CN109282846A - 组合式超声温度和电导率传感器组件 - Google Patents
组合式超声温度和电导率传感器组件 Download PDFInfo
- Publication number
- CN109282846A CN109282846A CN201810794491.XA CN201810794491A CN109282846A CN 109282846 A CN109282846 A CN 109282846A CN 201810794491 A CN201810794491 A CN 201810794491A CN 109282846 A CN109282846 A CN 109282846A
- Authority
- CN
- China
- Prior art keywords
- pairs
- transceiver
- sensor
- sensor module
- measurement section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/22—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
- G01F1/688—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
- G01F1/6882—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element making use of temperature dependence of acoustic properties, e.g. propagation speed of surface acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/22—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
- G01K11/24—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of the velocity of propagation of sound
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/02—Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/02—Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
- G01K13/026—Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving liquids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/20—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/06—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/06—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
- G01N27/08—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid which is flowing continuously
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/024—Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02881—Temperature
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Fluid Mechanics (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
本发明涉及组合式超声温度和电导率传感器组件。具体而言,提供了一种用于电导率测量和超声温度测量的传感器组件。该组件包括沿从电子设备壳体延伸的纵轴线对准的细长传感器本体。传感器本体具有限定测量区段的围绕纵轴线布置的多个细长电极,以及跨过测量区段成间隔开的关系安装到本体上的成对的超声收发器,其中该成对的超声收发器中的第一收发器附接到传感器本体的近端上,且该成对的超声收发器中的第二收发器跨过测量区段附接到传感器本体的远端上。电子设备壳体与多个电极可操作地连通且连通到成对的超声收发器,以测量测量区段内的流体参数。
Description
技术领域
本发明大体上涉及用于测量流体的传感器,更具体地说,涉及用于测量温度和电导率/电阻率的组合式传感器组件。
背景技术
已使用传感器组件测量流体的性质,如,流体流量、密度、粘度、电导率、温度等。此外,通过测量流体的多个性质,可改善准确性。
例如,通过引用并入的美国专利8326555公开了一种使用温度传感器和电导率/电阻率传感器两者测量具有高纯度的水的电导率/电阻率的系统及相关方法。系统在使用期间实时连续校准传感器,导致较大改善的准确性。更具体而言,系统从收集的温度测量结果和收集的电阻率测量结果确定随温度变化的电阻率变化(收集的R/T(电阻率/温度)斜率)。系统在规定的时间间隔内,在对应于温度测量结果的中点温度的温度值处将收集到R/T斜率与标准化的R/T斜率相比较。基于比较,系统提供水源的电阻率或电导率的补偿测量结果。结果,系统可在使用期间实时连续地校准传感器,导致水纯度测量的改善的准确性。
此组合式测量策略依靠及时和准确的测量结果。尽管用于温度和电导率的当前传感器对于以上系统大体上有效,但存在不足。例如,电导率测量与温度测量之间的时间延迟可进行关联,以在过程变化太快时确定水纯度不准确或不可能。此外,传统的温度传感器可具有有限的分辨率,且往往遭受相对很高的信号噪音。
因此,应认识到,仍有对解决这些问题的传感器组件的需要。本发明满足这些需要和其它需要。
发明内容
本发明的目的在于提供组合式超声温度和电导率组件。
