-제한적으로, 종자 (성숙 종자 및 미성숙 종자); 식물 커팅 (plant cutting); 식물 세포; 식물 세포 배양물; 식물 기관 (예, 화분, 배, 꽃, 열매, 싹, 잎, 뿌리, 줄기 및 외식편 (explant))이 포함된다. 식물 조직 또는 식물 기관은 종자, 원형질체, 캘러스 또는 구조 또는 기능성 단위를 조직하는 식물 세포의 다른 임의의 그룹일 수 있다. 식물 세포 또는 조직 배양물은 세포 또는 조직이 수득되는 식물의 생리학적 및 형태학적 특징을 가진 식물을 재생할 수 있으며, 식물과 실질적으로 동일한 유전자형을 가진 식물을 재생할 수 있다. 반면, 일부 식물 세포는 식물을 생산하도록 재생시킬 수 없다. 식물 세포 또는 조직 배양물 내 재생가능한 세포로는 배, 원형질체, 분열 세포, 캘러스, 화분, 잎, 꽃밥, 뿌리, 근단, 실크 (silk), 꽃, 커널 (kernel), 이삭 (ear), 수심 (cob), 외피 (husk) 또는 잎줄기(stalk) 등이 있을 수 있다.As used herein, the term "plant" includes the whole plant and all progeny, cells, tissues or parts of the plant. Plants include, but are not limited to, seeds (mature seeds and immature seeds); plant cutting; plant cells; plant cell culture; Plant organs (eg pollen, pear, flower, fruit, shoot, leaf, root, stem and explant) are included. A plant tissue or plant organ can be a seed, protoplast, callus, or any other group of plant cells that organizes a structural or functional unit. A plant cell or tissue culture is capable of regenerating a plant having the physiological and morphological characteristics of the plant from which the cells or tissues are obtained, and of having a genotype substantially identical to that of the plant. On the other hand, some plant cells cannot be regenerated to produce plants. Regenerable cells in plant cells or tissue culture include pear, protoplast, meristematic cell, callus, pollen, leaf, anther, root, root tip, silk, flower, kernel, ear, depth ( cob), husk or stalk.

본 발명에서 사용되는 용어 "원형질체"는 세포벽이 완전히 또는 일부 제거된, 지질 이중막이 노출된 (lipid bilayer membrane thereof naked), 식물 세포를 의미하며, 이는 따라서 세포벽이 완전히 제거된 원형질체와, 세포벽이 부분적으로만 제거된 스페로플라스트 (spheroplast)를 포함하나, 이들로 한정되는 것은 아니다. 전형적으로, 원형질체는 세포 배양 또는 전체 식물로 재생하는 능력을 가진 세포벽이 없는 단리된 식물 세포이다.As used herein, the term "protoplast" refers to a plant cell in which the cell wall is completely or partially removed and the lipid bilayer membrane is naked. including, but not limited to, spheroplasts removed only with Typically, protoplasts are isolated plant cells without cell walls that have the ability to regenerate into cell cultures or whole plants.

본 발명의 일 측면은 표적 가이드 RNA(gRNA)를 높은 활성으로 전사키실 수 있는 신규 U6 프로모터에 관한 것이다.One aspect of the present invention relates to a novel U6 promoter capable of transcribing a target guide RNA (gRNA) with high activity.

본 발명의 일 예에 따른 U6 프로모터는 서열번호 2의 염기서열로 이루어지거나, 서열번호 2의 염기서열과 90% 이상의 상동성을 갖는 염기서열로 이루어진다. 상기 서열번호 2의 염기서열은 포도 품종 홍주(Vitis vinifera Hongju)의 U6 sgRNA 유전자 상위에 존재하는 대립유전자 A형의 포도 U6 프로모터로이다. 본 발명에서는 서열번호 2의 염기서열로 이루어진 포도 U6 프로모터 또는 포도속 식물로부터 분리되고 이와 90% 이상(바람직하게는 95% 이상)의 서열 상동성을 가지는 U6 프로모터, 또는 이들과 90% 이상(바람직하게는 95% 이상)의 서열 상동성을 가지며 기능적으로 동등한 작용을 변이체 프로모터를 "VviU6-3 프로모터"라 명명한다. 상기 서열번호 2의 염기서열과 90% 이상의 상동성을 갖는 염기서열은 서열번호 8 내지 서열번호 36의 염기서열에서 선택될 수 있다. 서열번호 8의 염기서열로 이루어진 U6 프로모터는 포도 품종 Thompson seedless에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 9의 염기서열로 이루어진 U6 프로모터는 포도 품종 Thompson seedless에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 10의 염기서열로 이루어진 U6 프로모터는 포도 품종 Tamnara에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 11의 염기서열로 이루어진 U6 프로모터는 포도 품종 Shiny Star에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 12의 염기서열로 이루어진 U6 프로모터는 포도 품종 Shiny Star에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 13의 염기서열로 이루어진 U6 프로모터는 포도 품종 Ruby Seedless에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 14의 염기서열로 이루어진 U6 프로모터는 포도 품종 Ruby Seedless에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 15의 염기서열로 이루어진 U6 프로모터는 포도 품종 Rizamat에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 16의 염기서열로 이루어진 U6 프로모터는 포도 품종 Rizamat에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 17의 염기서열로 이루어진 U6 프로모터는 포도 품종 Red Globe에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 18의 염기서열로 이루어진 U6 프로모터는 포도 품종 Red Globe에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 19의 염기서열로 이루어진 U6 프로모터는 포도 품종 Princess에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 20의 염기서열로 이루어진 U6 프로모터는 포도 품종 Princess에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 21의 염기서열로 이루어진 U6 프로모터는 포도 품종 Pinot Noir에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 22의 염기서열로 이루어진 U6 프로모터는 포도 품종 Perlon에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 23의 염기서열로 이루어진 U6 프로모터는 포도 품종 Perlon에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 24의 염기서열로 이루어진 U6 프로모터는 포도 품종 Muscat of Alexandria에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 25의 염기서열로 이루어진 U6 프로모터는 포도 품종 Muscat of Alexandria에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 26의 염기서열로 이루어진 U6 프로모터는 포도 품종 Kishmish Chernyi에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 27의 염기서열로 이루어진 U6 프로모터는 포도 품종 Kishmish Chernyi에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 28의 염기서열로 이루어진 U6 프로모터는 포도 품종 Italia에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 29의 염기서열로 이루어진 U6 프로모터는 포도 품종 Italia에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 30의 염기서열로 이루어진 U6 프로모터는 포도 품종 Hongju에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 31의 염기서열로 이루어진 U6 프로모터는 포도 품종 Himrod에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 32의 염기서열로 이루어진 U6 프로모터는 포도 품종 Himrod에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 33의 염기서열로 이루어진 U6 프로모터는 포도 품종 Campbell Early에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 34의 염기서열로 이루어진 U6 프로모터는 포도 품종 Campbell Early에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다. 또한, 서열번호 35의 염기서열로 이루어진 U6 프로모터는 포도속 식물인 왕머루(Vitis amurensis)에 존재하는 대립유전자 B형의 VviU6-3 프로모터이다. 또한, 서열번호 36의 염기서열로 이루어진 U6 프로모터는 포도속 식물인 왕머루(Vitis amurensis)에 존재하는 대립유전자 A형의 VviU6-3 프로모터이다.The U6 promoter according to an example of the present invention consists of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having 90% or more homology with the nucleotide sequence of SEQ ID NO: 2. The nucleotide sequence of SEQ ID NO: 2 is a grape U6 promoter of type A allele present at the top of the U6 sgRNA gene of grape variety Hongju ( Vitis vinifera Hongju). In the present invention, the grape U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 2 or the U6 promoter isolated from grape plants and having a sequence homology of 90% or more (preferably 95% or more) thereto, or 90% or more (preferably 95% or more) thereof More than 95%) sequence homology and a functionally equivalent mutant promoter is named "VviU6-3 promoter". The nucleotide sequence having 90% or more homology with the nucleotide sequence of SEQ ID NO: 2 may be selected from the nucleotide sequences of SEQ ID NO: 8 to SEQ ID NO: 36. The U6 promoter composed of the nucleotide sequence of SEQ ID NO: 8 is the VviU6-3 promoter of type B allele present in grape variety Thompson seedless. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 9 is the VviU6-3 promoter of the type A allele present in the grape variety Thompson seedless. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 10 is the VviU6-3 promoter of type B allele present in the grape variety Tamnara. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 11 is the VviU6-3 promoter of type B allele present in the grape variety Shiny Star. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 12 is the VviU6-3 promoter of the A-type allele present in the grape variety Shiny Star. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 13 is the VviU6-3 promoter of the type B allele present in the grape variety Ruby Seedless. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 14 is the VviU6-3 promoter of the type A allele present in the grape variety Ruby Seedless. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 15 is the VviU6-3 promoter of the type B allele present in the grape variety Rizamat. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 16 is the VviU6-3 promoter of the A-type allele present in the grape variety Rizamat. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 17 is the VviU6-3 promoter of the type B allele present in the grape variety Red Globe. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 18 is the VviU6-3 promoter of the A-type allele present in the grape variety Red Globe. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 19 is the VviU6-3 promoter of the type B allele present in the grape variety Princess. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 20 is the VviU6-3 promoter of the A-type allele present in the grape variety Princess. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 21 is the VviU6-3 promoter of the A-type allele present in the grape variety Pinot Noir. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 22 is the VviU6-3 promoter of type B allele present in the grape variety Perlon. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 23 is the VviU6-3 promoter of the A-type allele present in the grape variety Perlon. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 24 is the VviU6-3 promoter of the type B allele present in the grape variety Muscat of Alexandria. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 25 is the VviU6-3 promoter of the type A allele present in the grape variety Muscat of Alexandria. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 26 is the VviU6-3 promoter of type B allele present in grape variety Kishmish Chernyi. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 27 is the VviU6-3 promoter of the type A allele present in the grape variety Kishmish Chernyi. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 28 is the VviU6-3 promoter of type B allele present in grape variety Italia. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 29 is the VviU6-3 promoter of the A-type allele present in grape variety Italia. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 30 is the VviU6-3 promoter of the type B allele present in grape variety Hongju. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 31 is the VviU6-3 promoter of the type B allele present in the grape variety Himrod. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 32 is the VviU6-3 promoter of the type A allele present in the grape variety Himrod. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 33 is the VviU6-3 promoter of the type B allele present in the grape variety Campbell Early. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 34 is the VviU6-3 promoter of the A-type allele present in the grape variety Campbell Early. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 35 is the VviU6-3 promoter of the B-type allele present in the grape genus Vitis amurensis . In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 36 is the VviU6-3 promoter of the A-type allele present in the grape genus Vitis amurensis .

본 발명의 일 예에 따른 U6 프로모터는 서열번호 5의 염기서열로 이루어지거나, 서열번호 5의 염기서열과 90% 이상의 상동성을 갖는 염기서열로 이루어진다. 상기 서열번호 5의 염기서열은 포도 품종 홍주(Vitis vinifera Hongju)의 U6 sgRNA 유전자 상위에 존재하는 대립유전자 A형의 포도 U6 프로모터로이다. 본 발명에서는 서열번호 5의 염기서열로 이루어진 포도 U6 프로모터 또는 포도속 식물로부터 분리되고 이와 90% 이상(바람직하게는 95% 이상)의 서열 상동성을 가지는 U6 프로모터, 또는 이들과 90% 이상(바람직하게는 95% 이상)의 서열 상동성을 가지며 기능적으로 동등한 작용을 변이체 프로모터를 "VviU6-7 프로모터"라 명명한다. 상기 서열번호 5의 염기서열과 90% 이상의 상동성을 갖는 염기서열은 서열번호 37 내지 서열번호 63의 염기서열에서 선택될 수 있다. 서열번호 37의 염기서열로 이루어진 U6 프로모터는 포도 품종 Thompson seedless에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 38의 염기서열로 이루어진 U6 프로모터는 포도 품종 Tano Red에 존재하는 대립유전자 B형의 VviU6-7 프로모터이다. 또한, 서열번호 39의 염기서열로 이루어진 U6 프로모터는 포도 품종 Tano Red에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 40의 염기서열로 이루어진 U6 프로모터는 포도 품종 Tamnara에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 41의 염기서열로 이루어진 U6 프로모터는 포도 품종 Suffolk Red에 존재하는 대립유전자 B형의 VviU6-7 프로모터이다. 또한, 서열번호 42의 염기서열로 이루어진 U6 프로모터는 포도 품종 Suffolk Red에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 43의 염기서열로 이루어진 U6 프로모터는 포도 품종 Shiny Star에 존재하는 대립유전자 B형의 VviU6-7 프로모터이다. 또한, 서열번호 44의 염기서열로 이루어진 U6 프로모터는 포도 품종 Shiny Star에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 45의 염기서열로 이루어진 U6 프로모터는 포도 품종 Ruby Seedless에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 46의 염기서열로 이루어진 U6 프로모터는 포도 품종 Rizamat에 존재하는 대립유전자 B형의 VviU6-7 프로모터이다. 또한, 서열번호 47의 염기서열로 이루어진 U6 프로모터는 포도 품종 Rizamat에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 48의 염기서열로 이루어진 U6 프로모터는 포도 품종 Red Globe에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 49의 염기서열로 이루어진 U6 프로모터는 포도 품종 Princess에 존재하는 대립유전자 B형의 VviU6-7 프로모터이다. 또한, 서열번호 50의 염기서열로 이루어진 U6 프로모터는 포도 품종 Princess에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 51의 염기서열로 이루어진 U6 프로모터는 포도 품종 Pinot Noir에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 52의 염기서열로 이루어진 U6 프로모터는 포도 품종 Perlon에 존재하는 대립유전자 B형의 VviU6-7 프로모터이다. 또한, 서열번호 53의 염기서열로 이루어진 U6 프로모터는 포도 품종 Perlon에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 54의 염기서열로 이루어진 U6 프로모터는 포도 품종 Muscat of Alexandria에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 55의 염기서열로 이루어진 U6 프로모터는 포도 품종 Kishmish Chernyi에 존재하는 대립유전자 B형의 VviU6-7 프로모터이다. 또한, 서열번호 56의 염기서열로 이루어진 U6 프로모터는 포도 품종 Kishmish Chernyi에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 57의 염기서열로 이루어진 U6 프로모터는 포도 품종 Italia에 존재하는 대립유전자 B형의 VviU6-7 프로모터이다. 또한, 서열번호 58의 염기서열로 이루어진 U6 프로모터는 포도 품종 Italia에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 59의 염기서열로 이루어진 U6 프로모터는 포도 품종 Hongju에 존재하는 대립유전자 B형의 VviU6-7 프로모터이다. 또한, 서열번호 60의 염기서열로 이루어진 U6 프로모터는 포도 품종 Himrod에 존재하는 대립유전자 B형의 VviU6-7 프로모터이다. 또한, 서열번호 61의 염기서열로 이루어진 U6 프로모터는 포도 품종 Himrod에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다. 또한, 서열번호 62의 염기서열로 이루어진 U6 프로모터는 포도 품종 Campbell Early에 존재하는 대립유전자 4형의 VviU6-7 프로모터이다. 또한, 서열번호 63의 염기서열로 이루어진 U6 프로모터는 포도속 식물인 왕머루(Vitis amurensis)에 존재하는 대립유전자 A형의 VviU6-7 프로모터이다.The U6 promoter according to an example of the present invention consists of the nucleotide sequence of SEQ ID NO: 5 or a nucleotide sequence having 90% or more homology with the nucleotide sequence of SEQ ID NO: 5. The nucleotide sequence of SEQ ID NO: 5 is a grape U6 promoter of type A allele present at the top of the U6 sgRNA gene of grape variety Hongju ( Vitis vinifera Hongju). In the present invention, the grape U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 5 or the U6 promoter isolated from a grape genus plant and having a sequence homology of 90% or more (preferably 95% or more) thereto, or 90% or more (preferably 95% or more) thereof More than 95%) sequence homology and a functionally equivalent mutant promoter is named "VviU6-7 promoter". The nucleotide sequence having 90% or more homology with the nucleotide sequence of SEQ ID NO: 5 may be selected from the nucleotide sequences of SEQ ID NO: 37 to SEQ ID NO: 63. The U6 promoter composed of the nucleotide sequence of SEQ ID NO: 37 is the VviU6-7 promoter of the type A allele present in the grape variety Thompson seedless. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 38 is the VviU6-7 promoter of type B allele present in the grape variety Tano Red. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 39 is the VviU6-7 promoter of the A-type allele present in the grape variety Tano Red. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 40 is the VviU6-7 promoter of the A-type allele present in the grape variety Tamnara. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 41 is the VviU6-7 promoter of the type B allele present in the grape variety Suffolk Red. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 42 is the VviU6-7 promoter of the type A allele present in the grape variety Suffolk Red. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 43 is the VviU6-7 promoter of the type B allele present in the grape variety Shiny Star. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 44 is the VviU6-7 promoter of the A-type allele present in the grape variety Shiny Star. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 45 is the VviU6-7 promoter of the A-type allele present in the grape variety Ruby Seedless. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 46 is the VviU6-7 promoter of the type B allele present in grape variety Rizamat. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 47 is the VviU6-7 promoter of the type A allele present in the grape variety Rizamat. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 48 is the VviU6-7 promoter of the type A allele present in the grape variety Red Globe. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 49 is the VviU6-7 promoter of the type B allele present in the grape variety Princess. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 50 is the VviU6-7 promoter of the A-type allele present in the grape variety Princess. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 51 is the VviU6-7 promoter of the A-type allele present in the grape variety Pinot Noir. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 52 is the VviU6-7 promoter of the type B allele present in the grape variety Perlon. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 53 is the VviU6-7 promoter of the A-type allele present in the grape variety Perlon. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 54 is the VviU6-7 promoter of the type A allele present in the grape variety Muscat of Alexandria. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 55 is the VviU6-7 promoter of the type B allele present in the grape variety Kishmish Chernyi. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 56 is the VviU6-7 promoter of the type A allele present in the grape variety Kishmish Chernyi. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 57 is the VviU6-7 promoter of the type B allele present in grape variety Italia. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 58 is the VviU6-7 promoter of the A-type allele present in grape variety Italia. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 59 is the VviU6-7 promoter of the type B allele present in grape variety Hongju. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 60 is the VviU6-7 promoter of the type B allele present in the grape variety Himrod. In addition, the U6 promoter composed of the nucleotide sequence of SEQ ID NO: 61 is the VviU6-7 promoter of the type A allele present in the grape variety Himrod. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 62 is the VviU6-7 promoter of allele type 4 present in the grape variety Campbell Early. In addition, the U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 63 is the VviU6-7 promoter of the A-type allele present in the vine plant Vitis amurensis .

본 발명의 일 측면은 신규 U6 프로모터의 용도로서, CRISPR/Cas 유전자 편집 시스템에 사용될 수 있는 다양한 재조합 벡터에 관한 것이다.One aspect of the present invention relates to various recombinant vectors that can be used in a CRISPR/Cas gene editing system as a use of the novel U6 promoter.

본 발명의 일 예에 따른 재조합 벡터는 전술한 포도 U6 프로모터 및 상기 U6 프로모터와 작동가능하게 연결되고 가이드 RNA를 코딩하는 폴리뉴클레오티드 서열을 포함한다. 또한, 본 발명의 바람직한 일 예에 따른 재조합 벡터는 포도 U6 프로모터; 가이드 RNA를 코딩하는 폴리뉴클레오티드 서열; 터미네이터; 및 공여 DNA가 순차적으로 연결된 선형 이중가닥이다. 상기 가이드 RNA는 바람직하게는 표적 DNA를 인식하는 스페이서; 및 crRNA 및 tracrRNA로 이루어진 단일 가이드 RNA 스캐폴드를 포함한다. 또한, 상기 표적 DNA는 바람직하게는 내재적 표적 DNA이다. 또한, 상기 스페이서는 protospacer adjacent motifs(PAMs) 서열의 일부 또는 전체를 포함한다. 또한, 상기 터미네이터는 바람직하게는 RNA Polymerase III terminator 또는 -TTTTTT- 서열 중 어느 하나이다. 또한, 상기 공여 DNA는 PAM 서열을 포함하고, 표적 DNA에 대해 1 내지 3개의 뉴클레오티드의 미스매치를 갖는 변이 코돈을 포함하는 상동 서열로 이루어진다. 본 발명의 바람직한 일 예에 따른 재조합 벡터는 CRISPR/Cas9 유전자 편집 시스템에서 표적 유전자를 인식하는 가이드 RNA를 발현할 수 있는 구조물로서, 가이드 RNA를 코딩하는 폴리뉴클레오티드 서열 및 공여 DNA가 결합된 구조로 되어 있어 가이드 RNA와 매칭된 공여 DNA 쌍이 동시에 세포 내로 전달되고, Cas9 단백질에 의한 표적 DNA의 절단 시 공여 DNA의 상동 재조합을 통해 표적 DNA 대신 미스매치 코돈을 포함하는 공여 DNA가 유전체 내에 포함되어 표적 DNA의 치환 돌연변이 효율을 높일 수 있다.The recombinant vector according to one embodiment of the present invention includes the above-described grape U6 promoter and a polynucleotide sequence operably linked to the U6 promoter and encoding a guide RNA. In addition, the recombinant vector according to a preferred embodiment of the present invention is grape U6 promoter; a polynucleotide sequence encoding a guide RNA; Terminator; and a linear double-strand in which the donor DNA is sequentially linked. The guide RNA is preferably a spacer that recognizes the target DNA; and a single guide RNA scaffold consisting of crRNA and tracrRNA. Also, the target DNA is preferably an endogenous target DNA. In addition, the spacer includes part or all of protospacer adjacent motifs (PAMs) sequences. In addition, the terminator is preferably either RNA Polymerase III terminator or -TTTTTT- sequence. In addition, the donor DNA includes a PAM sequence and consists of a homologous sequence including a variant codon having a mismatch of 1 to 3 nucleotides with respect to the target DNA. A recombinant vector according to a preferred embodiment of the present invention is a structure capable of expressing a guide RNA that recognizes a target gene in the CRISPR/Cas9 gene editing system, and is a structure in which a polynucleotide sequence encoding the guide RNA and a donor DNA are combined. The donor DNA pair matched with the guide RNA is simultaneously transferred into the cell, and when the target DNA is cleaved by the Cas9 protein, the donor DNA containing the mismatched codon instead of the target DNA is included in the genome through homologous recombination of the donor DNA and thus the target DNA The substitution mutation efficiency can be increased.

