CN109317088A - 一种g-C3N4磁性材料分离水中邻苯二酚的应用方法 - Google Patents
一种g-C3N4磁性材料分离水中邻苯二酚的应用方法 Download PDFInfo
- Publication number
- CN109317088A CN109317088A CN201811351581.8A CN201811351581A CN109317088A CN 109317088 A CN109317088 A CN 109317088A CN 201811351581 A CN201811351581 A CN 201811351581A CN 109317088 A CN109317088 A CN 109317088A
- Authority
- CN
- China
- Prior art keywords
- catechol
- magnetic
- composite material
- nanometer composite
- fe3o4
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0259—Compounds of N, P, As, Sb, Bi
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28009—Magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
- C02F2101/345—Phenols
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种g‑C3N4磁性材料分离水中邻苯二酚的应用方法,它包含如下步骤:一、采用热聚合法制备g‑C3N4;二、采用共沉淀法制备g‑C3N4/Fe3O4磁性纳米复合材料;三、考察不同条件下该磁性材料对水中邻苯二酚的吸附容量,确定最佳吸附条件;本发明制备的g‑C3N4/Fe3O4磁性纳米复合材料可用于吸附水中有机污染物,具有方法简单、成本低、分离速度快等优点。
Description
技术领域
本发明涉及复合材料的合成及有机废水的分离分析领域,具体涉及一种g-C3N4磁性材料分离水中邻苯二酚的应用方法。
背景技术
目前,我国水污染事件呈高发态势。日趋加剧的水污染,对人们的生产、生活构成重大威胁,成为人类健康、经济和社会可持续发展的重大障碍。作为农药、医药和染料等精细化学品的中间体,邻苯二酚(也称1, 2-二羟基苯)已经成为环境水样中污染物的重要组成部分。因其具有较强的毒性和致癌性,已被多个国家列入污染物的名单中。由于邻苯二酚难以降解,常规的水处理工艺不能有效地去除。因此,有必要寻找一种新的吸附剂,尤其是具有特殊性能的吸附剂,以实现水中邻苯二酚的快速分离去除。
以石墨烯、石墨氧化物为代表的碳材料和以氮化碳、氮掺杂的石墨烯为代表的碳氮材料等非金属材料的研究发展十分迅速。其中,g-C3N4(即石墨相的C3N4)尤为引人关注,其独特的二维类石墨层状堆积结构和sp2杂化的π共轭电子能带结构,可以与分析物形成强大的相互作用,像氢键、π-π堆积作用、静电作用、范德华力和疏水作用,这些作用力可以保障其作为优良的吸附剂。但是,g-C3N4不能直接用作吸附剂,因为从均相溶液中分离时容易发生再团聚现象。此外,g-C3N4纳米材料良好的分散性,导致其分离和回收也困难。
将g-C3N4与Fe2+、Fe3+溶液混合,通过化学共沉淀法制备g-C3N4/Fe3O4磁性纳米复合材料,不仅稳定性好、比表面积大、水溶性好,还可将其作为固相萃取吸附剂,利用外加磁场快速将目标物从溶液中分离出来,极大简化离心、过滤等繁琐程序,具有显著的实际意义。
发明内容
本发明的目的在于针对现有技术的缺陷和不足,提供一种g-C3N4磁性材料分离水中邻苯二酚的应用方法。
为实现上述目的,本发明采用的技术方案是:它包含如下步骤:
一、制备g-C3N4材料:采用热聚合法,以三聚氰胺为前驱体,经高温煅烧制备成g-C3N4材料;其中,高温煅烧的升温速率为4℃/min,煅烧温度为520-550℃,煅烧时间为4h;
二、制备g-C3N4/Fe3O4磁性纳米复合材料:采用化学共沉淀法,将一定比例的FeCl3·6H2O和FeSO4·7H2O加入到超声分散好的g-C3N4乙醇水溶液中,于70-80℃下氮气氛围中磁力搅拌30-60min,加入5mL浓氨水,继续搅拌加热30-60min,冷却至室温,采用磁倾析法进行磁性分离,以去离子水和乙醇洗至接近中性,烘干得到g-C3N4/Fe3O4磁性纳米复合材料;
三、吸附容量计算:将g-C3N4/Fe3O4磁性纳米复合材料分散于一定浓度的邻苯二酚标准溶液中,充分混合,考察不同条件下g-C3N4/Fe3O4磁性纳米复合材料对邻苯二酚的吸附容量,其中考察条件包括g-C3N4/Fe3O4磁性纳米复合材料的用量、吸附时间、溶液pH、解析溶剂;吸附容量的计算方法为:通过最初加入的邻苯二酚含量和留在上清液中邻苯二酚含量的差值,计算出g-C3N4/Fe3O4磁性纳米复合材料对邻苯二酚的吸附容量。
进一步地,步骤二中FeCl3·6H2O和FeSO4·7H2O的摩尔比为(1.9-2):1;
进一步地,步骤二中磁倾析法采用的外磁场为钕铁硼磁铁;
进一步地,步骤三中邻苯二酚的浓度为10mg/L;