根据本发明,该目的通过独立权利要求的特征来实现。此外,其它有利实施例依据从属权利要求和描述。
简言之,且概括地说,本发明提供了用于电导率测量和超声温度测量的传感器组件。该组件包括沿从电子设备壳体延伸的纵轴线对准的细长传感器本体。传感器本体具有围绕纵轴线布置的限定测量区段的多个细长电极,以及跨过测量区段成间隔关系安装到本体上的成对的超声收发器,其中该成对的超声收发器中的第一收发器附接到传感器本体的近端上,且该成对的超声收发器中的第二收发器跨过测量区段附接到传感器本体的远端上。电子设备壳体与多个电极可操作地连通且连通到成对的超声收发器,以测量测量区段内的流体参数。
在一个实施例中,传感器本体包括近侧安装部,以及与近侧安装部成间隔开的关系布置在纵轴线上的远侧安装部。多个细长电极在近侧安装部与远侧安装部之间延伸,布置成与纵轴线平行且布置成与纵轴线成间隔开的关系,限定测量区段。成对的超声收发器跨过测量区段成间隔开的关系安装在本体上,其中该成对的超声收发器中的第一收发器附接到传感器本体的近侧安装部上,且该成对的超声收发器中的第二收发器跨过测量区段安装到传感器本体的远侧安装部上。
在示例性实施例的详细特征中,成对的超声收发器用于确定流体的温度,且多个电极用于确定流体的电导率。
在一个实施例中,传感器本体包括布置在纵轴线上的近侧安装部,以及与近侧安装部成间隔开的关系布置在纵轴线上的远侧安装部。多个细长电极在近侧安装部与远侧安装部之间延伸,布置成与纵轴线平行且布置成与纵轴线成间隔开的关系,限定测量区段。成对的超声收发器跨过测量区段成间隔开的关系安装在本体上,其中该成对的超声收发器中的第一收发器附接到传感器本体的近侧安装部上,且该成对的超声收发器中的第二收发器跨过测量区段安装到传感器本体的远侧安装部上。电子设备壳体联接到传感器本体的近端上,且与多个电极可操作连通且连通到成对的超声收发器,以测量测量区段内的流体参数。多个电极用于确定流体的电导率,且多个电极用于确定流体的电导率。
在一些实施例中,电子设备壳体以可分离的方式安装到本体上,在安装好时,电子设备壳体与成对的超声收发器和多个电极可操作地连通,以测量测量区段内的流体参数。
在一些实施例中,成对的超声收发器用于确定流体的温度。
在一些实施例中,多个电极用于确定流体的电导率。
在一个变型中,多个电极包括至少一个有源电极和至少一个接地部。
在一个变型中,成对的超声收发器沿传感器本体的纵轴线布置。
在一个变型中,多个细长电极与纵轴线平行且布置成与纵轴线成间隔开的关系。
在一个变型中,多个细长电极以间隔开的关系界定测量区段。
在一些实施例中,传感器组件构造为插入传感器,其中传感器本体延伸入管内的流体流中,且电子设备壳体布置在管外。
为了总结本发明和实现的优于现有技术的优点的目的,本文描述了本发明的某些优点。当然,将理解的是,所有此类优点不一定可根据本发明的任何特定实施例实现。因此,例如,本领域技术人员将认识到,本发明可以实现或优化本文所教导的一个优点或成组的优点的方式体现或完成,而不一定实现本文可教导或建议的其它优点。
所有这些实施例旨在都在本文公开的本发明的范围内。通过参考附图的优选实施例的以下详细描述,本发明的这些和其它实施例对于本领域技术人员将变得显而易见,本发明不限于所公开的任何特定优选实施例。
附图说明
为了以可获得本公开的优点和特征的方式描述,在下文中,将通过参考在附图中图示的其特定实施例来呈现前文简要描述过的原理的更具体的描述。这些附图仅描绘了本公开的示例性实施例,而因此不应视为限制其范围。通过使用附图,利用附加的特征和细节来描述和解释本公开的原理,在附图中:
图1图示了根据本发明的用于温度和电导率/电阻率的组合式传感器组件的部分分解透视图,描绘了安装在传感器本体的顶上的电子设备壳体。
图2图示了从图1中的传感器组件的传感器本体的近端的透视图。
图3图示了从图1中的传感器组件的传感器本体的远端的透视图。
图4图示了安装到管(以截面示出)上的图1中的传感器组件的侧视图。
具体实施方式
为了便于参考,各处使用用语"电阻率"和"电导率",而不关于其相互关系重复参考。然而,除非另有说明,否则对"电阻率"或"电导率"的参考也旨在参考对应的相互用语。
现在参考附图且具体是图1,示出了用于测量电导率/电阻率和温度的插入传感器组件10。传感器组件包括安装到电子设备壳体24上的传感器本体14,壳体24构造成连接到具有流体流的管上,使得传感器本体暴露于流体流。传感器本体包括多个管(电极)16(a-h)(图2),其以围绕测量区段22的同心布置在近侧安装部18与远侧安装部20之间延伸。管16包括有源电极和接地电极,以测量测量区段内流体的电导率/电阻率。传感器本体还包括成对的超声收发器21(a,b),其跨过测量区段22成间隔的关系相应地联接到近侧安装部18和远侧安装部20上,以测量该测量区段内的流体的参数,如,温度。
参考图2和3,电极16包括成交替布置的四个有源电极16(a, c, e, g)和四个接地电极16 (b, d, f, h),以测量测量区段内的流体的电导率/电阻率。在测量所得的交流电流同时通过施加小交流电压至电极来测量流体电导率。电流除以电压的商将给出流体中的电极的电导。在将依赖电极几何形状的电极常数施加于电导值之后,期望的流体电导率可作为执行这种测量的标准方法问题确立。
八个电极布置成围绕超声信号路径的圆形图案,以实现测量电导率的流体体积与发生超声测量的流体体积之间的最佳一致性。然而,交替电极布置是可行的,例如仅四个电极杆或不对称布置,其可具有取决于待安装入的管道系统的形状的优点。
继续参考图2和3,收发器21是附接到近侧安装部18和远端安装部20的中心区域中的传感器腔上的压电盘。收发器使用线可操作地联接到壳体12内的电子设备上。在示例性实施例中,来自远侧收发器的线通过其中一个管16,以操作地联接到电子设备上。压电盘可由压电材料制成,如锆钛酸铅、石英晶体或压电聚合物。收发器跨过测量区段22间隔开,使得收发器跨过测量区段具有清楚的连通,而不受管16阻碍。通常,1MHz到5MHz之间的范围中的超声频率对于液体介质最适合。