본 발명의 다른 예에 따른 재조합 벡터는 전술한 U6 프로모터 및 상기 U6 프로모터와 작동가능하게 연결되고 가이드 RNA를 코딩하는 폴리뉴클레오티드 서열을 포함하는 가이드 RNA 발현 카세트; 및 Cas 엔도뉴클라아제 발현 카세트를 포함한다. 상기 가이드 RNA 발현 카세트는 바람직하게는 포도 U6 프로모터; 가이드 RNA를 코딩하는 폴리뉴클레오티드 서열; 터미네이터; 및 공여 DNA가 순차적으로 연결된 선형 이중가닥이다. 상기 가이드 RNA는 바람직하게는 포도속 식물의 표적 유전자를 인식하며, 이를 위해 표적 유전자 또는 이의 일부에 상보적인 서열의 뉴클레오티드를 함유한다. 상기 포도속 식물의 표적 유전자에는 MADS5 유전자 또는 ZAT10 유전자 등이 있으나, 반드시 여기에 제한되는 것은 아니다. 상기 Cas 엔도뉴클라아제 발현 카세트는 프로모터 및 이와 작동가능하게 연결되고 Cas 엔도뉴클라아제를 코딩하는 폴리뉴클레오티드 서열을 포함한다. 상기 Cas 엔도뉴클라아제 발현 카세트를 구성하는 프로모터는 공지의 다양한 프로모터에서 선택될 수 있고, 예를 들어 CaMV 35S 프로모터(바람직게는 Doubled CaMV 35S promoter, D35S)이다. 본 발명의 다른 예에 따른 재조합 벡터의 구체적인 예로는 도 2의 지도를 갖는 pGK1064 플라스미드 벡터 또는 pGK1066 플라스미드 벡터 등이 있다.A recombinant vector according to another embodiment of the present invention includes a guide RNA expression cassette comprising the aforementioned U6 promoter and a polynucleotide sequence operably linked to the U6 promoter and encoding a guide RNA; and a Cas endonuclease expression cassette. The guide RNA expression cassette preferably comprises a grape U6 promoter; a polynucleotide sequence encoding a guide RNA; Terminator; and a linear double-strand in which the donor DNA is sequentially linked. The guide RNA preferably recognizes a target gene of the grape genus, and for this purpose contains a sequence of nucleotides complementary to the target gene or part thereof. Target genes of the grape genus include MADS5 gene or ZAT10 gene, but are not necessarily limited thereto. The Cas endonuclease expression cassette comprises a promoter and a polynucleotide sequence operably linked thereto and encoding a Cas endonuclease. The promoter constituting the Cas endonuclease expression cassette can be selected from various known promoters, for example, the CaMV 35S promoter (preferably the Doubled CaMV 35S promoter, D35S). Specific examples of the recombinant vector according to another example of the present invention include a pGK1064 plasmid vector or a pGK1066 plasmid vector having the map of FIG. 2 .

본 발명의 또 다른 예에 따른 재조합 벡터는 제1 U6 프로모터, 상기 제1 U6 프로모터와 작동가능하게 연결되고 제1 가이드 RNA를 코딩하는 제1 폴리뉴클레오티드 서열, 제2 U6 프로머터 및 상기 제2 U6 프로모터와 작동가능하게 연결되고 제2 가이드 RNA를 코딩하는 제2 폴리뉴클레오티드 서열을 포함하는 이중 가이드 RNA 발현 카세트; 및 Cas 엔도뉴클라아제 발현 카세트를 포함하는 포함한다. 상기 제1 U6 프로모터 및 제2 U6 프로모터는 전술한 포도 U6 프로모터에서 선택된다. 상기 가이드 RNA 발현 카세트는 바람직하게는 제1 포도 U6 프로모터; 제1 가이드 RNA를 코딩하는 제1 폴리뉴클레오티드 서열; 제2 포도 U6 프로모터; 제2 가이드 RNA를 코딩하는 제2 폴리뉴클레오티드 서열; 터미네이터; 및 공여 DNA가 순차적으로 연결된 선형 이중가닥이다. 상기 제1 U6 프로모터 및 제2 U6 프로모터는 동일한 염기서열로 이루어진 포도 U6 프로모터에서 선택될 수 있고, 서로 다른 염기서열로 이루어진 포도 U6 프로모터에서 선택될 수도 있다. 상기 제1 가이드 RNA 및 제2 가이드 RNA는 바람직하게는 포도속 식물의 표적 유전자를 인식하며, 이를 위해 표적 유전자 또는 이의 일부에 상보적인 서열의 뉴클레오티드를 함유한다. 상기 포도속 식물의 표적 유전자에는 MADS5 유전자 또는 ZAT10 유전자 등이 있으나, 반드시 여기에 제한되는 것은 아니다. 상기 Cas 엔도뉴클라아제 발현 카세트는 프로모터 및 이와 작동가능하게 연결되고 Cas 엔도뉴클라아제를 코딩하는 폴리뉴클레오티드 서열을 포함한다. 상기 Cas 엔도뉴클라아제 발현 카세트를 구성하는 프로모터는 공지의 다양한 프로모터에서 선택될 수 있고, 예를 들어 CaMV 35S 프로모터(바람직게는 Doubled CaMV 35S promoter, D35S)이다. 본 발명의 또 다른 예에 따른 재조합 벡터의 구체적인 예로는 도 2의 지도를 갖는 pGK1064 플라스미드 벡터 또는 pGK1066 플라스미드 벡터 등이 있다. 도 7의 구조를 갖는 GK1064-crZAT10-221.273D 플라스미드 벡터 또는 pGK1064-crMADS5-1493.1599D 플라스미드 벡터 등이 있다.A recombinant vector according to another embodiment of the present invention includes a first U6 promoter, a first polynucleotide sequence operably linked to the first U6 promoter and encoding a first guide RNA, a second U6 promoter, and the second U6 promoter. a dual guide RNA expression cassette comprising a second polynucleotide sequence operably linked to a promoter and encoding a second guide RNA; and a Cas endonuclease expression cassette. The first U6 promoter and the second U6 promoter are selected from the grape U6 promoter described above. The guide RNA expression cassette preferably comprises a first grape U6 promoter; a first polynucleotide sequence encoding a first guide RNA; a second grape U6 promoter; a second polynucleotide sequence encoding a second guide RNA; Terminator; and a linear double-strand in which the donor DNA is sequentially linked. The first U6 promoter and the second U6 promoter may be selected from grape U6 promoters having the same nucleotide sequence, or may be selected from grape U6 promoters having different nucleotide sequences. The first guide RNA and the second guide RNA preferably recognize a target gene of a grape genus, and for this purpose contain nucleotides of a sequence complementary to the target gene or a part thereof. Target genes of the grape genus include MADS5 gene or ZAT10 gene, but are not necessarily limited thereto. The Cas endonuclease expression cassette comprises a promoter and a polynucleotide sequence operably linked thereto and encoding a Cas endonuclease. The promoter constituting the Cas endonuclease expression cassette can be selected from various known promoters, for example, the CaMV 35S promoter (preferably the Doubled CaMV 35S promoter, D35S). Specific examples of the recombinant vector according to another embodiment of the present invention include a pGK1064 plasmid vector or a pGK1066 plasmid vector having the map of FIG. 2 . There is a GK1064-crZAT10-221.273D plasmid vector or pGK1064-crMADS5-1493.1599D plasmid vector having the structure of FIG. 7 .

본 발명에 따른 재조합 벡터에서 포도 U6 프로모터는 클로닝 벡터나 발현 벡터 내에 삽입된 형태로 제공될 수 있다. 본 발명에서 사용하는 용어 "클로닝 벡터"는 숙주 세포 내로 DNA 단편을 운반하고 이를 재생산할 수 있는 물질로 정의된다. 본 발명에서 클로닝 벡터는 폴리아데닐레이션 시그널(polyadenylation signal), 전사 종결 서열(transcription termination sequence) 및 다중 클로닝 위치(multiple cloning site)를 더 포함할 수 있다. 이때, 상기 다중 클로닝 위치(multiple cloning site)는 적어도 하나의 엔도뉴클레아제(endonuclease) 제한효소 절단위치(restriction site)를 포함한다. 또한, 본 발명에서 사용하는 용어 "발현 벡터"는 적절한 숙주 안에서 클로닝된 DNA의 전사와 번역을 위해 필요한 DNA 서열로 정의된다. 또한, 본 발명에서 사용하는 용어 "발현 벡터"는 개체의 세포 내에 존재하는 경우 삽입물이 발현되도록 삽입물에 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 의미한다. 상기 발현 벡터는 표준적인 재조합 DNA 기술을 이용하여 제조 및 정제될 수 있다. 상기 발현 벡터의 종류는 원핵세포 및 진핵세포의 각종 숙주 세포에서 원하는 유전자를 발현하고, 원하는 단백질을 생산하는 기능을 하는 한 특별히 한정되지 않지만, 강력한 활성을 나타내는 프로모터와 강한 발현력을 보유하면서 자연 상태와 유사한 형태의 외래 단백질을 대량으로 생산할 수 있는 벡터가 바람직하다. 발현 벡터는 적어도, 프로모터, 개시코돈, 원하는 단백질을 코드하는 유전자 및 종결코돈 터미네이터를 포함하고 있는 것이 바람직하다. 그 외에 시그널 펩티드를 코딩하는 DNA, 추가적 발현 조절 서열, 원하는 유전자의 5'측 및 3'측의 비번역 영역, 선택마커 영역, 또는 복제가능단위 등을 적절하게 포함할 수도 있다.In the recombinant vector according to the present invention, the grape U6 promoter may be provided in a form inserted into a cloning vector or an expression vector. The term "cloning vector" used in the present invention is defined as a material capable of transporting a DNA fragment into a host cell and reproducing it. In the present invention, the cloning vector may further include a polyadenylation signal, a transcription termination sequence, and multiple cloning sites. In this case, the multiple cloning site includes at least one endonuclease restriction enzyme restriction site. In addition, the term "expression vector" used in the present invention is defined as a DNA sequence necessary for transcription and translation of the cloned DNA in an appropriate host. In addition, the term "expression vector" as used herein refers to a genetic construct comprising essential regulatory elements operably linked to an insert such that the insert is expressed when present in cells of an individual. The expression vectors can be prepared and purified using standard recombinant DNA techniques. The type of the expression vector is not particularly limited as long as it expresses a desired gene in various host cells such as prokaryotic and eukaryotic cells and produces a desired protein, but retains a promoter showing strong activity and strong expression power in a natural state. A vector capable of producing a large amount of a foreign protein having a similar form is preferred. The expression vector preferably contains at least a promoter, a start codon, a gene encoding a desired protein, and a stop codon terminator. In addition, DNA encoding a signal peptide, additional expression control sequences, untranslated regions on the 5' and 3' sides of a desired gene, a selectable marker region, or a replicable unit may be appropriately included.

본 발명의 일 측면은 신규 U6 프로모터의 용도로서, CRISPR/Cas 유전자 편집 시스템을 이용하여 포도속 식물의 유전체를 편집하는 방법에 관한 것이다.One aspect of the present invention relates to a method for editing the genome of a grape genus plant using a CRISPR/Cas gene editing system as a use of the novel U6 promoter.

본 발명의 일 예에 따른 포도속 식물 유전체 편집 방법은 포도속 식물의 외식편(Explant)을 재조합 벡터가 도입된 아그로박테리움속 균과 공동배양하여 형질전환 아그로박테리움속 균에 감염시키는 단계; 및 상기 아그로박테리움속 균에 감염된 외식편을 캘러스 형성용 배지에서 배양하여 캘러스를 형성하는 단계를 포함한다. 본 발명의 다른 예에 따른 포도속 식물 유전체 편집 방법은 재조합 벡터를 포도속 식물의 원형질체에 도입하여 원형질체를 형질전환하는 단계; 및 상기 형질전환된 원형질체를 배양하는 단계를 포함한다. 또한, 본 발명에 따른 포도속 식물 유전체 편집 방법은 바람직하게는 형질전환된 식물 세포 또는 조직(예를 들어, 캘러스, 원형질체 등)을 완전한 식물로 재생하는 단계를 포함한다.A method for editing the genome of a plant of the genus Vine according to an embodiment of the present invention includes the steps of co-cultivating an explant of a plant of the genus Agrobacterium into which a recombinant vector has been introduced and infecting the transformed Agrobacterium genus bacteria; and forming callus by culturing the explant infected with the genus Agrobacterium in a callus-forming medium. A method for editing the genome of a grape genus plant according to another embodiment of the present invention includes introducing a recombinant vector into protoplasts of a grape genus plant to transform the protoplasts; and culturing the transformed protoplasts. In addition, the genome editing method of a grape genus plant according to the present invention preferably includes regenerating transformed plant cells or tissues (eg, callus, protoplast, etc.) into a complete plant.

본 발명에 따른 포도속 식물 유전체 편집 방법에서 사용되는 재조합 벡터는 가이드 RNA의 전사를 위한 프로모터로서 포도 U6 프로모터를 포함하고 포도속 식물 내에 도입되어 CRISPR/Cas 시스템을 구현할 수 있는 벡터로서, 구체적인 예로 도 7의 구조를 갖는 GK1064-crZAT10-221.273D 플라스미드 벡터 또는 pGK1064-crMADS5-1493.1599D 플라스미드 벡터; 도 8의 지도를 갖는 pBGW-crMADS5-1493.1599D 재조합 바이너리 플라스미드 또는 pBGW-crZAT10-221.273D 재조합 바이너리 플라스미드 등이 있다.The recombinant vector used in the method for editing the genome of a vine plant according to the present invention includes a grape U6 promoter as a promoter for transcription of guide RNA and can be introduced into a vine plant to implement the CRISPR/Cas system. GK1064-crZAT10-221.273D plasmid vector or pGK1064-crMADS5-1493.1599D plasmid vector having the structure of 7; and pBGW-crMADS5-1493.1599D recombinant binary plasmid or pBGW-crZAT10-221.273D recombinant binary plasmid having the map of FIG. 8 .

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 기술적 특징을 명확하게 예시하기 위한 것 일뿐, 본 발명의 보호범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only for clearly illustrating the technical features of the present invention, but do not limit the protection scope of the present invention.

1. 포도의 U6 snRNA 유전자 동정1. Identification of grape U6 snRNA gene

포도 참조 유전체인 피노누아(Pinot Noir) 12X 유전체서열(Genbank accession GCA_000003745.2)에서 U6 snRNA 서열을 Blastn 방법(percent identity > 90%, e-value < 1E-10)으로 탐색하였다. 전사 개시점으로부터 상위 1kb의 서열에서 U6 snRNA 유전자의 핵심 프로모터 서열인 근위서열요소(Proximal Sequence Element, PSE)와 TATA 모티프가 확인된 것을 포도의 U6 snRNA 유전자로 정의하였다. 최초 Blastn 탐색시 3개의 염색체에서 9개의 U6 snRNA 서열이 확인되었는데, 이중에서 4번 염색체에 위치한 것은 PSE와 TATA 서열이 존재하지 않아 위유전자(pseudogene)으로 분류하였고, 최종적으로 포도 참조 유전체에 존재하는 U6 snRNA을 3번 염색체와 6번 염색체 상의 VviU6-1 부터 VviU6-8까지, 총 8개를 정의하였다. 하기 표 1에 포도 참조 유전체에 존재하는 U6 snRNA 유전자 정보를 정리하였다.The U6 snRNA sequence from the grape reference genome Pinot Noir 12X genome sequence (Genbank accession GCA_000003745.2) was searched by the Blastn method (percent identity > 90%, e-value < 1E-10). The proximal sequence element (PSE), which is a key promoter sequence of the U6 snRNA gene, and the TATA motif were identified in the upper 1 kb sequence from the transcription start point, which was defined as the grape U6 snRNA gene. During the initial Blastn search, nine U6 snRNA sequences were identified on three chromosomes. Of these, the one located on chromosome 4 was classified as a pseudogene because it did not have PSE and TATA sequences. A total of eight U6 snRNAs were defined, from VviU6-1 to VviU6-8 on chromosomes 3 and 6. Table 1 summarizes the U6 snRNA gene information present in the grape reference genome.

염색체 번호chromosome number 서열 이름sequence name 시작 위치starting position 종결 위치end position 방향direction U6 snRNA 유전자 명칭U6 snRNA gene name 33 NC_012009NC_012009 5,173,5605,173,560 5,173,6575,173,657 reversereverse VviU6-1VviU6-1 33 NC_012009NC_012009 5,160,6815,160,681 5,160,7785,160,778 reversereverse VviU6-2VviU6-2 33 NC_012009NC_012009 5,179,5085,179,508 5,179,6055,179,605 reversereverse VviU6-3VviU6-3 33 NC_012009NC_012009 5,197,5205,197,520 5,197,6175,197,617 forwardforward VviU6-4VviU6-4 66 NC_012012NC_012012 16,492,52316,492,523 16,492,61916,492,619 forwardforward VviU6-5VviU6-5 66 NC_012012NC_012012 15,577,69015,577,690 15,577,78715,577,787 forwardforward VviU6-6VviU6-6 66 NC_012012NC_012012 15,580,29315,580,293 15,580,39015,580,390 forwardforward VviU6-7VviU6-7 66 NC_012012NC_012012 15,582,42315,582,423 15,582,52015,582,520 forwardforward VviU6-8VviU6-8 44 NC_012010NC_012010 16,410,18016,410,180 16,410,27716,410,277 forwardforward VviU6-9
(pseudogene)
VviU6-9
(pseudogene)

2. 포도 U6 snRNA 유전자 상위의 프로모터 서열 규명2. Promoter Sequence Identification of Grape U6 snRNA Gene

포도 U6 snRNA 유전자의 상위 1kb 서열에 존재하는 프로모터 요소들을 동정하였다. 모든 유전자에 근위서열요소(Proximal Sequence Element, PSE)와 TATA 모티프가 존재하였으며, 일부 서열은 척추동물에서 특성이 구명된 OCT-1 모티프와 모델식물인 애기장대와 메디카고 트렁카툴라에서 동정된 원위서열요소 5(Distal Sequence Element 5, DSE5)를 포함하고 있다. 구체적으로 VviU6-2와 VviU6-3은 완전히 보존된 DSE5(AATCTGAA)를 포함하고 있고, VviU6-7은 약간 다른 형태인 dse5-2(AAcCTGAA)를 갖고 있다. 메디카고에서 동정된 OCT-1(ATTTGCAT)는 VviU6-1, VviU6-3, VviU6-7에서 약간 다른 형태로 존재하였다. 도 1은 포도 참조 유전체에서 동정된 U6 snRNA 유전자 및 상위 영역에 존재하는 프로모터 모티프를 도식적으로 나타낸 것이다. 또한, 하기 표 2에 포도 참조 유전체에 존재하는 U6 snRNA 유전자 프로모터 영역의 DNA 모티프 정보를 나타내었다.Promoter elements present in the upper 1 kb sequence of the grape U6 snRNA gene were identified. Proximal Sequence Element (PSE) and TATA motifs were present in all genes, and some sequences were identified in the OCT-1 motif, which was characterized in vertebrates, and in the model plants Arabidopsis thaliana and Medicago truncatula. It contains sequence element 5 (Distal Sequence Element 5, DSE5). Specifically, VviU6-2 and VviU6-3 contain completely conserved DSE5 (AATCTGAA), and VviU6-7 has a slightly different form of dse5-2 (AAcCTGAA). OCT-1 (ATTTGCAT) identified in Medicago was present in slightly different forms in VviU6-1, VviU6-3, and VviU6-7. Figure 1 schematically shows the U6 snRNA gene identified in the grape reference genome and the promoter motif present in the upper region. In addition, Table 2 below shows DNA motif information of the U6 snRNA gene promoter region present in the grape reference genome.