进一步地,步骤三中g-C3N4/Fe3O4磁性纳米复合材料的用量为每5mL邻苯二酚溶液中含有12.5-75mg g-C3N4/Fe3O4磁性纳米复合材料;
进一步地,步骤三中,g-C3N4/Fe3O4磁性纳米复合材料对邻苯二酚的吸附方式为超声辅助吸附,吸附时间为5-40min;
进一步地,步骤三中,溶液pH为4-9;溶液pH的调节方法为:选用乙酸和氨水溶液调节pH值;
进一步地,步骤三中,解析溶剂为异丙醇、甲醇、乙腈和乙醇。
采用上述方案后,本发明有益效果为:本发明所述的一种g-C3N4磁性材料分离水中邻苯二酚的应用方法,利用g-C3N4比表面积大、吸附能力强、化学性质稳定、在水中分散性好等多种优异的物理和化学性质以及磁性快速分离的特点,制备了g-C3N4/Fe3O4磁性材料,并优化吸附条件,快速分离环境水样中的邻苯二酚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1制备的g-C3N4/Fe3O4的扫描电子显微镜图;
图2是实施例1制备的g-C3N4/Fe3O4的X射线衍射谱图。
具体实施方式
下面结合附图,对本发明作进一步的说明。
实施例1,称取10g三聚氰胺加入到50mL带盖的Al2O3坩埚中,置于箱式马弗炉中在520℃的条件下加热4h,控制升温速率为4℃/min,待仪器温度降至室温后取出样品并用玛瑙研钵进行研磨,得到g-C3N4黄色粉末;
依次称取0.540g的FeCl3·6H2O和0.278g的FeSO4·7H2O,将其溶解在40mL去离子水中,超声分散30min,形成棕黄色混合溶液;然后将1.86g的g-C3N4黄色粉末加入到棕黄色混合溶液中,继续超声30min,得到橙黄色悬浮液;将所得橙黄色悬浮液转移到100mL的三口烧瓶中,在70℃下于氮气氛围中磁力搅拌1h,然后加入5 mL氨水继续搅拌1h,停止加热并冷却至室温;采用磁倾析法用去离子水和乙醇反复洗涤至中性,并在40℃下真空干燥12h,得到g-C3N4/Fe3O4磁性纳米复合材料,此g-C3N4/Fe3O4磁性纳米复合材料的扫描电子显微镜图如图1所示,X射线衍射谱图如图2所示;
配置浓度为10mg/L的邻苯二酚标准溶液作为储备液备用,考察在不同的投料量、吸附时间、溶液pH、解析溶剂条件下,g-C3N4/Fe3O4磁性纳米复合材料对邻苯二酚的吸附容量;根据初始浓度和上清液中邻苯二酚的浓度差计算吸附容量。
实施例2,称取10g三聚氰胺加入到50mL带盖的Al2O3坩埚中,置于箱式马弗炉中在550℃的条件下加热4h,控制升温速率为4℃/min,待仪器温度降至室温后取出样品并用玛瑙研钵进行研磨,得到g-C3N4黄色粉末;
称取1.6895g的g-C3N4黄色粉末超声分散于180mL乙醇-水溶液中,此乙醇-水溶液中乙醇与水的体积比为1:2;得淡黄色悬浮液;再称取0.919g的FeCl3·6H2O和0.473g的FeSO4·7H2O,超声溶解在10mL去离子水中,并加入到淡黄色悬浮液中,在80℃下于氮气氛围中磁力搅拌30min,然后加入5mL氨水继续搅拌30min,停止加热并冷却至室温;采用磁倾析法用去离子水和乙醇反复洗涤至中性,并在40℃下真空干燥12h,得到g-C3N4/Fe3O4磁性材料;
配置浓度为10mg/L的邻苯二酚标准溶液作为储备液备用;考察在不同的投料量、吸附时间、溶液pH、解析溶剂条件下,g-C3N4/Fe3O4磁性纳米复合材料对邻苯二酚的吸附容量;根据初始浓度和上清液中邻苯二酚的浓度差计算吸附容量。
实验结果表明,在g-C3N4/Fe3O4磁性纳米复合材料投料量为25mg,吸附时间为30min,pH为6时,吸附容量最大,达到0.83mg/g。
以上所述,仅用以说明本发明的技术方案,而非限制本领域普通技术人员对本发明的技术方案所做的其它修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。
Claims (8)
1.一种g-C3N4磁性材料分离水中邻苯二酚的应用方法,其特征在于它包含如下步骤:
一、制备g-C3N4材料:采用热聚合法,以三聚氰胺为前驱体,经高温煅烧制备成g-C3N4材料;其中,高温煅烧的升温速率为4℃/min,煅烧温度为520-550℃,煅烧时间为4h;
二、制备g-C3N4/Fe3O4磁性纳米复合材料:采用化学共沉淀法,将一定比例的FeCl3·6H2O和FeSO4·7H2O加入到超声分散好的g-C3N4乙醇水溶液中,于70-80℃下氮气氛围中磁力搅拌30-60min,加入5mL浓氨水,继续搅拌加热30-60min,冷却至室温,采用磁倾析法进行磁性分离,以去离子水和乙醇洗至接近中性,烘干得到g-C3N4/Fe3O4磁性纳米复合材料;
三、吸附容量计算:将g-C3N4/Fe3O4磁性纳米复合材料分散于一定浓度的邻苯二酚标准溶液中,充分混合,考察不同条件下g-C3N4/Fe3O4磁性纳米复合材料对邻苯二酚的吸附容量,其中考察条件包括g-C3N4/Fe3O4磁性纳米复合材料的用量、吸附时间、溶液pH、解析溶剂;吸附容量的计算方法为:通过最初加入的邻苯二酚含量和留在上清液中邻苯二酚含量的差值,计算出g-C3N4/Fe3O4磁性纳米复合材料对邻苯二酚的吸附容量。