在示例性实施例中,超声收发器用于确定流体的温度。更具体而言,将使用容纳在标准半导体芯片(ASIC)中的定时电路测量沿两个方向的收发器之间的超声脉冲的传输时间。给定近侧安装部和远侧安装部20的表面之间的已知距离,计算流体中的声速。由于流体(纯水)中声速的温度依赖性是已知的公共信息(来自文献,教科书),因此可以使用查找表或适当的算法来确立实际流体温度。不同于物理温度传感器如热电偶或RTD元件,超声测量方法没有时间延迟,且立即测量流体中的温度。在其它实施例中,可确定测量区段中的流体的其它参数。例如,如果传感器安装在迫使流体沿传感器的中心轴线流动的流量池或管中,则两个超声收发器之间的上游和下游传输时间的差异可用于根据用于超声传输时间流量计的公知方法测量流速,且最终测量体积流率。
再次参考图1,传感器本体14限定纵轴线(AL)。多个细长电极16(a-h)与纵轴线(AL)平行且布置成与纵轴线(AL)成间隔关系,以间隔关系界定测量区段。此外,成对的超声收发器沿传感器本体的纵轴线布置。传感器本体14还包括联接件(30,32),以用于将传感器本体联接到壳体24和流体壳体(例如,管)上。电子设备壳体以可分离的方式安装到本体上。收发器21和电极16的线通过联接件至壳体内的电子设备(未示出)。切确地说,将电子设备壳体与在传感器组件远端处的收发器连接的线路线通过一个或多个管状接地电极。
现在参考图4,传感器组件10安装到具有流体流的管40上(由虚线箭头描绘)。在示例性实施例中,传感器组件10构造为插入传感器,其中传感器本体14延伸到管中,且电子设备壳体布置在管外。流体围绕传感器本体流入测量区段中。显然,流的部分相对于传感器本体的纵轴线对角地通过。超声收发器跨过测量区段连通。
从前文应认识到,本发明提供了用于电导率测量和超声温度测量的组合式传感器组件。该组件包括沿从电子设备壳体延伸的纵轴线对准的细长传感器本体。传感器本体具有围绕纵轴线布置的限定测量区段的多个细长电极,以及跨过测量区段成间隔关系安装到本体上的成对的超声收发器,其中该成对的超声收发器中的第一收发器附接到传感器本体的近端上,且该成对的超声收发器中的第二收发器跨过测量区段附接到传感器本体的远端上。电子设备壳体与多个电极可操作地连通并连通到成对的超声收发器,以测量测量区段内的流体参数。
本发明按照目前优选实施例在上文中描述,使得可传达本发明的理解。然而,存在本文没有具体描述的其它实施例,本发明对其适用。因此,不应将本发明视为限于所示的形式,其应认为是例示的而非限制性的。
Claims (9)
1.一种用于电导率测量和超声温度测量的传感器组件,包括:
沿纵轴线对准的细长传感器本体,其具有:
限定测量区段的围绕所述纵轴线布置的多个细长电极,以及
跨过所述测量区段以间隔开的关系安装到所述本体上的成对的超声收发器,其中所述成对的超声收发器中的第一收发器附接到所述传感器本体的近端上,且所述成对的超声收发器中的第二收发器跨过所述测量区段附接到所述传感器本体的远端上;以及
联接到所述传感器本体的近端上的电子设备壳体,所述电子设备壳体与多个所述电极可操作地连通并连通到所述成对的超声收发器,以测量所述测量区段内的流体参数。
2.根据权利要求1所述的传感器组件,其特征在于,所述电子设备壳体以可分离的方式安装到所述本体上,在安装好时,所述电子设备壳体与所述成对的超声收发器和所述多个电极可操作地连通,以测量所述测量区段内的流体参数。
3.根据权利要求1所述的传感器组件,其特征在于,所述成对的超声收发器用于确定所述流体的温度。
4.根据权利要求1所述的传感器组件,其特征在于,所述多个电极用于确定所述流体的电导率。
5.根据权利要求1所述的传感器组件,其特征在于,所述多个电极包括至少一个有源电极和至少一个接地部。
6.根据权利要求1所述的传感器组件,其特征在于,所述成对的超声收发器沿所述传感器本体的纵轴线布置。
7.根据权利要求1所述的传感器组件,其特征在于,所述多个细长电极与所述纵轴线平行,且布置成与所述纵轴线成间隔开的关系。
8.根据权利要求7所述的传感器组件,其特征在于,所述多个细长电极以间隔开的关系界定所述测量区段。
9.根据权利要求1所述的传感器组件,其特征在于,所述传感器组件构造为插入传感器,其中所述传感器本体延伸到管内的流体流中,且所述电子设备壳体布置在所述管外。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/654,616 US10620060B2 (en) | 2017-07-19 | 2017-07-19 | Combined ultrasonic temperature and conductivity sensor assembly |
US15/654616 | 2017-07-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109282846A true CN109282846A (zh) | 2019-01-29 |
CN109282846B CN109282846B (zh) | 2022-03-18 |
Family
ID=62916439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810794491.XA Active CN109282846B (zh) | 2017-07-19 | 2018-07-19 | 组合式超声温度和电导率传感器组件 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10620060B2 (zh) |
EP (1) | EP3431974B1 (zh) |
KR (1) | KR102490359B1 (zh) |
CN (1) | CN109282846B (zh) |
TW (1) | TWI774804B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018206360A1 (de) * | 2018-04-25 | 2019-10-31 | Conti Temic Microelectronic Gmbh | Sensorvorrichtung zum Bestimmen der elektrischen Leitfähigkeit eines Fluids und der Schallgeschwindigkeit im Fluid |
US12018989B2 (en) * | 2019-04-22 | 2024-06-25 | Tata Consultancy Services Limited | Multi-sensory techniques for measuring average temperature of mixed fluid inside a chamber |