SpeciesSpecies U6 geneU6 gene 프로모터 요소 명칭Promoter Element Name 모티프 염기서열motif sequence 방향direction 위치(전사 개시점 기준, bp)Location (relative to the starting point of transcription, bp) Homo sapiensHomo sapiens HsU6-1HsU6-1 SPHSPH ATTtCCCATgATtCcTTcatATTtCCCATgATtCcTTcat forwardforward -241-241 OCT-1OCT-1 ATTTGCATATTTGCAT forwardforward -221-221 ArabidopsisArabidopsis AtU6-26AtU6-26 DSE5DSE5 AATCTGAAAATCTGAA forwardforward -158-158 MedicagoMedicago
truncatulatruncatula
MtU6-6MtU6-6 OCT-1OCT-1 ATTTGCATATTTGCAT forwardforward -96-96
DSE5DSE5 AATCTGAAAATCTGAA forwardforward -160-160 DSE5DSE5 AATCTGAAAATCTGAA forwardforward -186-186 OCT-1OCT-1 ATTTGCATATTTGCAT forwardforward -212-212 Vitis viniferaVitis vinifera VviU6-1VviU6-1 oct-2oct-2 tcTTGCATtcTTGCAT reversereverse -235-235 VviU6-2VviU6-2 DSE5DSE5 AATCTGAAAATCTGAA forwardforward -320-320 VviU6-3VviU6-3 DSE5DSE5 AATCTGAAAATCTGAA forwardforward -256-256 oct-3oct-3 AaTTGCATAaTTGCAT reversereverse -294-294 VviU6-7VviU6-7 dse5-2dse5-2 AAcCTGAAAAcCTGAA reversereverse -154-154 oct-4oct-4 ggTTGCATggTTGCAT forwardforward -345-345

3. CRISPR sgRNA 클로닝 및 발현을 위한 포도 U6 프로모터가 삽입된 플라스미드 벡터 제작3. Construction of Plasmid Vector Inserted with Grape U6 Promoter for CRISPR sgRNA Cloning and Expression

포도 U6 snRNA 유전자 상위의 프로모터 서열 규명을 통해 U6 프로모터 후보군으로 VviU6-1 프로모터, VviU6-3 프로모터, VviU6-5 프로모터, VviU6-6 프로모터 및 VviU6-7 프로모터를 선정하였다. 이후, Cas9 유전자와 U6 프로모터에 의한 sgRNA 발현을 위한 플라스미드 벡터 pGK1064, pGK1066, pGK1067, pGK1068 및 pGK1069를 제작하였다. 총 5개의 포도 U6 프로모터(VviU6-1, VviU6-3, VviU6-5, VviU6-6, VviU6-7)와 비교군으로서 애기장대의 U6 프로모터인 AtU6-26을 클로닝하였다. 각 U6 프로모터와 sgRNA 클로닝 카세트를 오버랩(overlap) PCR로 연결한 후, 이를 제한효소 Xba I과 Sac I과 T4 DNA ligase를 이용하여 CaMV 35S-Cas9-2A-GFP 유전자의 상위에 클로닝하였다. sgRNA 클로닝 카세트는 제한효소 Aar I을 이용하는 CRISPR RNA 클로닝 카세트와 guide RNA(gRNA) scaffold 서열로 구성된다. 하기 표 3에 U6 프로모터 후보군의 길이 및 U6 프로모터(대립유전자형 A) 클로닝에 사용한 프라이머의 염기서열을 나타내었다. Cas9 유전자와 sgRNA 클로닝 카세트는 pBAtC 벡터(Kim, et al. (2016) A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. J Integr Plant Biol 58:705-712.)를 주형으로 증폭하였다. 또한, U6 프로모터 증폭을 위한 포도 품종은 이탈리아(Italia) 품종과 펄론(Perlon) 품종을 교배하여 육종한 홍주(Vitis vinifera cv. Hongju)를 이용하였다. 포도 품종 홍주에서 분리된 U6 프로모터인 VviU6-1은 서열번호 1의 염기서열로 이루어지고, VviU6-3은 서열번호 2의 염기서열로 이루어지고, VviU6-5는 서열번호 3의 염기서열로 이루어지고, VviU6-6은 서열번호 4의 염기서열로 이루어지고, VviU6-7은 서열번호 5의 염기서열로 이루어진다.The VviU6-1 promoter, VviU6-3 promoter, VviU6-5 promoter, VviU6-6 promoter, and VviU6-7 promoter were selected as U6 promoter candidates through identification of the promoter sequence of the grape U6 snRNA gene. Thereafter, plasmid vectors pGK1064, pGK1066, pGK1067, pGK1068 and pGK1069 were constructed for the expression of sgRNA by the Cas9 gene and the U6 promoter. A total of 5 grape U6 promoters (VviU6-1, VviU6-3, VviU6-5, VviU6-6, VviU6-7) and Arabidopsis U6 promoter AtU6-26 were cloned as a comparison group. After connecting each U6 promoter and sgRNA cloning cassette by overlap PCR, they were cloned into the top of the CaMV 35S- Cas9-2A-GFP gene using restriction enzymes Xba I and Sac I and T4 DNA ligase. The sgRNA cloning cassette consists of a CRISPR RNA cloning cassette using the restriction enzyme Aar I and a guide RNA (gRNA) scaffold sequence. Table 3 below shows the length of the U6 promoter candidate group and the nucleotide sequence of the primers used for cloning the U6 promoter (allele type A). The Cas9 gene and sgRNA cloning cassette were prepared using the pBAtC vector (Kim, et al. (2016) A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. J Integr Plant Biol 58:705-712.) Amplified as a template. In addition, as a grape variety for amplification of the U6 promoter , Vitis vinifera cv. Hongju, which was bred by crossing an Italia variety and a Perlon variety, was used. VviU6-1, a U6 promoter isolated from the grape variety Hongju, consists of the nucleotide sequence of SEQ ID NO: 1, VviU6-3 consists of the nucleotide sequence of SEQ ID NO: 2, and VviU6-5 consists of the nucleotide sequence of SEQ ID NO: 3 , VviU6-6 consists of the nucleotide sequence of SEQ ID NO: 4, and VviU6-7 consists of the nucleotide sequence of SEQ ID NO: 5.

U6 유전자U6 gene 홍주에서 분리된 U6 프로모터 길이(피노누아 U6 프로모터 길이)Length of U6 promoter isolated from Hongju (Pinonoir U6 promoter length) 프라이머 염기서열 (5'→3')Primer nucleotide sequence (5'→3') VviU6-1VviU6-1 363(352)363(352) forward : CATGTCTAGATGAAACCTAGCTGTTGGATGGforward: CATGTCTAGATGAAACCTAGCTGTTGGATGG reverse : CTCTCGAGACACCTGCCTCCAAGcTCCAATCATTTGGAGTTGreverse: CTCTCGAGACACCTGCCTCCAAGcTCCAATCATTTGGAGTTG VviU6-3VviU6-3 523(519)523(519) forward : CATGTCTAGACATGGTTTTGCTTCAAGTTGGTforward: CATGTCTAGACATGGTTTTGCTTCAAGTTGGT reverse : ACTCTCGAGACACCTGCCTCTAAGCTCTAAGCGTTTGCTCCTGreverse : ACTCTCGAGACACCTGCCTCTAAGCTCTAAGCGTTTGCTCCTG VviU6-5VviU6-5 363(365)363(365) forward : CATGTCTAGATCCTGAGACACCCAAGAAAGCforward : CATGTCTAGATCCTGAGACACCCAAGAAAGC reverse : CTCTCGAGACACCTGCCTCCAAGCTTTGGTGGGAGAGCTGATreverse: CTCTCGAGACACCTGCCTCCAAGCTTTGGTGGGGAGAGCTGAT VviU6-6VviU6-6 360(361)360(361) forward : CATGTCTAGATCCTGAGACACCCAAGAAAGCforward : CATGTCTAGATCCTGAGACACCCAAGAAAGC reverse : CTCTCGAGACACCTGCCTCCAAGCTTTGGTGGGAGAGCTGATreverse: CTCTCGAGACACCTGCCTCCAAGCTTTGGTGGGGAGAGCTGAT VviU6-7VviU6-7 560(560)560(560) forward : CATGTCTAGATCCTGTAGAGAAATCTGTACCAforward: CATGTCTAGATCCTGTAGAGAAATCTGTACCA reverse : ACTCTCGAGACACCTGCCTCTAAGCTTTAATAGTGGAGTTTCAreverse: ACTCTCGAGACACCTGCCTCTAAGCTTTAATAGTGGAGTTTCA AtU6-26AtU6-26 449449 taggtctagaTTCGTTGAACAACGGAAACTtaggtctagaTTCGTTGAACAACGGAAACT

pBAtC벡터에 들어있는 SpCas9 유전자(Cas9hc:NLS:HA)와 GFP(S67T)를 T2A 서열로 연결하여 하나의 재조합 유전자 Cas9-2A-GFP를 제작하고, 이를 CaMV 35S 프로모터와 터미네이터 서열이 들어있는 엔트리 플라스미드에 클로닝하였다. CaMV 35S 프로모터의 상위에 Xba I과 Sac I 제한효소 인식서열을 포함시키고, 이를 이용하여 앞서 제작한 U6 프로모터와 sgRNA 클로닝 카세트를 삽입하였다. 도 2는 본 발명의 실시예에서 sgRNA 클로닝 및 Cas9 발현을 위해 제작한 플라스미드 벡터 pGK1064, pGK1066, pGK1067, pGK1068 및 pGK1069의 지도이다. 도 2에서 플라스미드 벡터 pGK2201은 U6 프로모터로 포도 U6 프로모터 대신 애기장대의 U6 프로모터인 AtU6-26이 삽입된 것이고, 플라스미드 벡터 pGK1025는 U6 프로모터가 삽입되지 않은 것이다. 도 3은 본 발명의 실시예에서 제작한 포도 U6 프로모터 및 sgRNA 클로닝 카세트의 연결 구조를 나타낸 것이다.SpCas9 gene (Cas9hc:NLS:HA) and GFP (S67T) contained in the pBAtC vector were ligated with the T2A sequence to construct a single recombinant gene Cas9-2A-GFP, which was converted into an entry plasmid containing the CaMV 35S promoter and terminator sequences cloned into. Xba I and Sac I restriction enzyme recognition sequences were included at the top of the CaMV 35S promoter, and the previously prepared U6 promoter and sgRNA cloning cassette were inserted using them. 2 is a map of plasmid vectors pGK1064, pGK1066, pGK1067, pGK1068 and pGK1069 constructed for sgRNA cloning and Cas9 expression in Examples of the present invention. In FIG. 2 , the plasmid vector pGK2201 has the U6 promoter AtU6-26 of Arabidopsis thaliana inserted instead of the grape U6 promoter, and the plasmid vector pGK1025 does not have the U6 promoter inserted. Figure 3 shows the connection structure of the grape U6 promoter and sgRNA cloning cassette prepared in Example of the present invention.

4. 포도 원형질체 내에서 포도 U6 프로모터의 전사 활성 비교4. Comparison of the transcriptional activity of the grape U6 promoter in grape protoplasts

이탈리아(Italia) 품종 포도의 캘러스 배양체에서 원형질체를 분리하고, 여기에 앞서 제작한 포도 U6 프로모터가 도입된 플라스미드 벡터 pGK1064, pGK1066, pGK1067, pGK1068 및 pGK1069, 애기장대 U6 프로모터가 도입된 플라스미드 벡터 pGK2201, 그리고 U6 프로모터가 도입되지 않은 플라스미드 벡터 pGK1025를 PEG 매개 플라스미드 형질주입(PEG-mediated plasmid transfection) 방법으로 도입시켰다. 이후, 형질주입된 원형질체를 16 hr 동안 배양 한 후, U6 프로모터에 연결된 sgRNA의 발현량을 실시간 PCR(Realtime PCR)을 이용하여 측정하고 프로모터들의 전사 활성을 비교하였다.Plasmid vectors pGK1064, pGK1066, pGK1067, pGK1068 and pGK1069 into which the grape U6 promoter was introduced, and the plasmid vector pGK2201 into which the Arabidopsis U6 promoter was introduced, and The plasmid vector pGK1025 in which the U6 promoter was not introduced was introduced by a PEG-mediated plasmid transfection method. Then, after culturing the transfected protoplasts for 16 hr, the expression level of the sgRNA linked to the U6 promoter was measured using Realtime PCR, and the transcriptional activities of the promoters were compared.

먼저, 200 ㎖ 부피의 LB 배지에 배양한 대장균을 Qiagen사의 Plasmid Maxi prep kit를 사용하여 정제한 후, 1 ㎍/㎕의 농도로 희석하여 플라스미드를 준비하였다.First, E. coli cultured in LB medium in a volume of 200 ml was purified using Qiagen's Plasmid Maxi prep kit, and then diluted to a concentration of 1 μg/μl to prepare a plasmid.

포도 캘러스 배양체로부터 원형질체의 분리는 업계에 알려진 통상의 방법[Yoo, et al. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2: 1565-1572; Kim and Nam (2013) Isolation and characterization of Medicago truncatula U6 promoters for the construction of small hairpin RNA-mediated gene silencing vectors. Plant Molecular Biology Reporter 31: 581-593]을 응용하였다. 캘러스 배양은 이탈리아(Italia) 품종 포도(Vitis vinifera cv. Italia)의 덩굴손을 옥신인 2,4-D가 함유된 배지에서 유도한 것으로서, 하나의 캘러스 콜로니에서 분리한 세포주를 이용하였다. 약 5 ㎤ 부피의 캘러스를 50 ㎖ 용량의 원심분리관에 넣고, 여기에 20 ㎖ 부피의 효소반응액(1% Celluclast L, 1% Pectinase, 2% Viscozyme, 0.4 M mannitol, 20 mM KCl, 20 mM MES, 10 mM CaCl2, 0.1% BSA, 0.2 mM DTT, pH 5.7)을 첨가한 후 실온에서 3 hr 동안 반응시켜 세포벽을 분해시켰다. 이후, 원형질체를 통상의 방법으로 회수하고, 최종적으로 2×105 cell/㎖의 농도로 희석하였다.Isolation of protoplasts from grape callus cultures is a conventional method known in the art [Yoo, et al. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2: 1565-1572; Kim and Nam (2013) Isolation and characterization of Medicago truncatula U6 promoters for the construction of small hairpin RNA-mediated gene silencing vectors. Plant Molecular Biology Reporter 31: 581-593] was applied. Callus culture was induced in a medium containing auxin 2,4-D from tendrils of Italian grapes ( Vitis vinifera cv. Italia), and a cell line isolated from one callus colony was used. Callus in a volume of about 5 cm 3 was placed in a 50 ml centrifuge tube, and a 20 ml volume of enzyme reaction solution (1% Celluclast L, 1% Pectinase, 2% Viscozyme, 0.4 M mannitol, 20 mM KCl, 20 mM MES, 10 mM CaCl 2 , 0.1% BSA, 0.2 mM DTT, pH 5.7) was added and reacted at room temperature for 3 hr to degrade the cell wall. Thereafter, the protoplasts were recovered in a conventional manner and finally diluted to a concentration of 2×10 5 cells/ml.

PEG 매개 플라스미드 형질주입은 업계에 알려진 통상의 방법으로 실시하였다. 구체적으로, 100 ㎕의 원형질체에 10 ㎕의 DNA(플라스미드)를 혼합하고, 여기에 PEG 용액(40% PEG4000, 0.2M mannitol, 0.1M CaCl2)을 혼합한 후 약 10분 동안 반응시켰다. 이후, 4배 부피의 W5 용액(150 mM NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM MES, pH 5.7)을 넣어 반응을 정지시켰다. 이후, 원심분리 방법으로 원형질체를 회수하고, WI 용액(4mM MES, 0.5M mannitol, 20 mM KCl)에 부유시킨 후, 6-well plate에 넣어 약 16 hr 동안 암조건에서 배양하였다. 이 실험은 각 플라스미드 마다 6회의 실험을 반복하였으며, 이중 4개의 실험을 임의로 선택하여 총 RNA(total RNA)을 추출하고, 이후 실시간 PCR(Realtime PCR) 실험에 이용하였다.PEG-mediated plasmid transfection was performed by a conventional method known in the art. Specifically, 10 μl of DNA (plasmid) was mixed with 100 μl of protoplasts, and a PEG solution (40% PEG4000, 0.2M mannitol, 0.1M CaCl 2 ) was mixed thereto and reacted for about 10 minutes. Thereafter, the reaction was stopped by adding a 4-fold volume of W5 solution (150 mM NaCl, 125 mM CaCl 2 , 5 mM KCl, 2 mM MES, pH 5.7). Thereafter, protoplasts were recovered by centrifugation, suspended in WI solution (4mM MES, 0.5M mannitol, 20mM KCl), and then placed in a 6-well plate and cultured in dark conditions for about 16 hr. This experiment was repeated six times for each plasmid, and four of the experiments were randomly selected to extract total RNA, and then used for real-time PCR experiments.

이후, 배양한 원형질체에서 총 RNA(total RNA)을 추출 및 정제하고, 첫번째 가닥 cDNA(First-strand cDNA)을 합성한 후, 이를 주형으로 하여 sgRNA 전사체의 양을 실시간 PCR(Realtime PCR)로 정량하였다. 총 RNA(total RNA)는 6개의 well에 배양한 원형질체를 하나로 모아서 추출하였다. 원심분리로 회수한 원형질체를 300 ㎕의 TRIzol™(Thermo Fisher Scientific)에 넣고 진동파쇄한 후 상온에서 5분 동안 분해시켰다. 이후, 제공된 실험방법을 따라 총 RNA(total RNA)를 추출하였다. 형질주입한 다량의 플라스미드가 총 RNA(total RNA)에 남아있을 가능성을 제거하기 위하여, DNase-I를 처리하였다. TURBO DNA-free kit™(Ambion)을 제공된 실험방법에 따라 처리하였다. 첫번째 가닥 cDNA(First-strand cDNA) 합성을 위해 gRNA scaffold의 3' 말단에 상보적인 서열을 갖는 올리고 gRNA-3R 및 동시에 실험군간 보정을 위한 참조유전자로서 Cas9-2A-GFP 합성유전자를 증폭할 수 있는 올리고 GFP-R를 혼합하여 사용하였다. TOPscript cDNA kit™(Enzynomics)의 실험방법에 따라 혼합한 반응 조성에 50 ng의 총 RNA(total RNA), 50 pM gRNA-3R 및 50 pM GFP-R을 혼합하고 42℃에서 2 hr 동안 반응시켜 첫번째 가닥 cDNA(First-strand cDNA)를 합성하였다. 이후, 첫번째 가닥 cDNA(First-strand cDNA)를 동량의 TE 버퍼를 사용하여 2배로 희석하고 실시간 PCR(Realtime PCR)을 위한 주형으로 사용하였다. 실시간 PCR(Realtime PCR) 분석은 CFX96 Touch Real-Time PCR system™(Biorad)을 사용하여 수행하였다. 반응물 조성을 TOP Real qPCR premix™(Enzynomics)의 실험방법에 따라 준비하였고, 을 따라 준비하고, sgRNA 클로닝 카세트와 scaffold (이하, gRNA fragment) 전사체 118bp를 증폭하는 g5-F와 gRNA-3R, 그리고 참조유전자로서 Cas9-2A-GFP의 155 bp를 증폭하는 Cas9-CF2와 GFP-NR을 각각 프라이머로 사용하였다. 첫번째 가닥 cDNA(First-strand cDNA) 합성 및 실시간 PCR(Realtime PCR) 분석에 사용한 프라이머 정보를 하기의 표 4에 나타내었다.Thereafter, total RNA is extracted and purified from the cultured protoplasts, and first-strand cDNA is synthesized, and the amount of sgRNA transcript is quantified by real-time PCR using this as a template did Total RNA (total RNA) was extracted by collecting protoplasts cultured in 6 wells. The protoplasts recovered by centrifugation were placed in 300 μl of TRIzol™ (Thermo Fisher Scientific), disrupted by vibration, and then digested at room temperature for 5 minutes. Then, total RNA was extracted according to the provided experimental method. In order to eliminate the possibility that a large amount of the transfected plasmid remains in total RNA, DNase-I was treated. TURBO DNA-free kit™ (Ambion) was treated according to the provided experimental method. Oligo gRNA-3R having a complementary sequence to the 3' end of the gRNA scaffold for first-strand cDNA synthesis and Cas9-2A-GFP synthetic gene as a reference gene for correction between experimental groups at the same time A mixture of oligo GFP-R was used. According to the experimental method of the TOPscript cDNA kit™ (Enzynomics), 50 ng of total RNA, 50 pM gRNA-3R, and 50 pM GFP-R were mixed in the mixed reaction composition and reacted at 42 ° C for 2 hr to obtain the first First-strand cDNA was synthesized. Then, the first-strand cDNA was diluted 2-fold using the same amount of TE buffer and used as a template for real-time PCR. Real-time PCR analysis was performed using the CFX96 Touch Real-Time PCR system™ (Biorad). The reaction composition was prepared according to the experimental method of TOP Real qPCR premix™ (Enzynomics), prepared according to sgRNA cloning cassette and scaffold (hereinafter, gRNA fragment) g5-F and gRNA-3R that amplify 118 bp transcript, and reference Cas9-CF2 and GFP-NR, which amplify 155 bp of Cas9-2A-GFP as a gene, were used as primers, respectively. Primer information used for first-strand cDNA synthesis and real-time PCR analysis is shown in Table 4 below.

타겟 DNA 명칭Target DNA name 타겟 DNA 길이target DNA length 프라이머 명칭Primer name 프라이머 염기서열(5'→3')Primer nucleotide sequence (5'→3') First-strand cDNAFirst-strand cDNA gRNA-3RgRNA-3R AAAAAAGCACCGACTCGGTGAAAAAAGCACCGACTCGGTG GFP-RGFP-R GATCGCGCTTCTCGTTGGGGTGATCGCGCTTCTCGTTGGGGT gRNA fragment
(sgRNA cloning cassette+scaffold)
gRNA fragment
(sgRNA cloning cassette+scaffold)
118 bp118 bp g5-Fg5-F GCTTGGAGGCAGGTGTCTCGAGAGGCTTGGAGGCAGGTGTCTCGAGAG
gRNA-3RgRNA-3R AAAAAAGCACCGACTCGGTGAAAAAAGCACCGACTCGGTG Cas9-2A-GFPCas9-2A-GFP 155 bp155 bp Cas9-CF2Cas9-CF2 ATACCCCTACGACGTGCCCGAATACCCCTACGACGTGCCCGA GFP-NRGFP-NRs CGTCGCCGTCCAGCTCGACCAGCGTCGCCGTCCAGCTCGACCAG

PCR로 증폭한 후 정제한 목표 DNA(gRNA fragment)를 102~107 copy/㎕로 희석한 후, 이를 전사체 정량을 위한 표준 물질로 사용하였다. gRNA 전사체의 발현량은 상대정량법(ddCt)으로, 즉 애기장대 AtU6-26 프로모터를 사용한 경우에 대한 상대값으로 계산하였다. 도 4는 본 발명의 실시예에서 플라스미드 벡터 pGK1064, pGK1066, pGK1067, pGK1068, pGK1069, pGK2201 및 pGK1025가 형질주입에 의해 도입된 이탈리아(Italia) 품종 포도의 원형질체를 배양한 후 gRNA 전사체의 발현량을 통해 U6 프로모터를 전사 활성을 비교한 그래프이다. 도 4에서 'NULL'은 U6 프로모터가 도입되지 않은 플라스미드 벡터 pGK1025가 도입된 경우를 나타낸다. 도 4에서 모이는 바와 같이 포도 U6 프로모터인 VviU6-1, VviU6-3, VviU6-5, VviU6-6, VviU6-7인 모두 그 하위의 gRNA fragment를 발현시켰으며, 전사 활성은 애기장대 프로모터인 AtU6-26에 비해 최소 5.9배에서 최대 55배 더 높게 나타났다. 특히, 포도 U6 프로모터 중에서 VviU6-7이 AtU6-26에 비해 55배 더 높은 전사 활성을 나타내었고, VviU6-3이 AtU6-26에 비해 32배 더 높은 전사 활성을 나타내었다.Target DNA (gRNA fragment) purified after amplification by PCR was diluted to 10 2 to 10 7 copy/μl, and then used as a standard material for quantification of transcripts. The expression level of the gRNA transcript was calculated by relative quantification (ddCt), that is, as a relative value for the case where the Arabidopsis AtU6-26 promoter was used. Figure 4 shows the expression level of gRNA transcripts after culturing protoplasts of grapes of Italian variety, into which plasmid vectors pGK1064, pGK1066, pGK1067, pGK1068, pGK1069, pGK2201 and pGK1025 were introduced by transfection in an embodiment of the present invention. This is a graph comparing the transcriptional activity of the U6 promoter. In FIG. 4, 'NULL' indicates a case in which the plasmid vector pGK1025 in which the U6 promoter is not introduced is introduced. As shown in Figure 4, all of the grape U6 promoters VviU6-1, VviU6-3, VviU6-5, VviU6-6, and VviU6-7 expressed their lower gRNA fragments, and the transcriptional activity of the Arabidopsis promoter AtU6- Compared to 26, it was at least 5.9 times and up to 55 times higher. In particular, among the grape U6 promoters, VviU6-7 exhibited 55-fold higher transcriptional activity than AtU6-26, and VviU6-3 showed 32-fold higher transcriptional activity than AtU6-26.