2.根据权利要求1所述的一种g-C3N4磁性材料分离水中邻苯二酚的应用方法,其特征在于步骤二中FeCl3·6H2O和FeSO4·7H2O的摩尔比为(1.9-2):1。
3.根据权利要求1所述的一种g-C3N4磁性材料分离水中邻苯二酚的应用方法,其特征在于步骤二中磁倾析法采用的外磁场为钕铁硼磁铁。
4.根据权利要求1所述的一种g-C3N4磁性材料分离水中邻苯二酚的应用方法,其特征在于步骤三中邻苯二酚的浓度为10mg/L。
5.根据权利要求1所述的一种g-C3N4磁性材料分离水中邻苯二酚的应用方法,其特征在于步骤三中g-C3N4/Fe3O4磁性纳米复合材料的用量为每5mL邻苯二酚溶液中含有12.5-75mg g-C3N4/Fe3O4磁性纳米复合材料。
6.根据权利要求1所述的一种g-C3N4磁性材料分离水中邻苯二酚的应用方法,其特征在于步骤三中,g-C3N4/Fe3O4磁性纳米复合材料对邻苯二酚的吸附方式为超声辅助吸附,吸附时间为5-40min。
7.根据权利要求1所述的一种g-C3N4磁性材料分离水中邻苯二酚的应用方法,其特征在于步骤三中,溶液pH为4-9;溶液pH的调节方法为:选用乙酸和氨水溶液调节pH值。
8.根据权利要求1所述的一种g-C3N4磁性材料分离水中邻苯二酚的应用方法,其特征在于步骤三中,解析溶剂为异丙醇、甲醇、乙腈和乙醇。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811351581.8A CN109317088A (zh) | 2018-11-14 | 2018-11-14 | 一种g-C3N4磁性材料分离水中邻苯二酚的应用方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811351581.8A CN109317088A (zh) | 2018-11-14 | 2018-11-14 | 一种g-C3N4磁性材料分离水中邻苯二酚的应用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109317088A true CN109317088A (zh) | 2019-02-12 |
Family
ID=65259605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811351581.8A Pending CN109317088A (zh) | 2018-11-14 | 2018-11-14 | 一种g-C3N4磁性材料分离水中邻苯二酚的应用方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109317088A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110296978A (zh) * | 2019-07-12 | 2019-10-01 | 常州大学 | 一种检测邻苯二酚的电化学发光方法 |
CN111013539A (zh) * | 2019-12-30 | 2020-04-17 | 湖南农业大学 | 一种用于去除水体中精喹禾灵的油菜秸秆改性生物炭复合材料及其制备方法、应用 |
CN113171766A (zh) * | 2021-04-29 | 2021-07-27 | 常州大学 | 集吸油/吸附金属离子/光催化三元一体化磁性纳米石墨相氮化碳材料的制备方法及应用 |
CN113354046A (zh) * | 2021-05-31 | 2021-09-07 | 杭州师范大学 | 氮化碳修饰纳米Fe3O4材料作为抑藻剂的应用及方法 |
CN115382505A (zh) * | 2022-07-26 | 2022-11-25 | 江苏理工学院 | 巯基功能化磁性氧化氮化碳纳米复合材料制备方法与应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103170308A (zh) * | 2013-04-02 | 2013-06-26 | 南京理工大学 | 磁性介孔氮化碳吸附剂的制备及用于去除水中全氟辛烷化合物 |
CN105233850A (zh) * | 2015-09-21 | 2016-01-13 | 河海大学 | 一种磁性纳米复合光催化材料及其制备方法 |
CN106053581A (zh) * | 2016-05-18 | 2016-10-26 | 南京师范大学 | 一种基于PEDOT/g‑C3N4电极检测邻氯苯酚的方法 |
CN107684924A (zh) * | 2017-10-16 | 2018-02-13 | 南通纺织丝绸产业技术研究院 | 新型的银纳米颗粒修饰超薄石墨相氮化碳催化剂的制备方法及应用 |
CN108655168A (zh) * | 2018-04-13 | 2018-10-16 | 江苏大学 | g-C3N4/Fe3O4复合材料在修复多环芳烃污染土壤中的用途 |
-
2018
- 2018-11-14 CN CN201811351581.8A patent/CN109317088A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103170308A (zh) * | 2013-04-02 | 2013-06-26 | 南京理工大学 | 磁性介孔氮化碳吸附剂的制备及用于去除水中全氟辛烷化合物 |