US11911170B2 (en) | 2021-09-13 | 2024-02-27 | Christopher J. Rourk | Deep brain sensing and stimulation probe |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5095758A (en) * | 1990-11-29 | 1992-03-17 | Texaco Inc. | Water cut monitoring means and method |
CN2475007Y (zh) * | 2001-04-29 | 2002-01-30 | 沈庆度 | 可插入水箱的变频式液位控制传感器 |
WO2003038428A1 (en) * | 2001-10-26 | 2003-05-08 | Millipore Corporation | Device for measuring the oxidizable carbon of a liquid and a method for the use thereof |
US20050097952A1 (en) * | 2003-11-12 | 2005-05-12 | Steph James C. | Conductive sensor for fluid level sensing |
CN2890910Y (zh) * | 2006-02-28 | 2007-04-18 | 广州市润索工程检测技术研究有限公司 | 带有水耦合剂性能检测传感器的超声波换能器 |
CN202101788U (zh) * | 2011-04-27 | 2012-01-04 | 重庆理工大学 | 一种基于fpga的超声波温度计 |
CN103492866A (zh) * | 2011-03-24 | 2014-01-01 | 埃尔泰克股份公司 | 尤其用于机动车燃料的流体检测传感器和轨道 |
CN203490001U (zh) * | 2013-09-05 | 2014-03-19 | 安徽达尔智能控制系统有限公司 | 道面温度传感器 |
CN103776497A (zh) * | 2014-01-26 | 2014-05-07 | 王翥 | 一种流量计用超声波传感器 |
CN104090020A (zh) * | 2014-07-10 | 2014-10-08 | 天津大学 | 基于电学与超声双模态多相流测量装置 |
CN104215356A (zh) * | 2014-05-13 | 2014-12-17 | 中国计量学院 | 一种基于超声波的管道流体温度测量方法 |
CN104502708A (zh) * | 2014-11-05 | 2015-04-08 | 贝兹维仪器(苏州)有限公司 | 一种电网极电阻率测量器 |
JP2015152568A (ja) * | 2014-02-19 | 2015-08-24 | 株式会社鷺宮製作所 | 薬液濃度計 |
CN105301056A (zh) * | 2015-11-11 | 2016-02-03 | 西安石油大学 | 电导式含水率测量装置 |
Family Cites Families (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2582249A (en) | 1948-01-07 | 1952-01-15 | Joseph A Hendel | Flexible coupling |
US3178940A (en) * | 1958-01-08 | 1965-04-20 | Gulton Ind Inc | Ultrasonic measuring device |
US3332446A (en) | 1964-05-15 | 1967-07-25 | Douglas B Mann | Cryogenic transfer line arrangement |
CH442797A (de) * | 1965-06-22 | 1967-08-31 | List Hans Dipl Ing Dr Dr H C P | Piezoelektrischer Druckgeber und Verfahren zu seiner Herstellung |
US3353400A (en) * | 1966-03-21 | 1967-11-21 | Motorola Inc | Ultrasonic transducer and gas analyzer |
US3490496A (en) | 1968-01-15 | 1970-01-20 | Vacuum Barrier Corp | Coaxial tubing having improved spacer means |
US3870033A (en) | 1973-11-30 | 1975-03-11 | Aqua Media | Ultra pure water process and apparatus |
DE2624758A1 (de) * | 1975-06-11 | 1976-12-23 | British Petroleum Co | Vorrichtung zur ueberwachung eines fluessigkeitsstromes |
JPS5940002Y2 (ja) | 1976-12-28 | 1984-11-12 | 株式会社メドス研究所 | 内視鏡における彎曲装置 |
US4130904A (en) | 1977-06-06 | 1978-12-26 | Thermo Electron Corporation | Prosthetic blood conduit |
JPS6018005B2 (ja) | 1979-12-16 | 1985-05-08 | 株式会社荏原製作所 | 透過形測定モ−ドと反射形測定モ−ドとを自動切換可能な超音波流速流量計 |