5. 2개 이상의 sgRNA 클로닝을 위한 주형 플라미스드의 제작 및 이중 클로닝 벡터 체계 수립5. Construction of a template plasmid for cloning two or more sgRNAs and establishment of a double cloning vector system

CRISPR/Cas 시스템을 이용한 유전체 편집의 성공은 gRNA(guide RNA)의 표적 적중 효율에 따라 다르기 때문에, 복수의 gRNA(guide RNA)를 사용하거나, 사전에 시험하여 선발함으로써 그 효율을 높일 수 있다. 복수의 gRNA 발현은 U6 또는 U3 프로모터 하위에 sgRNA를 결합시킨 U6-sgRNA 또는 U3-sgRNA 단위를 연결하거나[Ma, et al. (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8: 1274-1284; Xing, et al. (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology 14: 327-327], tRNA에 결합한 단위를 연결하는 방법[Xie, et al. (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences 112: 3570-3575] 등으로 얻을 수 있다.Since the success of genome editing using the CRISPR/Cas system depends on the targeting efficiency of guide RNAs (gRNAs), the efficiency can be increased by using a plurality of guide RNAs (gRNAs) or by testing and selecting them in advance. Expression of multiple gRNAs is achieved by linking U6-sgRNA or U3-sgRNA units that bind sgRNAs under the U6 or U3 promoter [Ma, et al. (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8: 1274-1284; Xing, et al. (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology 14: 327-327], method for linking tRNA-bound units [Xie, et al. (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences 112: 3570-3575].

2개의 포도 U6 프로모터인 VviU6-3과 VviU6-7를 이용하고, Type IIS 제한효소인 Aar I을 이용하여 한번의 GoldenGate assembly[Engler, et al. (2008) A one pot, one step, precision cloning method with high throughput capability. Plos One 3: e3647] 반응을 진행함으로써 2개의 sgRNA를 클로닝하는 체계를 수립하였다. 구체적으로 5' 말단에 Aar I 인식서열과 CRISPR 표적서열(crRNA)을 갖고, 3' 말단에 벡터에 상보적으로 결합하는 서열을 갖는 한 쌍의 프라이머를 이용하여 PCR 및 GoldenGate assembly 반응을 진행함으로써 2개의 U6-sgRNA 단위가 결합한 형태의 플라스미드를 쉽게 제작할 수 있다. 본 발명에서 주형으로 제공되는 pVgR6-3 플라스미드 및 pVgR6-7 플라스미드는 각각 VviU6-3 프로모터 및 VviU6-7 프로모터를 가지며, 그 상위에 gRNA scaffold가 위치한다.Two grape U6 promoters, VviU6-3 and VviU6-7, were used, and a single GoldenGate assembly was performed using Aar I, a Type IIS restriction enzyme [Engler, et al. (2008) A one pot, one step, precision cloning method with high throughput capability. Plos One 3: e3647] to establish a system for cloning two sgRNAs. Specifically, PCR and GoldenGate assembly reactions were performed using a pair of primers having an Aar I recognition sequence and a CRISPR target sequence (crRNA) at the 5' end and a sequence complementary to the vector at the 3' end. A plasmid in which two U6-sgRNA units are combined can be easily constructed. The pVgR6-3 plasmid and the pVgR6-7 plasmid provided as templates in the present invention have a VviU6-3 promoter and a VviU6-7 promoter, respectively, and a gRNA scaffold is located on top of them.

위에서 제시한 VviU6 프로모터 벡터인 pGK1064(VviU6-3)에서 PCR 방법으로 gRNA scaffold와 프로모터를 증폭한 뒤, VviU6-3 프로모터를 gRNA와 오버랩(overlap) PCR 방법으로 연결하여 합성하고, pLPS-TOPO Blunt 벡터(Elpis biotech)에 클로닝하여 플라스미드 pVgR6-3을 제작하였다. 또한, VviU6 프로모터 벡터인 pGK1066(VviU6-7) 플라스미드에서 VviU6-7 프로모터를 PCR 방법으로 증폭한 후, Xba I과 Sac I 제한효소를 사용하여 절단하고, 이를 Spe I과 Sac I에 의해 VviU6-3 프로모터가 제거된 pVgR6-3 플라스미드에 클로닝하여 pVgR6-7 플라스미드를 완성하였다. 본 발명에서 PCR 주형으로 사용하는 pVgR6-3 플라스미드는 서열번호 6의 염기서열로 이루어진다. 또한, 본 발명에서 PCR 주형으로 사용하는 pVgR6-7 플라스미드는 서열번호 7의 염기서열로 이루어진다. 하기 표 5에 pVgR6-3 플라스미드 및 pVgR6-7 플라스미드를 제작하기 위해 사용한 프라이머 정보를 나타내었다.After amplifying the gRNA scaffold and promoter from pGK1064 (VviU6-3), the VviU6 promoter vector presented above, by PCR, the VviU6-3 promoter was synthesized by connecting the gRNA and overlap PCR, and the pLPS-TOPO Blunt vector (Elpis biotech) to construct plasmid pVgR6-3. In addition, after amplifying the VviU6-7 promoter from the pGK1066 (VviU6-7) plasmid, which is a VviU6 promoter vector, by PCR, it was cut using Xba I and Sac I restriction enzymes, and it was cut into VviU6-3 by Spe I and Sac I. The pVgR6-7 plasmid was completed by cloning into the pVgR6-3 plasmid from which the promoter was removed. The pVgR6-3 plasmid used as a PCR template in the present invention consists of the nucleotide sequence of SEQ ID NO: 6. In addition, the pVgR6-7 plasmid used as a PCR template in the present invention consists of the nucleotide sequence of SEQ ID NO: 7. Table 5 below shows primer information used to construct the pVgR6-3 plasmid and the pVgR6-7 plasmid.

타겟 DNA 명칭Target DNA name PCT 산물 길이PCT product length 프라이머 명칭Primer name 프라이머 염기서열(5'→3')Primer nucleotide sequence (5'→3') gRNA scaffoldgRNA scaffold 111 bp111 bp gR-FgR-F GAGTTTTAGAGCTAGAAATAGCGAGTTTTAGAGCTAGAAATAGC gRNA_MUTgRNA_MUT AGAGACTAGTAAGAAAAAAAATGTCAAAAAAAAGCACCGACTCGGTGCCACTAGAGACTAGTAAGAAAAAAAAATGTCAAAAAAAAGCACCGACTCGGTGCCACT VviU6-3VviU6-3 500 bp500 bp VviU6-3pro-olFVviU6-3pro-olF ACATTTTTTTTCTTACTAGTCTCTAAGCTACCACCCTCGGTATCCACATTTTTTTTCTTACTAGTCTCTAAGCTACCACCCTCGGTATCC VviU6-3R2VviU6-3R2 AAGCTCTAAGCGTTTGCTCAAGCCTAAGCGTTTGCTC VviU6-7VviU6-7 585 bp585 bp VviU6-7-XbfVviU6-7-Xbf CTAGATCCTGTAGAGAAATCTGTACCACTAGATCCTGTAGAGAAATCTGTACCA VviU6-7Sc-RVviU6-7Sc-R TACCGAGCTCGAATTCCCTTAAGCTTTAATAGTGGAGTTTTACCGAGCTCGAATTCCCTTAAGCTTTAATAGTGGAGTTT

도 5는 본 발명의 실시예에서 제작한 pVgR6-3 플라스미드 및 pVgR6-7 플라스미드의 지도(A)와 이를 주형으로 사용하기 위한 PCR 프라이머 설계 모식도(B)이다. 하기 표 6에 pVgR6-3 플라스미드 및 pVgR6-7 플라스미드를 PCR 주형으로 사용하기 위한 프라이머 설계 방법을 나타내었다.Figure 5 is a map (A) of the pVgR6-3 plasmid and pVgR6-7 plasmid prepared in Examples of the present invention and a schematic diagram (B) of PCR primer design for using them as templates. Table 6 shows a primer design method for using the pVgR6-3 plasmid and the pVgR6-7 plasmid as a PCR template.

프라이머primer Aar I adapter 염기서열 Aar I adapter sequence gRNA 염기서열gRNA sequences 주형결합 염기서열template binding sequence 주형 플라스미드template plasmid p1p1 AAACACCTGCGAGGGCTTAAACACCTGCGAGGGCTT GNNNNNNNNNNNNNNNNNNNGNNNNNNNNNNNNNNNNNNN GTTTTAGAGCTAGAAATAGCGTTTTAGAGCTAGAAATAGC 공통common gRNA 1gRNA 1 gRNA scaffoldgRNA scaffold p2p2 TTCACCTGCCTCAAAACTTCACCTGCCTCAAAAC NNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNC AAGCTCTAAGCGTTTGCTCCAAGCTCTAAGCGTTTGCTCC pVgR6-3(VviU6-3)pVgR6-3 (VviU6-3) gRNA 2gRNA 2 AAGCTTTAATAGTGGAGTTTAAGCTTTAATAGTGGAGTTT pVgR6-7(VviU6-7)pVgR6-7 (VviU6-7) reverse complementaryreverse complementary U6 promoterU6 promoter

6. 포도 6. Grapes MADS5MADS5 and ZAT10ZAT10 유전자를 표적하는 CRISPR sgRNA 클로닝 플라스미드 제작 Construction of gene-targeting CRISPR sgRNA cloning plasmids

본 발명의 실시예에서 제시하는 pVgR6-3 플라스미드와 pGK1064 플라스미드를 이용하여, 포도의 MADS5 유전자(LOC100232870)와 ZAT10 유전자(LOC100250659)를 표적하는 한 쌍의 sgRNA가 클로닝된 플라스미드를 제작하였다. 각 유전자의 exon 부위에서 106 bp와 52 bp가 떨어진 위치에 CRISPR 표적서열을 선택하였다. 본 발명의 실시예에서 제시하는 프라이머 설계 방법에 따라 이 표적 서열이 포함된 프라이머 p1-crMADS5-1493, p2-crMADS5-1599, p1-crZAT10-221 및 p2-crZAT10-273를 설계하였고, pVgR6-3 플라스미드를 주형으로 사용하는 PCR에 의해 삽입체를 제작하고, pGK1064에 GoldenGate assembly 방법으로 클로닝하였다.Using the pVgR6-3 plasmid and the pGK1064 plasmid presented in Examples of the present invention, plasmids in which a pair of sgRNAs targeting the grape MADS5 gene (LOC100232870) and the ZAT10 gene (LOC100250659) were cloned were constructed. CRISPR target sequences were selected at positions 106 bp and 52 bp away from the exon region of each gene. According to the primer design method presented in the examples of the present invention, primers p1-crMADS5-1493, p2-crMADS5-1599, p1-crZAT10-221 and p2-crZAT10-273 containing the target sequence were designed, and pVgR6-3 The insert was prepared by PCR using the plasmid as a template, and cloned into pGK1064 by GoldenGate assembly method.

총부피 50 ㎕에 10×Pfu buffer 5 ㎕, 10 mM dNTP mixture 4 ㎕, 10 μM p1 프라이머 1 ㎕, 10 μM p2 프라이머 1 ㎕, 10 ng/㎕ 농도의 pVgR6-3 1 ㎕ 및 Pfu DNA polymerase 1 unit를 혼합하여 PCR 반응 조성물을 제조하였다. PCR 온도 프로그램은 98℃에서 3분; (98℃에서 10초, 55℃에서 20초, 72℃에서 20초)×25 사이클; 72℃에서 5분을 설정하였고, Biometra사의 T-Gradient 장비를 이용하였다. PCR에 의해 증폭된 DNA는 실리카 컬럼을 이용하여 정제하였다.In a total volume of 50 μl, 5 μl of 10×Pfu buffer, 4 μl of 10 mM dNTP mixture, 1 μl of 10 μM p1 primer, 1 μl of 10 μM p2 primer, 1 μl of pVgR6-3 at a concentration of 10 ng/μl, and 1 unit of Pfu DNA polymerase A PCR reaction composition was prepared by mixing. The PCR temperature program was 98° C. for 3 min; (98°C for 10 seconds, 55°C for 20 seconds, 72°C for 20 seconds) x 25 cycles; 5 minutes was set at 72°C, and Biometra's T-Gradient equipment was used. DNA amplified by PCR was purified using a silica column.

또한, 총부피 10 ㎕에 10X T4 DNA ligase buffer 1 ㎕, BSA (100X, NEB) 1 ㎕, 100 ng/㎕ pGK1064 plasmid 1 ㎕, 20 ng/㎕ PCR DNA 1 ㎕, T4 DNA ligase(NEB) 0.5 ㎕, Aar I(2 U/ul, Thermo Fisher Scientific) 0.5 ㎕ 및 Aar I oligo 0.2 ㎕를 혼합하여 GoldenGate assembly 반응 조성물을 제조하였다. GoldenGate assembly 온도 프로그램은 Biorad사의 C1000 Touch Thermal Cycler에서 37℃에서 30분; (37℃에서 5분, 23℃에서 10분)×40 사이클; 50℃에서 1 hr, 80℃에서 20분, 8℃에서 냉각으로 설정하였다.In addition, 1 μl of 10X T4 DNA ligase buffer, 1 μl of BSA (100X, NEB), 1 μl of 100 ng/μl pGK1064 plasmid, 1 μl of 20 ng/μl PCR DNA, and 0.5 μl of T4 DNA ligase (NEB) were added to a total volume of 10 μl. , 0.5 μl of Aar I (2 U/ul, Thermo Fisher Scientific) and 0.2 μl of Aar I oligo were mixed to prepare a GoldenGate assembly reaction composition. The GoldenGate assembly temperature program was 30 minutes at 37°C in Biorad's C1000 Touch Thermal Cycler; (5 minutes at 37°C, 10 minutes at 23°C) x 40 cycles; It was set to 1 hr at 50°C, 20 minutes at 80°C, and cooling at 8°C.

GoldenGate assembly 반응이 완료된 후, 반응액 1 ㎕를 취하여 40 ㎕의 E. coli TOP10 electro competent cell에 넣고, 전기천공시킨 후, 50 mg/L 카나마이신을 첨가한 LB 배지에 도말하여 배양하였다. 목적 대장균 콜로니는 p1 프라이머와 p2 프라이머를 이용하여 colony PCR 방법으로 선발하였고, 그 플라스미드의 염기서열을 1064-F(5'-GCTCCACCATGTTGACCTGCA-3')와 1064-R(5'-AGGCTTCAAGCTTCGAATTGG-3') 프라이머를 이용하여 결정하였다.After the GoldenGate assembly reaction was completed, 1 μl of the reaction solution was taken and put into 40 μl of E. coli TOP10 electro competent cells, followed by electroporation, and then plated on LB medium supplemented with 50 mg/L kanamycin and cultured. Target E. coli colonies were selected by colony PCR using the p1 and p2 primers, and the base sequences of the plasmids were 1064-F (5'-GCTCCACCATGTTGACCTGCA-3') and 1064-R (5'-AGGCTTCAAGCTTCGAATTGG-3'). It was determined using primers.

도 6은 본 발명의 실시예에서 MADS5를 표적하는 gR1(gRNA1)의 및 gR2(gRNA2)의 위치(A)와 ZAT10을 표적하는 gR1(gRNA1)의 및 gR2(gRNA2)의 위치(B)를 나타낸 것이다. 하기 표 7에 2개의 sgRNA를 클로닝하기 위한 프라이머 정보를 나타내었다. 도 7은 본 발명의 실시예에서 pGK1064에 ZAT10을 표적하기 위한 2개의 sgRNA가 클로닝된 재조합 플라스미드 pGK1064-crZAT10-221.273D의 U6-sgRNA 구조(C)와, pGK1064에 MADS5를 표적하기 위한 2개의 sgRNA가 클로닝된 재조합 플라스미드 pGK1064-crMADS5-1493.1599D의 U6-sgRNA 구조(D)를 나타낸 것이다.Figure 6 shows the positions (A) of gR1 (gRNA1) and gR2 (gRNA2) targeting MADS5 and the positions (B) of gR1 (gRNA1) and gR2 (gRNA2) targeting ZAT10 in an embodiment of the present invention. will be. Table 7 below shows primer information for cloning two sgRNAs. Figure 7 shows the U6-sgRNA structure (C) of the recombinant plasmid pGK1064-crZAT10-221.273D in which two sgRNAs for targeting ZAT10 were cloned in pGK1064 in an example of the present invention, and two sgRNAs for targeting MADS5 in pGK1064 shows the U6-sgRNA structure of the cloned recombinant plasmid pGK1064-crMADS5-1493.1599D (D).

Gene/LOCUSGene/LOCUS 타겟 명칭 및 염기서열Target name and sequence 프라이머 명칭Primer name 프라이머 염기서열(5'→3')Primer nucleotide sequence (5'→3') ZAT10
LOC100250659
ZAT10
LOC100250659
gR1: GCTTCCAGAGCCATGAAAGAgR1: GCTTCCAGAGCCATGAAAGA p1-crZAT10-221p1-crZAT10-221 AAACACCTGCGAGGGCTTGCTTCCAGAGCCATGAAAGAGTTTTAGAGCTAGAAATAGCAAACACCTGCGAGGGCTTGCTTCCAGAGCCATGAAAGAGTTTTAGAGCTAGAAATAGC
gR2: GCTGGGTTGTTCGTAGTGAAgR2: GCTGGGTTGTTCGTAGTGAA p2-crZAT10-273p2-crZAT10-273 TTTCACCTGCCTCAAAACTTCACTACGAACAACCCAGCAAGCTCTAAGCGTTTGCTCCTTTCACCTGCCTCAAAACTTCACTACGAACAACCCAGCAAGCTCTAAGCGTTTTGCTCC MADS5
LOC100232870
MADS5
LOC100232870
gR1: GCAGAATGTGACCTGACGGTgR1: GCAGAATGTGACCTGACGGT p1-crMADS5-1493p1-crMADS5-1493 AAACACCTGCGAGGGCTTGCAGAATGTGACCTGACGGTGTTTTAGAGCTAGAAATAGCAAACACCTGCGAGGGCTTGCAGAATGTGACCTGACGGTGTTTTAGAGCTAGAAATAGC
gR2: GAGTACTCATAGACTCGACCGgR2: GAGTACTCATAGACTCGACCG p2-crMADS5-1599p2-crMADS5-1599 TTTCACCTGCCTCAAAACCGGTCGAGTCTATGAGTACTCAAGCTCTAAGCGTTTGCTCCTTTCACCTGCCTCAAAACCGGTCGAGTCTATGAGTACTCAAGCTCTAAGCGTTTGCTCC

7. 아그로박테리움 형질전환을 이용한 포도 유전체 편집7. Grape Genome Editing Using Agrobacterium Transformation

(1) sgRNA 클로닝 및 재조합 바이너리 벡터 제작(1) sgRNA cloning and construction of recombinant binary vectors

위에서 제작한 재조합 플라스미드 pGK1064-crZAT10-221.273D 및 pGK1064-crMADS5-1493.1599D를 각각 Basta 선발마커가 들어 있는 T-DNA 벡터 pBGW에 Gateway LR™(Invitrogen) 반응으로 재조합하여 2개의 바이너리 플라스미드 벡터인 pBGW-crMADS5-1493.1599D와 pBGW-crZAT10-221.273D를 제작하였다. 구체적으로 500 ng 엔트리 플라스미드와 500 ng pBGW를 혼합하고 Invitrogen사의 Gateway LR clonase II kit의 실험방법에 따라 Gateway LR 재조합 반응을 수행하였다. 이후, 재조합 바이너리 플라스미드 벡터를 E. coli TOP10에 도입하고 100 mg/L 농도의 Spectinomycin이 함유된 LB 배지에 도말하여 배양하였다. 이후, 플라스미드가 도입된 대장균 클론을 p1 프라이머와 1064-R 프라이머를 이용하여 colony PCR 방법으로 선발하였고, 그 클론의 플라스미드 염기서열을 1064-R 프라이머를 사용하여 결정하였다. 도 8은 본 발명의 실시예에서 제작한 재조합 바이너리 플라스미드인 pBGW-crMADS5-1493.1599D와 pBGW-crZAT10-221.273D의 지도이다.The recombinant plasmids pGK1064-crZAT10-221.273D and pGK1064-crMADS5-1493.1599D prepared above were recombined into the T-DNA vector pBGW containing the Basta selection marker, respectively, by Gateway LR™ (Invitrogen) reaction to create two binary plasmid vectors, pBGW- crMADS5-1493.1599D and pBGW-crZAT10-221.273D were prepared. Specifically, 500 ng entry plasmid and 500 ng pBGW were mixed, and Gateway LR recombination reaction was performed according to the test method of Invitrogen's Gateway LR clonase II kit. Thereafter, the recombinant binary plasmid vector was introduced into E. coli TOP10 and cultured by plating on LB medium containing 100 mg/L Spectinomycin. Thereafter, the E. coli clone into which the plasmid was introduced was selected by colony PCR using the p1 primer and the 1064-R primer, and the plasmid sequence of the clone was determined using the 1064-R primer. 8 is a map of pBGW-crMADS5-1493.1599D and pBGW-crZAT10-221.273D, which are recombinant binary plasmids prepared in Examples of the present invention.

(2) 아그로박테리움을 이용한 포도 식물체의 형질전환(2) Transformation of grape plants using Agrobacterium

재조합 바이너리 플라스미드인 pBGW-crMADS5-1493.1599D와 pBGW-crZAT10-221.273D를 각각 Agrobacterium tumefaciens EHA105 균주에 도입하고, 이를 100 mg/L Specitinomycin이함유된 TY/Ca 배지에 도말하여 배양하였다. 플라스미드가 도입된 아그로박테리움 클론을 p1 프라이머와 1064-R 프라이머를 이용하여 colony PCR 방법으로 선발하였다. 포도 식물체 형질전환을 위해 선발된 아그로박테리움 클론을 MTY 배지(Mannitol 5 g/L, Tryptone 5 g/L, Yeast 3 g/L, 5 mM MES, MgSO4·7H2O 0.2 g/L, 6 mM CaCl2, pH5.8)에 키우고 OD600(Optical density at 600 ㎚) 값이 0.7이 되게 희석하여 아그로박테리움 배양액을 준비하였다.The recombinant binary plasmids pBGW-crMADS5-1493.1599D and pBGW-crZAT10-221.273D were respectively introduced into the Agrobacterium tumefaciens EHA105 strain, which were plated on TY/Ca medium containing 100 mg/L Specitinomycin and cultured. Agrobacterium clones into which the plasmid was introduced were selected by colony PCR using the p1 primer and the 1064-R primer. Agrobacterium clones selected for grape plant transformation were cultured in MTY medium (Mannitol 5 g/L, Tryptone 5 g/L, Yeast 3 g/L, 5 mM MES, MgSO 4 7H 2 O 0.2 g/L, 6 mM CaCl 2 , pH 5.8) and diluted to an OD600 (Optical density at 600 nm) value of 0.7 to prepare an Agrobacterium culture medium.