CN105233850A (zh) * | 2015-09-21 | 2016-01-13 | 河海大学 | 一种磁性纳米复合光催化材料及其制备方法 |
CN106053581A (zh) * | 2016-05-18 | 2016-10-26 | 南京师范大学 | 一种基于PEDOT/g‑C3N4电极检测邻氯苯酚的方法 |
CN107684924A (zh) * | 2017-10-16 | 2018-02-13 | 南通纺织丝绸产业技术研究院 | 新型的银纳米颗粒修饰超薄石墨相氮化碳催化剂的制备方法及应用 |
CN108655168A (zh) * | 2018-04-13 | 2018-10-16 | 江苏大学 | g-C3N4/Fe3O4复合材料在修复多环芳烃污染土壤中的用途 |
Non-Patent Citations (7)
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110296978A (zh) * | 2019-07-12 | 2019-10-01 | 常州大学 | 一种检测邻苯二酚的电化学发光方法 |
CN110296978B (zh) * | 2019-07-12 | 2021-08-24 | 常州大学 | 一种检测邻苯二酚的电化学发光方法 |
CN111013539A (zh) * | 2019-12-30 | 2020-04-17 | 湖南农业大学 | 一种用于去除水体中精喹禾灵的油菜秸秆改性生物炭复合材料及其制备方法、应用 |
CN111013539B (zh) * | 2019-12-30 | 2022-05-31 | 湖南农业大学 | 一种用于去除水体中精喹禾灵的油菜秸秆改性生物炭复合材料及其制备方法、应用 |
CN113171766A (zh) * | 2021-04-29 | 2021-07-27 | 常州大学 | 集吸油/吸附金属离子/光催化三元一体化磁性纳米石墨相氮化碳材料的制备方法及应用 |
CN113171766B (zh) * | 2021-04-29 | 2023-08-22 | 常州大学 | 集吸油/吸附金属离子/光催化三元一体化磁性纳米石墨相氮化碳材料的制备方法及应用 |
CN113354046A (zh) * | 2021-05-31 | 2021-09-07 | 杭州师范大学 | 氮化碳修饰纳米Fe3O4材料作为抑藻剂的应用及方法 |
CN115382505A (zh) * | 2022-07-26 | 2022-11-25 | 江苏理工学院 | 巯基功能化磁性氧化氮化碳纳米复合材料制备方法与应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109317088A (zh) | 一种g-C3N4磁性材料分离水中邻苯二酚的应用方法 | |
Ren et al. | Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples | |
Chen et al. | Dispersive micro-solid phase extraction using magnetic ZnFe2O4 nanotubes as adsorbent for preconcentration of Co (II), Ni (II), Mn (II) and Cd (II) followed by ICP-MS determination | |
Zhang et al. | Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples | |
Wang et al. | Determination of trace amounts of Se (IV) by hydride generation atomic fluorescence spectrometry after solid-phase extraction using magnetic multi-walled carbon nanotubes | |
Mao et al. | Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method | |
Yin et al. | Facile synthesis of the magnetic metal organic framework Fe3O4@ UiO-66-NH2 for separation of strontium | |
CN103212365B (zh) | 一种巯基-铁基复合改性粘土及其制备方法 | |
CN101664668A (zh) | 核壳式Fe3O4/C磁性纳米固相萃取剂的制备及应用 | |
CN103191699A (zh) | 一种铁氧体/石墨烯复合吸附剂及其制备、使用方法 | |