IT1130757B (it) | 1980-05-26 | 1986-06-18 | Nuovo Pignone Spa | Giunto metallico flessibile per il collegamento di tubazioni sottomarine posate a grandi profondita' |
US4765602A (en) | 1980-12-28 | 1988-08-23 | The Boeing Company | Composite coil spring |
US4815323A (en) * | 1985-06-28 | 1989-03-28 | Simmonds Precision Products, Inc. | Ultrasonic fuel quantity gauging system |
US4966202A (en) | 1988-11-14 | 1990-10-30 | Dayco Products, Inc. | Shape retention hose construction |
JP3187405B2 (ja) | 1990-01-07 | 2001-07-11 | 忠弘 大見 | 高温・高圧洗浄方法及び洗浄装置 |
IT1256911B (it) | 1992-08-03 | 1995-12-27 | Merloni Elettrodomestici Spa | Dispositivo per la misura della resistivita` dell'acqua in una macchina di lavaggio. |
JP3468784B2 (ja) | 1992-08-25 | 2003-11-17 | 栗田工業株式会社 | 超純水製造装置 |
DE4341383A1 (de) | 1992-12-18 | 1994-06-23 | Volkswagen Ag | Flexibles Leitungselement für eine Abgasleitung einer Brennkraftmaschine |
US5678809A (en) | 1994-06-01 | 1997-10-21 | Across Co., Ltd. | Spring members |
US5954965A (en) | 1996-03-29 | 1999-09-21 | Mitsubishi Chemical Corporation | Process for producing pure water |
EP0800062A3 (de) * | 1996-04-04 | 1998-04-15 | Georg Fischer Rohrleitungssysteme AG | Vorrichtung zur Messung der Strömungsgeschwindigkeit eines Fluides |
US5868924A (en) | 1997-02-14 | 1999-02-09 | Barnstead/Thermolyne Corporation | Water purifier |
DE19706486B4 (de) | 1997-02-19 | 2004-02-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Sensoreinrichtung zum Bestimmen des Alterungszustands flüssiger Medien |
GB2336893A (en) | 1998-04-30 | 1999-11-03 | John Trevor Garrod | Flue ducting for atmospheric boilers |
US6156578A (en) | 1998-06-01 | 2000-12-05 | Advanced Technology Materials, Inc. | Quartz crystal microbalance system for detecting concentration of a selected gas component in a multicomponent gas stream |
ATE394658T1 (de) | 1998-06-19 | 2008-05-15 | California Inst Of Techn | Spurendetektion von analyten mit hilfe artifizieller olfaktometrie |
US6176138B1 (en) | 1998-07-15 | 2001-01-23 | Saba Instruments, Inc. | Electronic pressure sensor |
JP2957576B1 (ja) * | 1998-09-16 | 1999-10-04 | チャン ミン テック カンパニー リミテッド | 水深・流速・水温測定装置 |
DE19843156A1 (de) | 1998-09-21 | 2000-04-20 | Sle Electronic Gmbh | Verfahren zur Qualitätssicherung von in einer Crimpvorrichtung hergestellten Crimpverbindungen sowie Crimpwerkzeug und Crimpvorrichtung |
US6596236B2 (en) | 1999-01-15 | 2003-07-22 | Advanced Technology Materials, Inc. | Micro-machined thin film sensor arrays for the detection of H2 containing gases, and method of making and using the same |
US6830076B1 (en) | 2000-08-02 | 2004-12-14 | The Boeing Company | Self-compensating hybrid combination ducts |
US6729181B2 (en) | 2000-08-23 | 2004-05-04 | Sensiron Ag | Flow sensor in a housing |