아그로박테리움 형질전환을 위한 포도는 이탈리아 품종(Vitis vinifera cv. Italia)이며, 덩굴손을 외식편(explant)으로 사용하였다. 이탈리아 품종의 덩굴손을 70% 에탄올에 1분, 20% 희석한 락스(유한락스)에 10분간 담그어 소독한 후, 5 mm 길이로 자른 외식편을 앞서 준비한 아그로박테리움 배양액에 담그고, 진공(23 inch Hg)을 걸어 10분간 감염시킨 후, 공동배양 배지(SH salt and vitamins, Sigma S6765; 30 g/L sucrose, 0.5 g/L casein hydrolysates, 2 μM AVG, 10 μM 2,4-D, 1 μM BAP, 100 μM acetosyringone)에 치상하여 25℃의 암조건에서 3일간 공동배양하였다. 이후, 아그로박테리움에 감염된 외식편을 항생제 수용액(600 mg/L Cefotaxime)으로 씻은 후, 캘러스 유도 배지(SH salt and vitamins; 30 g/L sucrose, 0.5 g/L casein hydrolysates, 2 μM AVG, 10 μM 2,4-D, 1 μM BAP, 200 mg/L Timentin, 5 mg/L Basta)로 옮기고 25℃의 암조건에서 배양하여 캘러스 형성을 유도하였다. 약 4개월 후, 잎 절편에 덩어리를 형성한 캘러스 5개씩을 핀셋을 이용하여 채취하여 유전체 편집 분석을 위한 샘플로 사용하였다.Grapes for Agrobacterium transformation were Italian varieties ( Vitis vinifera cv. Italia), and tendrils were used as explants. The tendril of the Italian variety was sterilized by soaking in 70% ethanol for 1 minute and 20% diluted chlorx (Yuhan lac) for 10 minutes. Hg) for 10 minutes, and then coculture medium (SH salt and vitamins, Sigma S6765; 30 g/L sucrose, 0.5 g/L casein hydrolysates, 2 μM AVG, 10 μM 2,4-D, 1 μM BAP) , 100 μM acetosyringone) and co-cultured for 3 days in the dark at 25 ° C. Thereafter, the explants infected with Agrobacterium were washed with an aqueous solution of antibiotics (600 mg/L Cefotaxime), followed by callus induction medium (SH salt and vitamins; 30 g/L sucrose, 0.5 g/L casein hydrolysates, 2 μM AVG, 10 μM 2,4-D, 1 μM BAP, 200 mg/L Timentin, 5 mg/L Basta) and cultured in the dark at 25°C to induce callus formation. After about 4 months, 5 callus masses formed on leaf segments were collected using tweezers and used as samples for genome editing analysis.

(3) 아그로박테리움에 의해 형질전환된 캘러스의 유전형 분석 및 결과(3) Genotype analysis and results of callus transformed by Agrobacterium

아그로박테리움에 감염시킨 외식편에서 채취한 캘러스에서 CTAB 방법으로 유전체 DNA(genomic DNA)를 추출하였다. 야생형 유전형을 기준으로, CRISPR 표적 부위 앞 뒤로 342 bp와 367 bp의 부위를 증폭하도록 프라이머를 설계하였다. 또한, 해당 프라이머 중 한쪽에 6FAM 형광물질로 표지하여 IDAA 분석법[Yang, et al. (2015) Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res 43: e59-e59]을 이용하여 분석하였다. 구체적으로, 5'말단에 6FAM 형광물질로 표지한 올리고(FAM-oligo)를 함께 이용하여 3중 프라이머 PCR(Tri-primer PCR) 방법으로 표적 부위를 증폭하였고, 이를 capillary electrophoresis 장비(ABI 3730xl)를 이용하여 분석하였다. DNA 크기 표준으로 35~500 bp 범위를 갖는 GeneScan™ 500 LIZ™ dye Size Standard(Thermo Fisher Scientific)를 사용하였다. 농도를 각각 400 nM, 20 nM 및 400 nM(20:1:20)로 조절하여 사용하였다. 하기 표 8에 IDAA Tri-primer PCR을 위한 Forward 프라이머, Reverse 프라이머 및 FAM-oligo 프라이머의 정보를 나타내었다.Genomic DNA was extracted from callus collected from explants infected with Agrobacterium by the CTAB method. Based on the wild-type genotype, primers were designed to amplify regions of 342 bp and 367 bp in front of and behind the CRISPR target site. In addition, one of the primers was labeled with a 6FAM fluorescent substance and IDAA assay [Yang, et al. (2015) Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res 43: e59-e59]. Specifically, the target site was amplified by a triple-primer PCR method using an oligo (FAM-oligo) labeled with a 6FAM fluorescent substance at the 5' end, and the capillary electrophoresis equipment (ABI 3730xl) was used to amplify the target site. analyzed using GeneScan™ 500 LIZ™ dye Size Standard (Thermo Fisher Scientific) with a range of 35-500 bp was used as a DNA size standard. Concentrations were adjusted to 400 nM, 20 nM and 400 nM (20:1:20), respectively. Table 8 below shows information on forward primers, reverse primers, and FAM-oligo primers for IDAA Tri-primer PCR.

* IDAA 분석을 위한 PCR 조성물* PCR composition for IDAA analysis

- PCR 조성물 : 총 25 ㎕를 기준으로 10×Pfu buffer 2.5 ㎕, Genomic DNA(100ng/㎕) 1 ㎕, dNTPs (2.5mM, ea.) 2 ㎕, Forward primer(10μM) 0.1 ㎕, Reverse primer (10μM) 1㎕, FAM-oligo primer(10μM) 1 ㎕, Pfu DNA polymerase 1 unit, 잔량은 증류수- PCR composition: 2.5 μl of 10×Pfu buffer, 1 μl of genomic DNA (100ng/μl), 2 μl of dNTPs (2.5mM, ea.), 0.1 μl of forward primer (10 μM), 0.1 μl of reverse primer (10 μM) based on a total of 25 μl ) 1 μl, FAM-oligo primer (10 μM) 1 μl, Pfu DNA polymerase 1 unit, the remaining amount is distilled water

표적target Primer(5'→3')Primer (5'→3') Wild type 표적 길이Wild type target length crMADS5-1493.1599DcrMADS5-1493.1599D MADS5-1439-F: AGCTGACCGGCAGCAAAATTGGTGTAGTGAACATGGGGAGAGGMADS5-1439-F: AGCTGACCGGCAGCAAAATTGGTGTAGTGAACATGGGGAGAGG 342 bp342 bp MADS5-1764-R: AGGGTTCTGCAACTTCTGATGAMADS5-1764-R: AGGGTTCTGCAACTTCTGATGA crZAT10-221.273DcrZAT10-221.273D ZAT10-141-F: AGCTGACCGGCAGCAAAATTGTCAAATCTCACCAGTCCTTCAZAT10-141-F: AGCTGACCGGCAGCAAAATTGTCAAATCTCACCAGTCCTTCA 367 bp367 bp ZAT10-483-R: AGTTTAGGAGCTTCCACCTGCZAT10-483-R: AGTTTAGGAGCTTCCACCTGC IDAA PCRIDAA PCR FAM-oligo: 6FAM-AGCTGACCGGCAGCAAAATTGFAM-oligo: 6FAM-AGCTGACCGGCAGCAAAATTG

도 9는 본 발명의 실시예에서 아그로박테리움으로 감염시킨 후 배양하여 얻은 MADS5 유전자 편집 캘러스(시료번호 : crM5-4-1 내지 crM5-4-4)의 IDAA 분석 결과 피크이고, 도 10은 도9에서 보이는 결실(deletion) 유전형별 피크 면적 및 삽입/결실(InDel) 유전형 빈도를 정량화한 결과이다. 또한, 도 11은 본 발명의 실시예에서 아그로박테리움으로 감염시킨 후 배양하여 얻은 ZAT10 유전자 편집 캘러스(시료번호 : crZ10-4-1 내지 crZ10-4-4)의 IDAA 분석 결과 피크이고, 도 12는 도 11에서 보이는 결실(deletion) 유전형별 피크 면적 및 삽입/결실(InDel) 유전형 빈도를 정량화한 결과이다. 도 9에서 야생형 증폭 DNA 크기는 348 bp이고, 파란색 크로마토그램은 6FAM으로 표지된 PCR 증폭 DNA이고, 주황색 크로마토그램은 GeneScan™ 500 LIZ™ dye Size Standard 마커(ThermoFisher Scientific)이다. 또한, 도 11에서 야생형 증폭 DNA 크기는 367 bp이고, 파란색 크로마토그램은 6FAM으로 표지된 PCR 증폭 DNA이고, 주황색 크로마토그램은 GeneScan™ 500 LIZ™ dye Size Standard 마커(ThermoFisher Scientific)이다.Figure 9 is the peak of IDAA analysis of MADS5 gene edited callus (sample number: crM5-4-1 to crM5-4-4) obtained by culturing after infection with Agrobacterium in an example of the present invention. This is the result of quantifying the peak area and insertion/deletion (InDel) genotype frequency for each deletion genotype shown in Fig. 9. 11 is the IDAA analysis peak of ZAT10 gene-edited callus (sample number: crZ10-4-1 to crZ10-4-4) obtained by culturing after infection with Agrobacterium in an example of the present invention, and FIG. is the result of quantifying the peak area and insertion/deletion (InDel) genotype frequency for each deletion genotype shown in FIG. In FIG. 9, the wild-type amplified DNA size is 348 bp, the blue chromatogram is PCR amplified DNA labeled with 6FAM, and the orange chromatogram is GeneScan™ 500 LIZ™ dye Size Standard marker (ThermoFisher Scientific). 11, the wild-type amplified DNA size is 367 bp, the blue chromatogram is PCR amplified DNA labeled with 6FAM, and the orange chromatogram is GeneScan™ 500 LIZ™ dye Size Standard marker (ThermoFisher Scientific).

IDAA 분석 결과, crMADS5-1493.1599D 재조합 Ti-plasmid 및 crZAT10-221.273D 재조합 Ti-plasmid로 형질전환된 잎 절편에서 형성된 캘러스 군집은 여러 유전형이 혼재된 상태였으며, 이중 야생형과 동일한 크기인 MADS5의 348 bp, ZAT10의 367 bp 크기의 유전형의 평균빈도는 피크 면적으로 추산하였을 때, 각각 13.2%와 31.09%였으며, 나머지 면적 비율인 86.8%와 68.91%는 유전체 편집에 의해 InDel 유전형을 지니는 것으로 추정되었다. 특징적으로, 두 유전자 모두 주된 피크의 분포가 2곳에 나뉘어져 있는데, 두 그룹의 피크에 해당하는 DNA의 길이는 야생형 및 10 bp 이내의 결실을 나타내는 small deletion(Single deletion) 그룹과 두 표적 guide RNA 사이의 영역이 결실된 것으로 추정되는, 2개의 sgRNA에 의한 large deletion(Dual deletion) 그룹으로 구분되었다. crMADS5-1493.1599D의 경우 small deletion과 dual deletion의 평균 빈도는 9.3%와 75.4%로서 dual deletion의 비율이 6배 가량 더 많았다. crZAT10-221.273D의 경우는 small deletion과 dual deletion의 평균 빈도는 21.9%와 32.5%로서 dual deletion이 1.5배 가량 더 많았다.As a result of IDAA analysis, the callus community formed from leaf sections transformed with crMADS5-1493.1599D recombinant Ti-plasmid and crZAT10-221.273D recombinant Ti-plasmid was a mixed state of several genotypes, of which 348 bp of MADS5 , the same size as the wild type, , the average frequency of the 367 bp genotype of ZAT10 was 13.2% and 31.09%, respectively, when estimated by the peak area, and the remaining area ratios, 86.8% and 68.91%, were estimated to have the InDel genotype by genome editing. Characteristically, the distribution of the main peaks in both genes is divided into two places, and the length of the DNA corresponding to the peaks in the two groups is between the wild type and the small deletion (Single deletion) group representing a deletion within 10 bp and the two target guide RNAs. It was divided into a large deletion (Dual deletion) group caused by two sgRNAs, in which the region was presumed to be deleted. In the case of crMADS5-1493.1599D, the average frequency of small deletion and dual deletion was 9.3% and 75.4%, and the ratio of dual deletion was about 6 times higher. In the case of crZAT10-221.273D, the average frequency of small deletion and dual deletion was 21.9% and 32.5%, and dual deletion was about 1.5 times more common.

8. 원형질체 플라스미드 형질주입을 이용한 포도 유전체 편집8. Grape Genome Editing Using Protoplast Plasmid Transfection

(1) sgRNA 및 Cas9 발현 플라스미드의 준비(1) Preparation of sgRNA and Cas9 expression plasmids

위에서 제작한 재조합 플라스미드 pGK1064-crZAT10-221.273D 및 pGK1064-crMADS5-1493.1599D를 Qiagen사의 Plasmid Maxi Prep Kit를 사용하여 고순도로 정제하였고, 정제한 플라스미드를 TE 버퍼에 첨가하고 1 ㎍/㎕의 농도로 조절하였다.The recombinant plasmids pGK1064-crZAT10-221.273D and pGK1064-crMADS5-1493.1599D prepared above were purified with high purity using Qiagen's Plasmid Maxi Prep Kit, and the purified plasmids were added to TE buffer and adjusted to a concentration of 1 μg/μl did

(2) 원형질체의 분리(2) Isolation of protoplasts

이탈리아 품종 포도(Vitis vinifera cv. Italia)의 덩굴손을 외식편으로 사용하여 유도한 캘러스로부터 원형질체를 분리하였다. 구체적으로, 캘러스 세포 덩어리 5 ㎤ 부피를 20 ㎖의 세포벽분해효소용액(1% Celluclast L, 1% Pectinase, 2% Viscozyme, 0.4 M mannitol, 20 mM KCl, 20 mM MES, 10 mM CaCl2, 0.1% BSA, 0.2 mM DTT, pH5.7)에 넣고 실온에서 3 hr 동안 반응시켜 세포벽을 분해시켰다. 이후, 여기에 20 ㎖ W5용액(150 mM NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM MES, pH 5.7)을 넣고 혼합한 후, 원심분리(200×g, 2분) 하여 상층액을 제거하였다. 이후, 하층의 펠렛을 20 ㎖ W5 용액에 부유시킨 후, 얼음욕에 넣고 20분간 방치하여 원형질체 세포를 침강시키고, 상층액을 제거하였다. 분리한 원형질체를 2×105 cell/㎖의 농도로 MMg 용액(0.4M mannitol, 15mM MgCl2, 4 mM MES)에 희석하였다.Protoplasts were isolated from callus induced using tendrils of Italian grapes ( Vitis vinifera cv. Italia) as explants. Specifically, the volume of 5 cm 3 of the callus cell mass was mixed with 20 ml of cell wall degrading enzyme solution (1% Celluclast L, 1% Pectinase, 2% Viscozyme, 0.4 M mannitol, 20 mM KCl, 20 mM MES, 10 mM CaCl 2 , 0.1% BSA, 0.2 mM DTT, pH 5.7) and reacted at room temperature for 3 hr to degrade the cell wall. Then, 20 ml W5 solution (150 mM NaCl, 125 mM CaCl 2 , 5 mM KCl, 2 mM MES, pH 5.7) was added thereto, mixed, and then centrifuged (200 × g, 2 minutes) to remove the supernatant. did Thereafter, the pellet of the lower layer was suspended in 20 ml W5 solution, put in an ice bath and left for 20 minutes to precipitate the protoplast cells, and the supernatant was removed. The isolated protoplasts were diluted in MMg solution (0.4M mannitol, 15mM MgCl 2 , 4 mM MES) at a concentration of 2×10 5 cell/ml.

(3) 원형질체 플라스미드 형질주입(3) protoplast plasmid transfection

2개의 재조합 플라스미드 pGK1064-crMADS5-1493.1599D(이하, crM5) 및 pGK1064-crZAT10-221.273D(이하, crZ10)를 각각 PEG-매개 형질주입(PEG-mediated transfection) 방법으로 원형질체에 도입시켰다. 구체적으로, 2 ㎖ 튜브에 100 ㎕ 원형질체와 10 ㎕ 플라스미드 DNA를 혼합하고, 여기에 PEG 용액(40% PEG4000, 0.2 M mannitol, 0.1 M CaCl2)을 첨가하고 혼합한 후 10분간 반응시켰다. 이후, 440 ㎕ W5 용액을 넣어 희석시킨 후, 원심분리(200×g, 2분) 하여 원형질체를 회수하였다. 회수한 원형질체에 1 ㎖의 W5 용액을 첨가하여 부유시키고, 동일조건으로 원심분리 하여 원형질체를 다시 회수하였다. 최종적으로 회수한 원형질체를 WI 용액(4 mM MES, 0.5 M mannitol, 20 mM KCl)에 부유시킨 후 6-well plate에 넣고 암조건에서 배양하였다. 각 플라스미드마다 3회의 실험을 반복하였다. 원형질체에 플라스미드 형질주입의 성공여부는 상기 플라스미드에 존재하는 Cas9-2A-GFP 유전자의 발현을 GFP 형광으로 관찰하여 판단하였다. 도 13은 본 발명의 실시예에서 이탈리아 품종 포도의 캘러스 유래 원형질체에 형질주입한 플라스미드의 Cas9-2A-GFP 유전자 발현을 GFP 형광으로 관찰한 사진이다. 도 13의 A는 형광을 조사하기 전의 사진이고 B는 형광을 조사한 후의 사진이다. 도 13에서 보이는 바와 같이 대부분의 원형질체는 강한 GFP 형광을 나타내고 있어서 플라스미드 형질주입이 성공적으로 이뤄졌음을 알 수 있었다.Two recombinant plasmids pGK1064-crMADS5-1493.1599D (hereinafter referred to as crM5) and pGK1064-crZAT10-221.273D (hereinafter referred to as crZ10) were each introduced into protoplasts by PEG-mediated transfection. Specifically, 100 μl protoplasts and 10 μl plasmid DNA were mixed in a 2 ml tube, and PEG solution (40% PEG4000, 0.2 M mannitol, 0.1 M CaCl 2 ) was added thereto, mixed, and reacted for 10 minutes. Thereafter, after dilution by adding 440 μl W5 solution, protoplasts were recovered by centrifugation (200×g, 2 minutes). 1 ml of W5 solution was added to the recovered protoplasts to suspend them, and the protoplasts were recovered again by centrifugation under the same conditions. Finally, the recovered protoplasts were suspended in WI solution (4 mM MES, 0.5 M mannitol, 20 mM KCl), put into a 6-well plate, and cultured under dark conditions. Experiments were repeated three times for each plasmid. The success of transfection of the plasmid into the protoplast was determined by observing the expression of the Cas9-2A-GFP gene present in the plasmid by GFP fluorescence. 13 is a photograph of the Cas9-2A-GFP gene expression observed by GFP fluorescence of the plasmid transfected into protoplasts derived from callus of Italian grapes in an example of the present invention. 13A is a photograph before irradiation with fluorescence and B is a photograph after irradiation with fluorescence. As shown in FIG. 13, most of the protoplasts showed strong GFP fluorescence, indicating that the plasmid transfection was successful.

(4) 플라스미드가 형질주입된 원형질체의 배양(4) Cultivation of protoplasts transfected with plasmids

형질주입된 원형질체를 WI 용액에서 16 hr 동안 배양한 후 원형질체 세포를 원심분리로 회수하고, 원형질체배양배지(0.5×Nitsch&Nitsch medium, 30 g/L sucrose, 1 g/L casein hydrolysates, 50 μM L-glutamine, 400 mg/L L-cystein, 0.5 M mannitol, 10 μM NAA, 4 μM BAP, 2 μM AVG) 1.5 ㎖에 부유시킨 후, 6-well plate에 넣고 25℃ 및 암조건에서 8 hr 동안 더 배양하였다. 이후, 원형질체 세포를 원심분리로 회수하고, InDel 분석을 위한 시료로 사용하기 위해 냉동 보관하였다.After culturing the transfected protoplasts in the WI solution for 16 hr, the protoplast cells were recovered by centrifugation, and the protoplast culture medium (0.5 × Nitsch & Nitsch medium, 30 g / L sucrose, 1 g / L casein hydrolysates, 50 μM L-glutamine , 400 mg/L L-cysteine, 0.5 M mannitol, 10 μM NAA, 4 μM BAP, 2 μM AVG) and suspended in 1.5 ml, then placed in a 6-well plate and further incubated for 8 hr at 25 ° C and dark conditions. . Thereafter, the protoplast cells were recovered by centrifugation and stored frozen for use as samples for InDel analysis.

(5) 플라스미드가 형질주입된 원형질체 풀의 InDel(Insertion/Deletion) 분석(5) InDel (Insertion/Deletion) analysis of the protoplast pool transfected with the plasmid

pGK1064-crMADS5-1493.1599D 및 pGK1064-crZAT10-221.273D 플라스미드로 각각 형질주입된 후 배양하여 회수한 원형질체 시료의 InDel 유전형을 IDAA 방법을 사용하여 분석하였다. 구체적으로, 형질주입된 원형질체에 300 ㎕ CTAB DNA 추출버퍼를 넣어 세포를 분해한 후, 통상적인 방법을 이용하여 유전체 DNA(genomic DNA)를 추출하고 100 ng/㎕ 농도로 희석하였다. 이후의 과정은 상기 (3) 아그로박테리움에 의해 형질전환된 캘러스의 유전형 분석에서 사용한 재료와 방법을 따라 수행되었는바, 상세한 설명을 생략한다.InDel genotypes of protoplast samples recovered by culturing after transfection with the pGK1064-crMADS5-1493.1599D and pGK1064-crZAT10-221.273D plasmids, respectively, were analyzed using the IDAA method. Specifically, after lysing the cells by adding 300 μl of CTAB DNA extraction buffer to the transfected protoplasts, genomic DNA was extracted using a conventional method and diluted to a concentration of 100 ng/μl. Since the subsequent process was performed according to the materials and methods used in (3) genotyping of callus transformed by Agrobacterium, detailed descriptions are omitted.