Wang et al. | Experimental and molecular docking study on graphene/Fe3O4 composites as a sorbent for magnetic solid-phase extraction of seven imidazole antifungals in environmental water samples prior to LC-MS/MS for enantiomeric analysis | |
Chen et al. | Magnetic ZnFe 2 O 4 nanotubes for dispersive micro solid-phase extraction of trace rare earth elements prior to their determination by ICP-MS | |
Chen et al. | Titanium dioxide nanotubes as solid-phase extraction adsorbent for on-line preconcentration and determination of trace rare earth elements by inductively coupled plasma mass spectrometry | |
Trujillo-Rodríguez et al. | Double salts of ionic-liquid-based surfactants in microextraction: application of their mixed hemimicelles as novel sorbents in magnetic-assisted micro-dispersive solid-phase extraction for the determination of phenols | |
CN106186158A (zh) | 二硒化钼/四氧化三铁磁性纳米复合材料、其制备方法及用途 | |
Qin et al. | Synthesis of a high-performance silver silicate (Ag6Si2O7)/silver bromide (AgBr) photocatalyst with enhanced visible light catalytic activity for refractory organic pollutants | |
CN108043357A (zh) | 一种磁性单核双壳型多孔硅酸钙材料及其制备方法 | |
CN104525091A (zh) | 一种羧基化Fe3O4磁性纳米材料的制备方法及其应用 | |
Zeng et al. | Ultrasensitive sensor based on novel bismuth carbon nanomaterial for lead and cadmium determination in natural water, contaminated soil and human plasma | |
Chen et al. | Use of fibrous TiO2@ graphitic carbon nitride nanocomposites in dispersive micro-solid phase extraction for arsenic species before inductively coupled plasma mass spectrometry determination | |
Naghizadeh et al. | Preparation a novel magnetic natural nano zeolite for preconcentration of cadmium and its determination by ETAAS | |
Wang et al. | Space-confined pyrolysis for fabrication of peacods-like Fe3O4@ C-Ni nanostructures for catalysis and protein adsorption | |
Zeng et al. | Determination of aflatoxin B1 in Pixian Douban based on aptamer magnetic solid-phase extraction | |
Cao et al. | Preferential adsorption of flavonoids from peanut shell by amino‐modified Fe3O4 nanoparticles (MNP‐NH2) | |
Chen et al. | Highly sensitive detection of okadaic acid in seawater by magnetic solid-phase extraction based on low-cost metal/nitrogen-doped carbon nanotubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190212 |
|
RJ01 | Rejection of invention patent application after publication |