도 14는 본 발명의 실시예에서 pGK1064-crMADS5-1493.1599D 플라스미드가 형질주입된 원형질체의 IDAA 분석 결과 피크이고, 도 15는 도 14에서 보이는 삽입/결실(InDel) 관련 피크 면적 및 삽입/결실(InDel) 유전형 빈도를 정량화한 결과이다. 또한, 도 16은 본 발명의 실시예에서 pGK1064-crZAT10-221.273D 플라스미드가 형질주입된 원형질체의 IDAA 분석 결과 피크이고, 도 17는 도 16에서 보이는 삽입/결실(InDel) 관련 피크 면적 및 삽입/결실(InDel) 유전형 빈도를 정량화한 결과이다. 도 14에서 야생형 증폭 DNA 크기는 348 bp이고, 파란색 크로마토그램은 6FAM으로 표지된 PCR 증폭 DNA이고, 주황색 크로마토그램은 GeneScan™ 500 LIZ™ dye Size Standard 마커(ThermoFisher Scientific)이다. 또한, 도 16에서 야생형 증폭 DNA 크기는 367 bp이고, 파란색 크로마토그램은 6FAM으로 표지된 PCR 증폭 DNA이고, 주황색 크로마토그램은 GeneScan™ 500 LIZ™ dye Size Standard 마커(ThermoFisher Scientific)이다.Figure 14 is the peak of the IDAA analysis of the protoplasts transfected with the pGK1064-crMADS5-1493.1599D plasmid in an example of the present invention, and Figure 15 is the insertion / deletion (InDel) related peak area and insertion / deletion (InDel) shown in FIG. ) is the result of quantifying the genotype frequency. In addition, FIG. 16 shows peaks as a result of IDAA analysis of protoplasts transfected with the pGK1064-crZAT10-221.273D plasmid in an example of the present invention, and FIG. 17 shows peak areas related to insertion/deletion (InDel) and insertion/deletion shown in FIG. (InDel) This is the result of quantifying the genotype frequency. In Figure 14, the wild-type amplified DNA size is 348 bp, the blue chromatogram is PCR amplified DNA labeled with 6FAM, and the orange chromatogram is GeneScan™ 500 LIZ™ dye Size Standard marker (ThermoFisher Scientific). 16, the wild-type amplified DNA size is 367 bp, the blue chromatogram is PCR amplified DNA labeled with 6FAM, and the orange chromatogram is GeneScan™ 500 LIZ™ dye Size Standard marker (ThermoFisher Scientific).

IDAA(INDEL Detection by Amplicon Analysis) 분석 결과, 플라스미드 pGK1064-crMADS5-1493.1599D와 pGK1064-crZAT10-221.273D가 형질주입된 원형질체 모두에서 유전체 편집에 의해 InDel이 발생하였다. 그 효율은 전체 면적에서 야생형의 피크면적을 빼는 방식으로 추정하여 계산하였다. 그 추정치는 pGK1064-crMADS5-1493.1599D에서 최대 37.2%이고, pGK1064-crZAT10-221.273D에서 최대 28.4% 이었다. 또한, 아그로박테리움에 의해 형질전환된 캘러스의 유전형 분석 결과와 마찬가지로 형질주입된 원형질체 모두에서 유전자형이 각기 두 개의 피크 그룹으로 분리되었으며, 각 피크 그룹은 야생형과 유사한 크기의 small deletion(Single deletion)과 2개의 guide RNA 표적 서열 사이의 거리 만큼이 감소한 large deletion(Dual deletion)에 해당한다.As a result of IDAA (INDEL Detection by Amplicon Analysis) analysis, InDel was generated by genome editing in both the protoplasts transfected with the plasmids pGK1064-crMADS5-1493.1599D and pGK1064-crZAT10-221.273D. The efficiency was estimated and calculated by subtracting the peak area of the wild type from the total area. The estimate was up to 37.2% for pGK1064-crMADS5-1493.1599D and up to 28.4% for pGK1064-crZAT10-221.273D. In addition, similar to the results of genotyping of callus transformed by Agrobacterium, the genotypes in all of the transfected protoplasts were separated into two peak groups, each peak group having a small deletion (Single deletion) of a similar size to the wild type and This corresponds to a large deletion (dual deletion) in which the distance between the two guide RNA target sequences is reduced.

pGK1064-crMADS5-1493.1599D 플라스미드가 형질주입된 원형질체의 InDel 유전형 빈도를 피크 면적으로 추산한 결과, 야생형의 비율은 62.8%이고, small deletion은 27.6%, large deletion은 8.7%로, 전체 InDel 유전형의 비율은 37.2%로 추정되었다. 2개의 guide RNA 사이의 간격을 뺀 길이인 242 bp 주위의 피크들인 Dual deletion 유전형은 7.5%로 추정되었다.As a result of estimating the InDel genotype frequency of protoplasts transfected with the pGK1064-crMADS5-1493.1599D plasmid by peak area, the proportion of the wild type was 62.8%, the small deletion was 27.6%, and the large deletion was 8.7%, which is the proportion of the total InDel genotype. was estimated at 37.2%. The dual deletion genotype, which is the peak around 242 bp, the length minus the distance between the two guide RNAs, was estimated to be 7.5%.

한편, pGK1064-crZAT10-221.273D 플라스미드가 형질주입 원형질체의 InDel 유전형 빈도를 피크 면적으로 추산한 결과, 야생형의 비율은 71.6%이고, large deletion은 28.3%로, 전체 InDel 유전형의 비율은 28.4%로 추정되었다. 2개의 guide RNA 사이의 간격을 뺀 길이인 315bp 주위의 피크들인 Dual deletion 유전형은 18.2%, 그 이상의 긴 large deletion인 256bp 피크의 면적은 10.1% 로 추정되었다. Small deletion은 검출한계 이하로 존재하였다.On the other hand, as a result of estimating the InDel genotype frequency of the protoplasts transfected with the pGK1064-crZAT10-221.273D plasmid by the peak area, the wild-type ratio was 71.6%, the large deletion was 28.3%, and the total InDel genotype ratio was estimated to be 28.4%. It became. The dual deletion genotype, which is peaks around 315 bp, the length minus the distance between the two guide RNAs, was estimated to be 18.2%, and the area of the 256 bp peak, which is a longer large deletion, was estimated to be 10.1%. Small deletions were present below the detection limit.

(6) 플라스미드가 형질주입된 원형질체 풀의 결실(Deletion) 유전형 염기서열 분석(6) Deletion genotype sequencing of the protoplast pool transfected with the plasmid

포도 원형질체에 2개의 플라스미드 pGK1064-crMADS5-1493.1599D 및 pGK1064-crZAT10-221.273D를 각각 형질주입하여 유전체 편집을 하였을 때 발생하는 large deletion의 염기서열 구조를 확인하기 위하여, PCR 증폭한 DNA를 플라스미드 벡터에 클로닝하고 각 클론을 시퀀싱하였다. PCR 증폭 DNA는 실리카 컬럼을 이용하여 정제한 후, Taq DNA polymerse를 이용하여 3' 말단에 A 염기를 부가하였고, T 말단을 갖는 T-vector에 클로닝하였다. 암피실린 배지에서 형성된 콜로니를 무작위로 20개씩 선택하여 M13R-40 프라이머를 이용하여 시퀀싱하였다.In order to confirm the nucleotide sequence structure of the large deletion that occurs when two plasmids, pGK1064-crMADS5-1493.1599D and pGK1064-crZAT10-221.273D, were transfected into grape protoplasts and genome edited, PCR-amplified DNA was inserted into a plasmid vector. Cloned and each clone was sequenced. The PCR-amplified DNA was purified using a silica column, and an A base was added to the 3' end using Taq DNA polymerse, and cloned into a T-vector having a T end. Twenty colonies formed in the ampicillin medium were randomly selected and sequenced using the M13R-40 primer.

도 18은 본 발명의 실시예에서 포도 원형질체에 2개의 플라스미드 pGK1064-crMADS5-1493.1599D 및 pGK1064-crZAT10-221.273D를 각각 형질주입하여 유전체 편집을 하였을 때 발생하는 large deletion의 염기서열 구조를 확인한 결과이다. 도 18의 A 및 B에서 가장 위에 있는 서열은 포도 품종 피노누아 유전체 참조서열이고, 전형적인 CRISPR 절단위치를 빨간색 화살표로 표시하였으며, 밑에 정렬된 클론 서열 중 가장 위의 것은 편집이 안 된 야생형 클론 서열이다. 도 18에서 보이는 바와 같이 플라스미드 pGK1064-crMADS5-1493.1599D 및 pGK1064-crZAT10-221.273D가 각각 형질주입된 원형질체에서 large deletion은 공통적으로 2개의 표적 guide RNA 사이가 결실된 염기서열을 가지고 있었으며, 절단 위치는 PAM(Protospacer adjacent motif) 자리로부터 3~4 bp 떨어진 CRISPR cleavage site이거나 그와 근접한 부위인 것으로 확인되었다. pGK1064-crMADS5-1493.1599D가 형질주입된 원형질체의 large deletion은 모두(19개의 deletion 클론 중 19개 클론) PAM으로부터 3~4 bp가 떨어진 CRISPR cleavage site가 절단된 유형이었다(도 18의 A). 한편, pGK1064-crZAT10-221.273D가 형질주입 원형질체의 large deletion은 절단 위치가 비교적 불규칙적이었다(도 18의 B). 그렇지만 원형질체 모두 2개의 표적 guide RNA 사이가 결실된 염기서열을 가지고 있었다.18 is a result of confirming the nucleotide sequence structure of a large deletion that occurs when genome editing is performed by transfecting two plasmids, pGK1064-crMADS5-1493.1599D and pGK1064-crZAT10-221.273D, respectively, into grape protoplasts in an example of the present invention. . The uppermost sequence in A and B of FIG. 18 is the grape variety Pinot Noir genome reference sequence, a typical CRISPR cleavage site is indicated by a red arrow, and the uppermost sequence among the clone sequences aligned below is the unedited wild type clone sequence . As shown in FIG. 18, the large deletion in the protoplasts transfected with the plasmids pGK1064-crMADS5-1493.1599D and pGK1064-crZAT10-221.273D, respectively, had a base sequence deleted between the two target guide RNAs, and the cleavage site was It was confirmed to be a CRISPR cleavage site 3-4 bp away from the PAM (Protospacer adjacent motif) site or a site close to it. All of the large deletions (19 clones out of 19 deletion clones) of the protoplasts transfected with pGK1064-crMADS5-1493.1599D were of the type in which the CRISPR cleavage site 3-4 bp away from the PAM was truncated (Fig. 18A). On the other hand, the large deletion of the protoplasts transfected with pGK1064-crZAT10-221.273D showed a relatively irregular cutting position (Fig. 18B). However, all of the protoplasts had a base sequence deleted between the two target guide RNAs.

이상에서와 같이 본 발명을 상기의 실시예를 통해 설명하였지만 본 발명이 반드시 여기에만 한정되는 것은 아니며 본 발명의 범주와 사상을 벗어나지 않는 범위 내에서 다양한 변형실시가 가능함은 물론이다. 따라서, 본 발명의 보호범위는 본 발명에 첨부된 특허청구의 범위에 속하는 모든 실시 형태를 포함하는 것으로 해석되어야 한다.As described above, the present invention has been described through the above embodiments, but the present invention is not necessarily limited thereto, and various modifications are possible without departing from the scope and spirit of the present invention. Accordingly, the scope of protection of the present invention should be construed to include all embodiments falling within the scope of the claims appended hereto.

<110> Myongji University Industry and Academia Cooperation Foundation THE CATHOLIC UNIVERSITY OF KOREA INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> Novel U6 promoter separated form grapevine and use of the same <130> ZDP-20-0349-D1 <160> 63 <170> KoPatentIn 3.0 <210> 1 <211> 363 <212> DNA <213> Unknown <220> <223> VviU6-1 promoter separated from Vitis vinifera cv. Hongju <400> 1 tgaaacctag ctgttggatg gaacaaggaa ctattgggtc cattttttgg aaaaaagaaa 60 agaaaagtta tattgaaatc ccttgccaac accaacaatc ttctttccct ggtttccatg 120 caagaccact cctccacaat cacctcacaa aagcttcaca aaatgagcaa agaaagaaca 180 gtggtctcac caaggacaaa catgccattt ctaaattcaa cccaaatgag ttgtggtgac 240 ggcgccgtgg gctcgatgtc cagaccaaag cgaaacgacg tcgttcccaa gcgactcctc 300 ccacatcgac tgcgcagaag ctaaattcgg gttttatata gcaactccaa atgattggag 360 ctt 363 <210> 2 <211> 523 <212> DNA <213> Unknown <220> <223> VviU6-3 promoter separated from Vitis vinifera cv. Hongju <400> 2 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc ccctggaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa cagccataat 300 aaagatgaaa agcaacgaag aaaaagtaat ctcaccttct ggtggggaac accaaggacg 360 aacatgccaa ttctaaattc aacccaaatg agttgtggtg acgggccgtg ggctcgatgc 420 ccagaccaag cgaaacgacg tcgttcccaa acgactcttc ccacatcgac tgcgtataga 480 ctaaattcac cttttttata tcaggagcaa acgcttagag ctt 523 <210> 3 <211> 363 <212> DNA <213> Unknown <220> <223> VviU6-5 promoter separated from Vitis vinifera cv. Hongju <400> 3 tcccttgtgt ggaatatgcc acctcaatac cgaggaagta cttcagtttc cctaattcct 60 ttatctcaaa ctctgttact aatctctgct tcacttcatg cttttctctc tcatcatttc 120 cagtcactat gatgtcgtca acatagacta gaagaccagt tactcccctt gtagccgagt 180 gcttaatgaa gagagtgtgg tcaccttggc tttgtttgta cccaaactct ttcatgagtt 240 ttgcaaatct cccaaaccaa gccctgggag attgttttag cccatacagg gccttcttca 300 gcttgcacac cttgttacct gtgttttcct caaatcctgg tgggatgttc atgtaaatcc 360 ctt 363 <210> 4 <211> 360 <212> DNA <213> Unknown <220> <223> VviU6-6 promoter separated from Vitis vinifera cv. Hongju <400> 4 tcctgagaca cccaagaaag ctttgtcaac aaattccgtc tcatccacca taaggttagg 60 aacaccttgt gatttcacct cttttcaggc cttccactaa ggttccaatc aaaactcttt 120 cattgtttgg aagatgaaaa tacaacaatg aagtaaacca gtgaaaataa tacatcagca 180 accaaaggaa acaacaaaag aggcaatgag aagtcagaac tgagaagcag acctcaccta 240 ctggttgtgg gcccatgttg ttctcctttt aagattggtt catccaaaat tccattccca 300 catcgaaaaa ttatgaagcc agcaatgtct tcatatgtat cagctctccc accaaagctt 360 360 <210> 5 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7 promoter separated from Vitis vinifera cv. Hongju <400> 5 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 6 <211> 632 <212> DNA <213> Artificial Sequence <220> <223> pVgR6-3 PCR template plasmid <400> 6 gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60 ggcaccgagt cggtgctttt ttttgacatt ttttttctta ctagtctctc atggttttgc 120 ttcaagttgg tttttgatca gcagtcaatg gattttaagc taccaccctc ggtatcctac 180 ataagaaatc caatacaaaa gtggattttt gcagtgctgg tagtttcttg aatttaagtt 240 aattaattag acatatgata aacacttgcc cctggaaaat ccacatacaa ttttttttca 300 gtttctttta attaccagca aaattagggc tgagaatgca attcccaaac cctaagaaca 360 aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata aagatgaaaa 420 gcaacgaaga aaaagtaatc tcaccttctg gtggggaaca ccaaggacga acatgccaat 480 tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc cagaccaagc 540 gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgtatagac taaattcacc 600 ttttttatat caggagcaaa cgcttagagc tt 632 <210> 7 <211> 665 <212> DNA <213> Artificial Sequence <220> <223> pVgR6-7 PCR template plasmid <400> 7 gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60 ggcaccgagt cggtgctttt ttttgacatt ttttttctta ctagatcctg tagagaaatc 120 tgtaccaata aaacaacaac aataggtcat aggttaacag tttactttaa ataattgtat 180 gcccaaaacg atgatcataa cattaattac aggttgtttg gttctctgga aactgtgaca 240 gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc agctctccca 300 acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca atatgttctt 360 ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat tgtctataag 420 atgaaaatat aagtataaca aacaaatgaa gaagtaaaga agcagaacat atccacaatc 480 aaataaagaa acaagaaaag taaccctcac tttcaggttg tggacccaca taaaggcggt 540 gcaggttgag tgaaacggca tcgttttggg cagccggggg tcttgacatc cccattccca 600 tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact ccactattaa 660 agctt 665 <210> 8 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Thompson seedless <400> 8 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cgtaagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttggagc tt 522 <210> 9 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Thompson seedless <400> 9 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccttctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 10 <211> 490 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis spp. Tamnara <400> 10 aaaaaaaaaa aaaaaagaaa tatgttggat gatcaaacac tataaaataa ttttctattt 60 ttaaaagtgg atttttgcag tgctagtagt ttcttgaatt taagttaatt aattagacat 120 atgataaaca cttgccctgg aaaatccacc tacaattttt ttcagtttct ttcaatcagc 180 aaaattaggg ctgagaatgc aattcccaaa ccctaagaac aaaaagaagg cccaaatctg 240 aaaacattat atgacaacaa ccataataaa gatgaaaagc aacgaagaaa aagtaatctc 300 accatctggt ggggaacacc aaggacgaac atgccaattc taaattcaac ccaaatgagt 360 tgtggtgacg ggccgtgggc tcgatgccca gaccaagcga aacgacgtca ttctcaaacg 420 actcttccca catcgactgc ccatagacta aattcagctt ttatatatca ggagcaaacg 480 cttagagctc 490 <210> 11 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis Shiny Star <400> 11 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cgtaagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 agatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgc cgttcccaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttagagc tt 522 <210> 12 <211> 523 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis Shiny Star <400> 12 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc ccctggaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa cagccataat 300 aaagatgaaa agcaacgaag aaaaagtaat ctcaccatct ggtggggaac accaaggacg 360 aagatgccaa ttctaaattc aacccaaatg agttgtggtg acgggccgtg ggctcgatgc 420 ccagaccaag cgaaacgacg ccgttcccaa acgactcttc ccacatcgac tgcgcataga 480 ctaaattcag cttttatata tcaggagcaa acgcttggag ctt 523 <210> 13 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Ruby Seedless <400> 13 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccttctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 14 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Ruby Seedless <400> 14 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gggcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttagagc gt 522 <210> 15 <211> 464 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Rizamat <400> 15 catagttttg cttcaagttg gttttttatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc ccctggaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa ccataataaa 300 gatgaaaagc aacgaagaaa aagtaatctc accatctggt gaggggccgt gggctcgatg 360 cccagaccaa gcgaaacgac gtcgttccca aacgactctt cccacatcga ctgtgcatag 420 actaaattca gcttttatat atcaggagca aacgcttaga gttt 464 <210> 16 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Rizamat <400> 16 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cgtaagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttggagc tt 522 <210> 17 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Red Globe <400> 17 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccttctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 18 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Red Globe <400> 18 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gggcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttagagc gt 522 <210> 19 <211> 464 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Princess <400> 19 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc ccctggaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa ccataataaa 300 gatgaaaagc aacgaagaaa aagtaatctc accatctggt gaggggccgt gggcccgatg 360 cccagaccaa gcgaaacgac gtcgttccca aacgactctt cccacatcga ctgcgcatag 420 actaaattca gcttttatat atcaggagca aacgctttga gttt 464 <210> 20 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Princess <400> 20 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cgtaagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttggagc tt 522 <210> 21 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Pinot Noir <400> 21 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccttctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 22 <211> 464 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Perlon <400> 22 catagttttg cttcaagttg gttttttatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc ccctggaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa ccataataaa 300 gatgaaaagc aacgaagaaa aagtaatctc accatctggt gaggggccgt gggcccgatg 360 cccagaccaa gcgaaacgac gtcgttccca aacgactctt cccacatcga ctgcgcatag 420 actaaattca gcttttatat atcaggagca aacgctttga gttt 464 <210> 23 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Perlon <400> 23 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagc taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcaga ttttatatat caggagcaaa tgcttaaagc tt 522 <210> 24 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Muscat of Alexandria <400> 24 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gggcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttagtgc tt 522 <210> 25 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Muscat of Alexandria <400> 25 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccttctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 26 <211> 464 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Kishmish Chernyi <400> 26 catagttttg cttcaagttg gttttttatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc ccctggaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa ccataataaa 300 gatgaaaagc aacgaagaaa aagtaatctc accatctggt gaggggccgt gggctcgatg 360 cccagaccaa gcgaaacgac gtcgttccca aacgactctt cccacatcga ctgtgcatag 420 actaaattca gcttttatat atcaggagca aacgcttaga gttt 464 <210> 27 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Kishmish Chernyi <400> 27 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccttctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 28 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Italia <400> 28 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagc taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcaga ttttatatat caggagcaaa tgcttaaagc tt 522 <210> 29 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Italia <400> 29 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc cccaggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcagc ttttatatat caggagcaaa cgcctagggc tt 522 <210> 30 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Hongju <400> 30 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gagttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaatttgggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccttctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 31 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis labrusca Himrod <400> 31 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cgtaagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaaac gaaacgacgt cgttctcaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttagagt tc 522 <210> 32 <211> 515 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis labrusca Himrod <400> 32 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgcta gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc cctggaaaat ccacctacaa 180 tttttttcag tttctttcaa tcagcaaaat tagggctgag aatgcaattc ccaaacccta 240 agaacaaaaa gaaggcccaa atctgaaaac attatatgac aacaaccata ataaagatga 300 aaagcaacga agaaaaagta atctcaccat ctggtgggga acaccaagga cgaacatgcc 360 aattctaaat tcaacccaaa tgagttgtgg tgacgggccg tgggctcgat gcccagacca 420 agcgaaacga cgtcgttccc aaacgactct tcccacatcg actgcgcata gactaaattc 480 agcttttata tatcaggagc aaacgcttgg agctt 515 <210> 33 <211> 490 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis labruscana Campbell Early <400> 33 aaaaaaaaaa aaaaaagaaa tatgttggat gatcaaacac tataaaataa ttttctattt 60 ttaaaagtgg atttttgcag tgctagtagt ttcttgaatt taagttaatt aattagacat 120 atgataaaca cttgccctgg aaaatccacc tacaattttt ttcagtttct ttcaatcagc 180 aaaattaggg ctgagaatgc aattcccaaa ccctaagaac aaaaagaagg cccaaatctg 240 aaaacattat atgacaacaa ccataataaa gatgaaaagc aacgaagaaa aagtaatctc 300 accatctggt ggggaacacc aaggacgaac atgccaattc taaattcaac ccaaatgagt 360 tgtggtgacg ggccgtgggc tcgatgccca gaccaagcga aacgacgtca ttctcaaacg 420 actcttccca catcgactgc ccatagacta aattcagctt ttatatatca ggagcaaacg 480 cttagagctc 490 <210> 34 <211> 523 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis labruscana Campbell Early <400> 34 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc ccctggaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa cagccataat 300 aaagatgaaa agcaacgaag aaaaagtaat ctcaccatct ggtggggaac accaaggacg 360 aagatgccaa ttctaaattc aacccaaatg agttgtggtg acgggccgtg ggctcgatgc 420 ccagaccaag cgaaacgacg ccgttcccaa acgactcttc ccacatcgac tgcgcataga 480 ctaaattcag cttttatata tcaggagcaa acgcttagag ctt 523 <210> 35 <211> 493 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitus amurensis <400> 35 catggtctgc ttcaagttgg tttttgatca gcagtcaatg gattttaagc taccaccctc 60 ggtatcctac ataagaaatc caatacaaaa gtggattttt gcagtgctgg tagtttcttg 120 aatttaagtt aattaattag acatatgata aacacttgcc ctggaaaatt cacctacaat 180 ttttttcagt ttctttcaat taccagcaaa attaggactg agaatgcaat tcccaaaccc 240 taagaacaaa aagaaggtcc aaatctgaaa acattatatg acaacaacca taataaagat 300 gaaaagcaac gaagaaaaag taatctcacc atctggtggg gaacaccaag gacgaacatg 360 ccaattgtga cgggccgtgg gctcgattcc cagaccaaag tgaaacgacg tcgttcccaa 420 acgactcttc ccacatcgac tgtgtgtaaa ctaaattcag cctttataga tcaggagcaa 480 acgcctagag ttt 493 <210> 36 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis amurensis <400> 36 catgattttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccatctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggtt cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactggg catagactaa 480 attcagcttt tatatatcag gagcaaacgc ttagagctt 519 <210> 37 <211> 557 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Thompson Seedless <400> 37 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataacag tttactttaa 60 ataattgtat gcccaaaacg atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatatgttc ttccaatttt gttgagtaaa aaaccaaata gagttggatg ttttcctttg 300 attgtctata agatgaaaat ataagtataa caaacaaatg aagaagtaaa gaagcagaac 360 atatccacaa ccaaataaag aaacaagaaa agtgaccctc actttcaggt tgtggaccca 420 cataaaggcg gtgcaggttg agtgaaacgg catcgttttg ggcagccggg ggtcttgaca 480 tccccattcc catcccacat cgaaacttta agaccagata tgtttcctca tatattgaaa 540 ctccactatt aaagctt 557 <210> 38 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis Tano Red <400> 38 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacaatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg taacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatacg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct atgagatgaa aatataagta taacaaacaa atgaagaagt aaagaaacag 360 aacacatcca caaccaaata aagaaacaag aaaagtgacc ctcactttca ggctgtgggc 420 ccccataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc aggggtcttg 480 acattcccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact gttaaagctt 560 <210> 39 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis Tano Red <400> 39 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 40 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis spp. Tamnara <400> 40 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacaatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg taacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatacg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct atgagatgaa aatataagta taacaaacaa atgaagaagt aaagaaacag 360 aacacatcca caaccaaata aagaaacaag aaaagtgacc ctcactttca ggctgtgggc 420 ccccataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc aggggtcttg 480 acattcccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact gttaaagctt 560 <210> 41 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Suffolk Red <400> 41 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 42 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Suffolk Red <400> 42 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 43 <211> 557 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis Shiny Star <400> 43 tcctgtagag aaatctgtac caataaaaca acaataatag gtcataacag tttactttaa 60 ataattgtat gcccaaaacg atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatatgttc ttccaatttt gttgagtaaa aaaccaaata gagttggatg ttttcctttg 300 attgtctata agatgaaaat ataagtataa caaacaaatg aagaagtaaa gaagcagaac 360 atatccacaa ccaaataaag aaacaagaaa agtgaccctc actttcaggt tgtggaccca 420 cataaaggcg gtgcaggttg agtgaaacgg catcgttttg ggcagccggg ggtcttgaca 480 tccccattcc catcccacat cgaaacttta agaccagata tgtttcctca tatattgaaa 540 ctccactatt aaagctt 557 <210> 44 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis Shiny Star <400> 44 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 45 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Ruby Seedless <400> 45 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 46 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Rizamat <400> 46 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 47 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Rizamat <400> 47 tcctgtagag aaatctgtac caataaaaca ataacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caaccaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 48 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Red Globe <400> 48 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 49 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Princess <400> 49 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 50 <211> 557 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Princess <400> 50 tcctgtagag aaatctgtac caataaaaca acaataatag gtcataacag tttactttaa 60 ataattgtat gcccaaaacg atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatatgttc ttccaatttt gttgagtaaa aaaccaaata gagttggatg ttttcctttg 300 attgtctata agatgaaaat ataagtataa caaacaaatg aagaagtaaa gaagcagaac 360 atatccacaa ccaaataaag aaacaagaaa agtgaccctc actttcaggt tgtggaccca 420 cataaaggcg gtgcaggttg agtgaaacgg catcgttttg ggcagccggg ggtcttgaca 480 tccccattcc catcccacat cgaaacttta agaccagata tgtttcctca tatattgaaa 540 ctccactatt aaagctt 557 <210> 51 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Pinot Noir <400> 51 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 52 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Perlon <400> 52 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 53 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Perlon <400> 53 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 54 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis Muscat of Alexandria <400> 54 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 55 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Kishmish Chernyi <400> 55 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 56 <211> 557 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Kishmish Chernyi <400> 56 tcctgtagag aaatctgtac caataaaaca acaataatag gtcataacag tttactttaa 60 ataattgtat gcccaaaacg atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatatgttc ttccaatttt gttgagtaaa aaaccaaata gagttggatg ttttcctttg 300 attgtctata agatgaaaat ataagtataa caaacaaatg aagaagtaaa gaagcagaac 360 atatccacaa ccaaataaag aaacaagaaa agtgaccctc actttcaggt tgtggaccca 420 cataaaggcg gtgcaggttg agtgaaacgg catcgttttg ggcagccggg ggtcttgaca 480 tccccattcc catcccacat cgaaacttta agaccagata tgtttcctca tatattgaaa 540 ctccactatt aaagctt 557 <210> 57 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Italia <400> 57 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 58 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Italia <400> 58 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 59 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Hongju <400> 59 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctataag atgaaaatat aagtataaca aacaaatgaa gaagtaaaga agcagaacat 360 atccacaatc aaataaagaa acaagaaaag taaccctcac tttcaggttg tggacccaca 420 taaaggcggt gcaggttgag tgaaacggca tcgttttggg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactattaa agctt 555 <210> 60 <211> 557 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis labrusca Himrod <400> 60 tcctgtagag aaatctgtac caataaaaca acaataatag gtcataacag tttactttaa 60 ataattgtat gcccaaaacg atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatatgttc ttccaatttt gttgagtaaa aaaccaaata gagttggatg ttttcctttg 300 attgtctata agatgaaaat ataagtataa caaacaaatg aagaagtaaa gaagcagaac 360 atatccacaa ccaaataaag aaacaagaaa agtgaccctc actttcaggt tgtggaccca 420 cataaaggcg gtgcaggttg agtgaaacgg catcgttttg ggcagccggg ggtcttgaca 480 tccccattcc catcccacat cgaaacttta agaccagata tgtttcctca tatattgaaa 540 ctccactatt aaagctt 557 <210> 61 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis labrusca Himrod <400> 61 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacaatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg taacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatacg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct atgagatgaa aatataagta taacaaacaa atgaagaagt aaagaaacag 360 aacacatcca caaccaaata aagaaacaag aaaagtgacc ctcactttca ggctgtgggc 420 ccccataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc aggggtcttg 480 acattcccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact gttaaagctt 560 <210> 62 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis labruscana Campbell Early <400> 62 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacaatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg taacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatacg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct atgagatgaa aatataagta taacaaacaa atgaagaagt aaagaaacag 360 aacacatcca caaccaaata aagaaacaag aaaagtgacc ctcactttca ggctgtgggc 420 ccccataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc aggggtcttg 480 acattcccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact gttaaagctt 560 <210> 63 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis amurensis <400> 63 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacaatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatctgaa cccaataaat ttttcattcc 180 ctctcagccc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct atgagatgaa aatatatgta taacaaacaa atgaagaagt aaagaaacag 360 aacatattca caaccaaata aagaaacaag aaaagcgacc ctcactttca agttgtggac 420 cctcataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attgaagctt 560 <110> Myongji University Industry and Academia Cooperation Foundation THE CATHOLIC UNIVERSITY OF KOREA INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> Novel U6 promoter separated form grapevine and use of the same <130> ZDP-20-0349-D1 <160> 63 <170 > KoPatentIn 3.0 <210> 1 <211> 363 <212> DNA <213> Unknown <220> <223> VviU6-1 promoter separated from Vitis vinifera cv. Hongju <400> 1 tgaaacctag ctgttggatg gaacaaggaa ctattgggtc cattttttgg aaaaaagaaa 60 agaaaagtta tattgaaatc ccttgccaac accaacaatc ttctttccct ggtttccatg 120 caagaccact cctccacaat cacctcacaa aagcttcaca aa atgagcaa agaaagaaca 180 gtggtctcac caaggacaaa catgccattt ctaaattcaa cccaaatgag ttgtggtgac 240 ggcgccgtgg gctcgatgtc cagaccaaag cgaaacgacg tcgttcccaa gcgactcctc 300 ccacatcgac tgcgcagaag ctaaattc gg gttttatata gcaactccaa atgattggag 360 ctt 363 < 210> 2 <211> 523 <212> DNA <213> Unknown <220> <223> VviU6-3 promoter separated from Vitis vinifera cv. Hongju <400> 2 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc ccct ggaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa cagccataat 300 aaagatgaaa agcaacgaag aaaaagtaat ctca ccttct ggtggggaac accaaggacg 360 aacatgccaa ttctaaattc aacccaaatg agttgtggtg acgggccgtg ggctcgatgc 420 ccagaccaag cgaaacgacg tcgttcccaa acgactcttc ccacatcgac tgcgtataga 480 ctaaattcac cttttttata tcaggagcaa acgcttagag ctt 523 <210> 3 <211> 363 <212> DNA <213> Unknown <220> <223> VviU6-5 promoter separated from Vitis vinifera cv. Hongju <400> 3 tcccttgtgt ggaatatgcc acctcaatac cgaggaagta cttcagtttc cctaattcct 60 ttatctcaaa ctctgttact aatctctgct tcacttcatg cttttctctc tcatcatttc 120 cagtcactat gatgtcgtca acatagacta gaagaccagt tactcc cctt gtagccgagt 180 gcttaatgaa gagagtgtgg tcaccttggc tttgtttgta cccaaactct ttcatgagtt 240 ttgcaaatct cccaaaccaa gccctgggag attgttttag cccatacagg gccttcttca 300 gcttgcacac cttgttacct gtgttttcct caaatcctgg tgggatgttc atgtaaatcc 360 ctt 363 < 210> 4 <211> 360 <212> DNA <213> Unknown <220> <223> VviU6-6 promoter separated from Vitis vinifera cv. Hongju <400> 4 tcctgagaca cccaagaaag ctttgtcaac aaattccgtc tcatccacca taaggttagg 60 aacaccttgt gatttcacct cttttcaggc cttccactaa ggttccaatc aaaactcttt 120 cattgtttgg aagatgaaaa tacaacaatg aagtaaacca gtga aaataa tacatcagca 180 accaaaggaa acaacaaaag aggcaatgag aagtcagaac tgagaagcag acctcaccta 240 ctggttgtgg gcccatgttg ttctcctttt aagattggtt catccaaaat tccattccca 300 catcgaaaaa ttatgaagcc agcaatgtct tcatatgtat c agctctccc accaaagctt 360 360 <210 > 5 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7 promoter separated from Vitis vinifera cv. Hongju <400> 5 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaata aat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat ttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatata agta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 6 <211> 632 <212> DNA <213> Artificial Sequence <220> <223> pVgR6-3 PCR template plasmid <400> 6 gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60 ggcaccgagt cggtgctttt ttttgacatt ttttttctta ctagtctctc atggttttgc 120 ttcaagttgg tttttgatca gcagtcaat g gattttaagc taccaccctc ggtatcctac 180 ataagaaatc caatacaaaa gtggattttt gcagtgctgg tagtttcttg aatttaagtt 240 aattaattag acatatgata aacacttgcc cctggaaaat ccacatacaa ttttttttca 300 gtttctttta attaccagca aaatt agggc tgagaatgca attcccaaac cctaagaaca 360 aaaagaatgc ccaaatctga aagcattata tgacaacaac ca catcgact gcgtatagac taaattcacc 600 ttttttatat caggagcaaa cgcttagagc tt 632 <210> 7 <211> 665 <212> DNA <213> Artificial Sequence <220> < 223> pVgR6-7 PCR template plasmid <400> 7 gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60 ggcaccgagt cggtgctttt ttttgacatt ttttttctta ctagatcctg tagagaaatc 120 tgtaccaata aa acaacaac aataggtcat aggttaacag tttactttaa ataattgtat 180 gcccaaaacg atgatcataa cattaattac aggttgtttg gttctctgga aact gtgaca 240 gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc agctctccca 300 acttttctca tca atttttt ggttgcataa attttcccca aattttgaca atatgttctt 360 ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat tgtctataag 420 atgaaaatat aagtataaca aacaaatgaa gaagtaaaga agcagaacat atccacaatc 480 aaataaagaa acaagaaaag taaccc < 210> 8 <211> 522 < 212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Thompson seedless <400> 8 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cgtaagaaat ccaatacaaa agtggatt tt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtg gggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttggag c tt 522 <210> 9 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Thompson seedless <400> 9 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa a gtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agta atctca ccttctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatat cag gagcaaacgc ttagagctt 519 <210> 10 <211 > 490 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis spp. Tamnara <400> 10 aaaaaaaaaa aaaaaagaaa tatgttggat gatcaaacac tataaaataa ttttctattt 60 ttaaaagtgg atttttgcag tgctagtagt ttcttgaatt taagttaatt aattagacat 120 atgataaaca cttgccctgg aaaatccacc tacaattt tt ttcagtttct ttcaatcagc 180 aaaattaggg ctgagaatgc aattcccaaa ccctaagaac aaaaagaagg cccaaatctg 240 aaaacattat atgacaacaa ccataataaa gatgaaaagc aacgaagaaa aagtaatctc 300 accatctggt ggggaacacc aaggacgaac atgcca attc taaattcaac ccaaatgagt 360 tgtggtgacg ggccgtgggc tcgatgccca gaccaagcga aacgacgtca ttctcaaacg 420 actcttccca catcgactgc ccatagacta aattcagctt ttatatatca ggagcaaacg 480 cttagagctc 490 <210> 11 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis Shiny Star <400 > 11 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cgtaagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggg gaaca ccaaggacga 360 agatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 522 <210> 12 <211> 523 <212> DNA <213> Unknown <220> <223> Vvi U6-3(allele A) promoter separated from Vitis Shiny Star < 400 > 12 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc ccctg gaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa cagccataat 300 aaagatgaaa agcaacgaag aaaaagtaat ctcac catct ggtggggaac accaaggacg 360 aagatgccaa ttctaaattc aacccaaatg agttgtggtg acgggccgtg ggctcgatgc 420 ccagaccaag cgaaacgacg ccgttcccaa acgactcttc ccacatcgac tgcgcataga 480 ctaaattcag cttttatata tcaggagcaa acgcttggag ctt 523 <210> 13 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Ruby Seedless <400> 13 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc cc ctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccttctggt g gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 14 <211> 522 <212> DNA <2 13> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Ruby Seedless <400> 14 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tc accatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gggcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttagagc gt 522 <210> 15 <211> 464 <21 2> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Rizamat <400> 15 catagttttg cttcaagttg gttttttatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagttctt 120 gaatttaagt taattaatta gacatatgat aaac acttgc ccctggaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa ccataataaa 300 gatgaaaagc aacgaagaaa aagta atctc accatctggt gaggggccgt gggctcgatg 360 cccagaccaa gcgaaacgac gtcgttccca aacgactctt cccacatcga ctgtgcatag 420 actaaattca gcttttatat atcaggagca aacgcttaga gttt 464 <210> 16 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter from separated Vitis vinifera Rizamat <400> 16 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cgtaagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggga aca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttggagc tt 522 <210> 17 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3 (allele B) promoter separated from Vitis vinifera Red Globe < 400 > 17 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctgga gg gaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 18 <211> 522 <212> DNA <213> Unknown <220> <22 3> VviU6-3(allele A) promoter separated from Vitis vinifera Red Globe <400> 18 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctgga aaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gggcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttagagc gt 522 <210> 19 <211> 464 <212> DNA <213> Unknown <2 20> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Princess <400> 19 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc ccct ggaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa ccataataaa 300 gatgaaaagc aacgaagaaa aagtaatctc accatctgg t gaggggccgt gggcccgatg 360 cccagaccaa gcgaaacgac gtcgttccca aacgactctt cccacatcga ctgcgcatag 420 actaaattca gcttttatat atcaggagca aacgctttga gttt 464 <210> 20 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Princess <400> 2 0 catagtttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cgtaagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 36 0 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttggagc tt 522 <210> 21 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) separated promoter from Vitis vinifer a Pinot Noir <400> 21 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctggaaaa t a ggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 22 <211> 464 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Perlon <400> t ccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa ccataataaa 300 gatgaaaagc aacgaagaaa aagtaatctc accatctggt gaggggccgt gggccccgatg 360 cccagaccaa gcgaaacgac gtcgttccca aacgactctt cccacatcga ctgcgcatag 420 actaaattca gcttttatat atcaggagca aacgctttga gttt 464 <210> 23 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Perlon <400> 23 catggttttg cttcaagttg gttttt gatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagc taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 3 00 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgcatag ac 480 taaattcaga ttttatatat caggagcaaa tgcttaaagc tt 522 <210 > 24 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Muscat of Alexandria <400> 24 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataaga aat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatct ga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttccca aa cgactcttcc cacatcgact gggcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttagtgc tt 522 <210> 25 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Muscat of Alexandria <400> 25 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 c ggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccttctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 acc aagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 26 <211> 464 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Kishmish Chernyi <400> 26 catagttttg cttcaagttg gttttttatc agcagtcaat ggattttaag ctaccaccct 60 aatt cccaaa 240 ccctaagaac aaaaagaatg cccaaatctg aaagcattat atgacaacaa ccataataaa 300 gatgaaaagc aacgaagaaa aagtaatctc accatctggt gaggggccgt gggctcgatg 360 cccagaccaa gcgaaacgac gtcgttccca aacgactctt cccacacatcga ctgt gcatag 420 actaaattca gcttttatat atcaggagca aacgcttaga gttt 464 <210 > 27 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Kishmish Chernyi <400> 27 catggttttg cttcaagttg gttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagttctt 120 gaatttaagt tatttaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata t gacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccttctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 < 210> 28 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Italia <400> 28 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cata agaaat ccaatacaaa agtggatttt tgcagtgctg gtagttctt 120 gaatttaagc taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata t gacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcaga ttttatatat caggagcaaa tgcttaaagc tt 522 <210> 29 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis vinifera Italia <400> 29 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta agaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc cccaggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaagc gaaacgacgt cgttcccaa a cgactcttcc cacatcgact gcgcatagac 480 taaattcagc ttttatatat caggagcaaa cgcctagggc tt 522 <210> 30 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis vinifera Hongju <400> 30 catggttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtat ccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gagttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaatttgggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaat gc ccaaatctga aagcattata tgacaacaac cataataaag 300 atgaaaagca acgaagaaaa agtaatctca ccttctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggct cgatgcccag 420 accaagcgaa acgacgtc gt tcccaaacga ctcttcccac atcgactgcg tatagactaa 480 attcaccttt tttatatcag gagcaaacgc ttagagctt 519 <210> 31 <211> 522 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis labrusca Himrod <400> 31 catagttttg cttcaagttg gttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatcc ta cgtaagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatg c ccaaatctga aagcattata tgacaacaac agccataata 300 aagatgaaaa gcaacgaaga aaaagtaatc tcaccatctg gtggggaaca ccaaggacga 360 acatgccaat tctaaattca acccaaatga gttgtggtga cgggccgtgg gctcgatgcc 420 cagaccaaac gaaacgac gt cgttctcaaa cgactcttcc cacatcgact gcgcatagac 480 taaattcagc ttttatatat caggagcaaa cgcttagagt tc 522 <210> 32 <211> 515 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis labrusca Himrod <400> 32 catagttttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cgg tatccta cataagaaat ccaatacaaa agtggatttt tgcagtgcta gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc cctggaaaat ccacctacaa 180 tttttttcag tttctttcaa tcagcaaaat tagggctgag aatgcaattc ccaaacccta 240 aga acaaaaa gaaggcccaa atctgaaaac attatatgac aacaaccata ataaagatga 300 aaagcaacga agaaaaagta atctcaccat ctggtgggga acaccaagga cgaacatgcc 360 aattctaaat tcaacccaaa tgagttgtgg tgacgggccg tgggctcgat gcccagacca 4 20 agcgaaacga cgtcgttccc aaacgactct tcccacatcg actgcgcata gactaaattc 480 agcttttata tatcaggagc aaacgcttgg agctt 515 <210> 33 <211> 490 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitis labruscana Campbell Early <400> 33 aaaaaaaaa aaaaaagaaa tatgttggat gatcaaacac tataaaataa ttttctatt t 60 ttaaaagtgg attttgcag tgctagtagt ttcttgaatt taagttaatt aattagacat 120 atgataaaca cttgccctgg aaaatccacc tacaattttt ttcagtttct ttcaatcagc 180 aaaattaggg ctgagaatgc aattcccaaa ccctaagaac aaaaagaagg cccaaatctg 240 a aaacattat atgacaacaa ccataataaa gatgaaaagc aacgaagaaa aagtaatctc 300 accatctggt ggggaacacc aaggacgaac atgccaattc taaattcaac ccaaatgagt 360 tgtggtgacg ggccgtgggc tcgatgccca gaccaagcga aacgacgtca ttctcaaacg 420 act cttccca catcgactgc ccatagacta aattcagctt ttatatatca ggagcaaacg 480 cttagagctc 490 <210> 34 <211> 523 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis labruscana Campbell Early <400> 34 catagttttg cttcaagttg gttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacatatgat aaacacttgc ccctggaaaa tccacataca 180 attttttttc agtttctttt aattaccagc aaaattaggg ctgagaatgc aattcccaaa 240 ccctaagaac aaaa agaatg cccaaatctg aaagcattat atgacaacaa cagccataat 300 aaagatgaaa agcaacgaag aaaaagtaat ctcaccatct ggtggggaac accaaggacg 360 aagatgccaa ttctaaattc aacccaaatg agttgtggtg acgggccgtg ggctcgatgc 420 ccaga ccaag cgaaacgacg ccgttcccaa acgactcttc ccacatcgac tgcgcataga 480 ctaaattcag cttttatata tcaggagcaa acgcttagag ctt 523 <210> 35 <211> 493 <212> DNA <213> Unknown <220> <223> VviU6-3(allele B) promoter separated from Vitus amurensis <400> 35 catggtctgc ttcaagttgg tttttgatca gcagtcaatg gattttaagc taccaccctc 60 ggtat cctac ataagaaatc caatacaaaa gtggattttt gcagtgctgg tagttcttg 120 aatttaagtt aattaattag acatatgata aacacttgcc ctggaaaatt cacctacaat 180 ttttttcaat ttctttcaat taccagcaaa attaggactg agaatgcaat tcccaaaccc 240 taagaacaaa aagaaggtcc aaatctga aa acattatatg acaacaacca taataaagat 300 gaaaagcaac gaagaaaaag taatctcacc atctggtggg gaacaccaag gacgaacatg 360 ccaattgtga cgggccgtgg gctcgattcc cagaccaaag tgaaacgacg tcgttcccaa 420 acgactcttc ccacatcgac tgtgtgta aa ctaaattcag cctttataga tcaggagcaa 480 acgcctagag ttt 493 < 210> 36 <211> 519 <212> DNA <213> Unknown <220> <223> VviU6-3(allele A) promoter separated from Vitis amurensis <400> 36 catgattttg cttcaagttg gtttttgatc agcagtcaat ggattttaag ctaccaccct 60 cggtatccta cataagaaat ccaatacaaa agtggatttt tgcagtgctg gtagtttctt 120 gaatttaagt taattaatta gacttatgat aaacactagc ccctggaaaa ttcacctaca 180 atttttttca gtttctttca attaccagca aaattagggc tgagaatgca attcccaaac 240 cctaagaaca aaaagaatgc ccaaatctga aagcattata tgacaacaac cataata aag 300 atgaaaagca acgaagaaaa agtaatctca ccatctggtg gggaacacca aggacgaaca 360 tgccaattct aaattcaacc caaatgagtt gtggtgacgg gccgtgggtt cgatgcccag 420 accaagcgaa acgacgtcgt tcccaaacga ctcttcccac atcgactggg catag actaa 480 attcagcttt tatatatcag gagcaaacgc ttagagctt 519 <210 > 37 <211> 557 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Thompson Seedless <400> 37 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataacag tttactttaa 60 ataattgtat gcccaaaacg at gatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatatgttc ttccaatttt gttgagtaaa aaaccaaata gagttggatg ttttcctttg 300 attgtctata agatgaaaat ataagtataa caaacaaatg aagaagtaaa gaagcagaac 360 atatccacaa ccaaataaag aaacaagaaa agtgaccctc actttcaggt tgtggaccca 420 cataaaggcg gtgcaggttg agtgaaacgg catcgttttg ggcagccggg ggtcttgaca 480 tccccattcc catcccacat cgaaacttta agaccagata tgtttcctca tatattgaaa 540 ctccactatt aaagctt 557 <210> 38 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis Tano Red <400> 38 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 6 0 tttaaataat tgtatgccca aaacaatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg taacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatacg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct atgagatgaa aatataagta taacaaacaa atgaagaagt aaagaaacag 360 aacacatcca caaccaaata aagaaacaag aaaagtgacc ctcactt tca ggctgtgggc 420 ccccataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc aggggtcttg 480 acattcccat a aatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa vviU6- 7(allele A) promoter separated from Vitis spp. Tamnara <400> 40 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacaatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg taacagaaat aaaagtgatg gaaatttgaa cccaataa at ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat ttttggttg cataaatttt ccccaaattt 240 tgacaatacg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct atgagatgaa aatataag ta taacaaacaa atgaagaagt aaagaaacag 360 aacacatcca caaccaaata aagaaacaag < 210> 41 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7 (allele B) promoter separated from Vitis vinifera Suffolk Red <400> 41 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttga acccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaata t aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaacttta ag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 42 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6 -7(allele A) promoter separated from Vitis vinifera Suffolk Red <400> 42 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaa at aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgtttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttggg cagcc gggggtcttg 480 acatcccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 43 <211> 557 <212> DNA <213> Unknown < 220> <223> VviU6-7(allele B) promoter separated from Vitis Shiny Star <400> 43 tcctgtagag aaatctgtac caataaaaca acaataatag gtcataacag tttactttaa 60 ataattgtat gcccaaaacg atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca ga aataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatatgttc ttccaatttt gttgagtaaa aaaccaaata gagttggatg ttttcctttg 300 attgtctata agatgaaaat ataagtataa caaacaaatg aagaagtaaa gaagcagaac 360 atatccacaa ccaaataaag aaacaagaaa agtgaccctc actttcaggt tgt ggaccca 420 cataaaggcg gtgcaggttg agtgaaacgg catcgttttg ggcagccggg ggtcttgaca 480 tccccattcc catcccacat cgaaacttta agaccagata tgtttcctca tatattgaaa 540 ctccactatt aaagctt 557 <210> 44 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis Shiny Star <400> 44 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 1 20 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcc a caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactcc act attaaagctt 560 <210> 45 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Ruby Seedless <400> 45 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgt gaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac t ttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 46 <211> 555 <212 >DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Rizamat <400> 46 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aac agaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tt tcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 47 < 211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Rizamat <400> 47 tcctgtagag aaatctgtac caataaaaca ataacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caaccaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtct tg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 48 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Red Globe <400> 48 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcata a cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattt tgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaa ggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tattcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 49 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Princess <400> 49 tcctgtagag aattctgtac caataaaaca acaacaata g gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca actttctca tcaatttttt ggttgcataa attt tcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttc ac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 50 <211> 557 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Princess <400 > 50 tcctgtagag aaatctgtac caataaaaca acaataatag gtcataacag tttactttaa 60 ataattgtat gcccaaaacg atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 18 0 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatatgttc ttccaatttt gttgagtaaa aaaccaaata gagttggatg ttttcctttg 300 attgtctata agatgaaaat ataagtataa caaacaaatg aagaagta aa gaagcagaac 360 atatccacaa ccaaataaag aaacaagaaa agtgaccctc actttcaggt tgtggaccca 420 cataaaggcg gtgcaggttg agtgaaacgg catcgttttg ggcagccggg ggtcttgaca 480 tccccattcc catcccacat cgaaacttta agaccagata tgtttcctca tatattgaaa 540 ctccactatt aaagctt 557 <210> 51 <211> 560 <212> DNA <213> Unknown < 220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Pinot Noir <400> 51 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagct t 560 <210> 52 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7 (allele B ) promoter separated from Vitis vinifera Perlon <400> 52 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaac ccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaacttta ag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 53 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6 -7(allele A) promoter separated from Vitis vinifera Perlon <400> 53 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aa aagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagtaacc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggt cttg 480 acatcccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 54 <211> 555 <212> DNA <213> Unknown <220 > <223> VviU6-7(allele A) promoter separated from Vitis Muscat of Alexandria <400> 54 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaa ag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tg gaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 55 <211> 55 5 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Kishmish Chernyi <400> 55 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctct gga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 36 0 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt gcaggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata t attgaaact 540 ccactgttaa agctt 555 <210> 56 <211 > 557 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Kishmish Chernyi <400> 56 tcctgtagag aaatctgtac caataaaaca acaataatag gtcataacag tttactttaa 60 ataattgtat gcccaaaacg atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatatgttc ttccaatttt gttgagtaaa aaaccaaata gagttggatg ttttcctttg 300 attgtctata agatgaaaat ataagtataa caaacaaatg aagaagtaaa gaagcagaac 360 atatccacaa ccaaataaag aaacaagaaa agtgaccctc actttcaggt tgtggaccca 420 cataaaggcg gtgcaggttg agtgaaacgg catcgttttg ggcagccggg ggt cttgaca 480 tccccattcc catcccacat cgaaacttta agaccagata tgtttcctca tatattgaaa 540 ctccactatt aaagctt 557 <210> 57 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Italia <400> 57 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcata a cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt t gagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctatgag atgaaaatat aagtataata aacaaatgaa gaagtaaaga aacagaacat 360 atccacaacc aaataaagaa acaagaaaag tgaccttcac tttcaggttg tggaccccca 420 taaaggcagt g caggttgag tgaaacggca tcgttttcgg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactgttaa agctt 555 <210> 58 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis vinifera Italia <400> 58 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcatagg tt aacagttac 60 tttaaataat tgtatgccca aaacgatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tgacagaaat aaaagtgatg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct ataagatgaa aatataagta taacaaacaa atgaagaagt aaagaagcag 360 aacatatcca caatcaaata aagaaacaag aaaagta acc ctcactttca ggttgtggac 420 ccacataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact attaaagctt 560 <210> 59 <211> 555 <212> DNA <213> Unknown <220> <223> VviU6-7(allele B) promoter separated from Vitis vinifera Hongju <400> 59 tcctgtagag aattctgtac caataaaaca acaacaatag gtcataggtt aacagtttaa 60 ataattgtat gcccaaaaca atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc attccctctc 180 agctctccca actt ttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatgttctt ccaattttgt tgagtaaaaa accaaataga gttggatgtt ttcctttgat 300 tgtctataag atgaaaatat aagtataaca aacaaatgaa gaagtaaaga agcagaacat 360 atcc acaatc aaataaagaa acaagaaaag taaccctcac tttcaggttg tggacccaca 420 taaaggcggt gcaggttgag tgaaacggca tcgttttggg cagccggggg tcttgacatc 480 cccattccca tcccacatcg aaactttaag accagatatg tttcctcata tattgaaact 540 ccactattaa agctt 555 <210> 60 <211> 557 <212> DNA <213> Unknown <220> < 223> VviU6-7(allele B) promoter separated from Vitis labrusca Himrod <400> 60 tcctgtagag aaatctgtac caataaaaca acaataatag gtcataacag tttactttaa 60 ataattgtat gcccaaaacg atgatcataa cattaattac aggttgtttg gttctctgga 120 aactgtgaca gaaataaaag tgatggaaat ttgaacccaa taaatttttc at tccctctc 180 agctctccca acttttctca tcaatttttt ggttgcataa attttcccca aattttgaca 240 atatatgttc ttccaatttt gttgagtaaa aaaccaaata gagttggatg ttttcctttg 300 attgtctata agatgaaaat ataagtataa caa acaaatg aagaagtaaa gaagcagaac 360 atatccacaa ccaaataaag aaacaagaaa agtgaccctc 6 1 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis labrusca Himrod <400> 61 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacaatgat cataacatta attacaggtt gtttggtct 120 ctggaaactg taacagaaat aaaagtgatg gaaatttga a cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatacg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct atgagat gaa aatataagta taacaaacaa atgaagaagt aaagaaacag 480 acattcccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact gttaaagctt 560 <210> 62 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7 (allele A) promoter separated from Vitis labruscana Campbell Early <400> 62 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacaatgat cataacatta attacaggtt gtttggtct 120 ctggaaactg taacagaaat aaaagtga tg gaaatttgaa cccaataaat ttttcattcc 180 ctctcagctc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatacg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct atgagatgaa aatataagta taacaaacaa atgaagaagt aaagaaacag 360 aacacatcca caaccaata aagaaacaag aaaagtgacc ctcactttca ggctgtgggc 420 ccccataaag gcggtgcagg ttgagtgaaa cggcatcgtt ttgggcagcc aggggtcttg 4 80 acattcccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540 aaactccact gttaaagctt 560 <210> 63 <211> 560 <212> DNA <213> Unknown <220> <223> VviU6-7(allele A) promoter separated from Vitis amurensis <400> 63 tcctgtagag aaatctgtac caataaaaca acaacaatag gtcataggtt aacagtttac 60 tttaaataat tgtatgccca aaacaatgat cataacatta attacaggtt gtttggttct 120 ctggaaactg tg acagaaat aaaagtgatg gaaatctgaa cccaataaat ttttcattcc 180 ctctcagccc tcccaacttt tctcatcaat tttttggttg cataaatttt ccccaaattt 240 tgacaatatg ttcttccaat tttgttgagt aaaaaaccaa atagagttgg atgttttcct 300 ttgattgtct atgagatgaa aatatatgta taacaaacaa atgaagaagt aaagaaacag 360 aacatattca caaccaaata aagaaacaag aaaagcgacc ctcactttca agttgtggac 420 cctcataaag gcggtgcagg ttgagtgaa a cggcatcgtt ttgggcagcc gggggtcttg 480 acatccccat tcccatccca catcgaaact ttaagaccag atatgtttcc tcatatattg 540aaactccact attgaagctt 560

Claims (11)

서열번호 5의 염기서열로 이루어지는 U6 프로모터.
U6 promoter consisting of the nucleotide sequence of SEQ ID NO: 5.
제1항의 U6 프로모터 및 상기 U6 프로모터와 작동가능하게 연결되고 가이드 RNA를 코딩하는 폴리뉴클레오티드 서열을 포함하는 재조합 벡터.
A recombinant vector comprising the U6 promoter of claim 1 and a polynucleotide sequence operably linked to the U6 promoter and encoding a guide RNA.
제1항의 U6 프로모터 및 상기 U6 프로모터와 작동가능하게 연결되고 가이드 RNA를 코딩하는 폴리뉴클레오티드 서열을 포함하는 가이드 RNA 발현 카세트; 및 Cas 엔도뉴클라아제 발현 카세트를 포함하는 재조합 벡터
A guide RNA expression cassette comprising the U6 promoter of claim 1 and a polynucleotide sequence operably linked to the U6 promoter and encoding a guide RNA; and a recombinant vector comprising a Cas endonuclease expression cassette.
제3항에 있어서, 상기 Cas 엔도뉴클라아제 발현 카세트는 프로모터 및 이와 작동가능하게 연결되고 Cas 엔도뉴클라아제를 코딩하는 폴리뉴클레오티드 서열을 포함하는 것을 특징으로 하는 재조합 벡터.
4. The recombinant vector according to claim 3, wherein the Cas endonuclease expression cassette comprises a promoter and a polynucleotide sequence operably linked thereto and encoding a Cas endonuclease.
제3항에 있어서, 상기 재조합 벡터는 도 2의 지도를 갖는 pGK1066 플라스미드 벡터인 것을 특징으로 하는 재조합 벡터.
The recombinant vector according to claim 3, wherein the recombinant vector is a pGK1066 plasmid vector having the map of FIG. 2.
제3항에 있어서, 상기 가이드 RNA는 포도속 식물의 표적 유전자를 인식하는 것을 특징으로 하는 재조합 벡터.
The recombinant vector according to claim 3, wherein the guide RNA recognizes a target gene of a grape genus.
제1 U6 프로모터, 상기 제1 U6 프로모터와 작동가능하게 연결되고 제1 가이드 RNA를 코딩하는 제1 폴리뉴클레오티드 서열, 제2 U6 프로머터 및 상기 제2 U6 프로모터와 작동가능하게 연결되고 제2 가이드 RNA를 코딩하는 제2 폴리뉴클레오티드 서열을 포함하는 이중 가이드 RNA 발현 카세트; 및 Cas 엔도뉴클라아제 발현 카세트를 포함하는 벡터로서,
상기 제1 U6 프로모터 및 제2 U6 프로모터는 제1항의 U6 프로모터인 것을 특징으로 하는 재조합 벡터.
A first U6 promoter, a first polynucleotide sequence operably linked to the first U6 promoter and encoding a first guide RNA, a second U6 promoter and a second guide RNA operably linked to the second U6 promoter A dual guide RNA expression cassette comprising a second polynucleotide sequence encoding a; And a vector comprising a Cas endonuclease expression cassette,
The first U6 promoter and the second U6 promoter are recombinant vectors, characterized in that the U6 promoter of claim 1.
제7항에 있어서, 상기 Cas 엔도뉴클라아제 발현 카세트는 프로모터 및 이와 작동가능하게 연결되고 Cas 엔도뉴클라아제를 코딩하는 폴리뉴클레오티드 서열을 포함하는 것을 특징으로 하는 재조합 벡터.
8. The recombinant vector according to claim 7, wherein the Cas endonuclease expression cassette comprises a promoter and a polynucleotide sequence operably linked thereto and encoding a Cas endonuclease.
제7항에 있어서, 상기 제1 가이드 RNA 및 제2 가이드 RNA는 포도속 식물의 표적 유전자를 인식하는 것을 특징으로 하는 재조합 벡터.
8. The recombinant vector according to claim 7, wherein the first guide RNA and the second guide RNA recognize a target gene of a grape genus.
포도속 식물의 외식편(Explant)을 제3항의 재조합 벡터 또는 제7항의 재조합 벡터가 도입된 아그로박테리움속 균과 공동배양하여 형질전환 아그로박테리움속 균에 감염시키는 단계; 및
상기 아그로박테리움속 균에 감염된 외식편을 캘러스 형성용 배지에서 배양하여 캘러스를 형성하는 단계를 포함하는 포도속 식물 유전체 편집 방법.
Infecting an explant of a grape genus plant with a transformed Agrobacterium genus bacteria by co-cultivating the recombinant vector according to claim 3 or with an Agrobacterium genus bacteria introduced with the recombinant vector according to claim 7; and
A method of editing a grape genus plant genome comprising the step of forming callus by culturing the explant infected with the Agrobacterium genus in a medium for forming callus.
제3항의 재조합 벡터 또는 제7항의 재조합 벡터를 포도속 식물의 원형질체에 도입하여 원형질체를 형질전환하는 단계; 및
상기 형질전환된 원형질체를 배양하는 단계를 포함하는 포도속 식물 유전체 편집 방법.
Transforming the protoplasts by introducing the recombinant vector of claim 3 or the recombinant vector of claim 7 into the protoplasts of grape genus plants; and
A grape genus plant genome editing method comprising the step of culturing the transformed protoplasts.
KR1020230023709A 2020-12-01 2023-02-22 Novel U6 promoter separated form grapevine and use of the same KR102551064B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230023709A KR102551064B1 (en) 2020-12-01 2023-02-22 Novel U6 promoter separated form grapevine and use of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200165707A KR102551063B1 (en) 2020-12-01 2020-12-01 Novel U6 promoter separated form grapevine and use of the same
KR1020230023709A KR102551064B1 (en) 2020-12-01 2023-02-22 Novel U6 promoter separated form grapevine and use of the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200165707A Division KR102551063B1 (en) 2020-12-01 2020-12-01 Novel U6 promoter separated form grapevine and use of the same

Publications (2)

Publication Number Publication Date
KR20230041978A KR20230041978A (en) 2023-03-27
KR102551064B1 true KR102551064B1 (en) 2023-07-05

Family

ID=81980911

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200165707A KR102551063B1 (en) 2020-12-01 2020-12-01 Novel U6 promoter separated form grapevine and use of the same
KR1020230023709A KR102551064B1 (en) 2020-12-01 2023-02-22 Novel U6 promoter separated form grapevine and use of the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020200165707A KR102551063B1 (en) 2020-12-01 2020-12-01 Novel U6 promoter separated form grapevine and use of the same

Country Status (1)

Country Link
KR (2) KR102551063B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109486819B (en) * 2018-11-23 2021-04-30 中国热带农业科学院三亚研究院 Cassava U6 promoter gene and application thereof
KR20210039306A (en) * 2019-10-01 2021-04-09 대한민국(농촌진흥청장) Gene editing method using transgenic plants expressing CRISPR/Cas9 and gRNA, respectively

Also Published As

Publication number Publication date
KR20230041978A (en) 2023-03-27
KR102551063B1 (en) 2023-07-05
KR20220076827A (en) 2022-06-08

Similar Documents

Publication Publication Date Title
US11447785B2 (en) Method for base editing in plants
CN104846010B (en) A kind of method for deleting transgenic paddy rice riddled basins
CN108546716A (en) A kind of genome edit methods
CN110892074A (en) Compositions and methods for increasing the shelf life of bananas
CN113913454B (en) Artificial gene editing system for rice
CN111718954B (en) Genome editing tool and application thereof
CN110066824B (en) Artificial base editing system for rice
CN107338265B (en) Gene editing system and method for editing plant genome by applying same
KR102304761B1 (en) Method for producing genome-edited potato plant with enhanced disease resistance by StSR4 gene editing and genome-edited potato plant with enhanced disease resistance produced by the same method
CN113265406A (en) Soybean FDL12 gene editing site and application thereof
CN102477090A (en) Protein capable of promoting chloroplast development and coding gene and application thereof
KR102551064B1 (en) Novel U6 promoter separated form grapevine and use of the same
CN112521475B (en) Wheat TaLAX1-A gene and application thereof in improving wheat immature embryo regeneration efficiency
CN113493803B (en) Alfalfa CRISPR/Cas9 genome editing system and application thereof
CN108866075A (en) Influence variable sheer and application that tomato fruit color forms controlling gene YFT2
WO2022159742A1 (en) Novel engineered and chimeric nucleases
US11932861B2 (en) Virus-based replicon for plant genome editing without inserting replicon into plant genome and uses thereof
CN112553203A (en) Long-chain non-coding RNA-lnc5 for regulating growth and development of poplar and application thereof
CN112662687A (en) Method, kit and gene for postponing maize florescence
CN113106120A (en) Needle-leaved tree plant gene editing vector, construction method and application thereof
CN114395564B (en) Application of Lycium ruthenicum Murr EIN3 gene in delaying fruit ripening
CN111850029B (en) Method for obtaining non-transgenic perennial ryegrass mutant
CN112646015B (en) Gene and method for changing flowering period of corn
CN115820691B (en) LbCPf1 variant-based rice base editing system and application
JP7452884B2 (en) Method for producing plant cells with edited DNA, and kit for use therein

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right