JP2002062275A (ja) | 2000-08-24 | 2002-02-28 | Saginomiya Seisakusho Inc | 抵抗率計の電極 |
JP2002282850A (ja) | 2001-03-26 | 2002-10-02 | Mitsubishi Electric Corp | 超純水製造装置 |
GB2376074B (en) | 2001-05-30 | 2004-02-04 | Schlumberger Holdings | Methods and apparatus for estimating on-line water conductivity of multiphase mixtures |
US6789426B2 (en) * | 2001-07-31 | 2004-09-14 | Board Of Trustees Of The Leland Stanford Junior University | Microfluidic channels with integrated ultrasonic transducers for temperature measurement and method |
EP1531731B1 (en) | 2002-06-03 | 2012-08-01 | Arizona Board Of Regents Acting for Northern Arizona University | Embedded piezoelectric microcantilever sensors |
JP2004044600A (ja) | 2003-08-22 | 2004-02-12 | Ngk Spark Plug Co Ltd | ガス濃度センサの使用方法及びガス濃度センサの制御装置 |
DE102004037088B3 (de) | 2004-07-30 | 2006-04-13 | Veritas Ag | Flexibler Schlauch, vorzugsweise Ladeluftschlauch für Kraftfahrzeuge |
DE102004044982A1 (de) | 2004-09-16 | 2006-04-06 | Infineon Technologies Ag | Drucksensorvorrichtung und Verfahren zum Herstellen derselben |
WO2006113759A2 (en) | 2005-04-19 | 2006-10-26 | University Of South Florida | Mems based conductivity-temperature-depth sensor for harsh oceanic enbironment |
US7503227B2 (en) * | 2005-07-13 | 2009-03-17 | Cidra Corporate Services, Inc | Method and apparatus for measuring parameters of a fluid flow using an array of sensors |
DE102005038599A1 (de) | 2005-08-16 | 2007-02-22 | Robert Bosch Gmbh | Ultraschallmesseinheit mit integrierter Feuchteermittlung |
DE102005041288A1 (de) | 2005-08-31 | 2007-03-01 | GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG | Durchflussmessgerät |
EP2527852A3 (en) | 2006-08-01 | 2014-08-20 | Washington University | Multifunctional nanoscopy for imaging cells |
US7550979B2 (en) | 2007-05-29 | 2009-06-23 | Georg Fischer Signet Llc | System and method for measuring conductivity of fluid |
JP5099681B2 (ja) * | 2007-06-29 | 2012-12-19 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波探触子、超音波診断装置および超音波探触子の表面温度推定方法 |
GB0718851D0 (en) | 2007-09-27 | 2007-11-07 | Precision Energy Services Inc | Measurement tool |
DE102008013224A1 (de) | 2008-03-07 | 2009-09-10 | Endress + Hauser Flowtec Ag | Messsystem und Verfahren zur Bestimmung und/oder Überwachung eines Durchflusses eines Messmediums durch ein Messrohr |
DE102008019992B4 (de) | 2008-04-21 | 2010-07-01 | Mib Gmbh Messtechnik Und Industrieberatung | Ultraschall-Messanordnung |
AT504958B1 (de) | 2008-05-29 | 2009-08-15 | Avl List Gmbh | Piezoelektrische sensoreinrichtung |
US20100201984A1 (en) | 2009-02-11 | 2010-08-12 | Cyberoptics Semiconductor, Inc. | In-line high pressure particle sensing system |
US8387454B2 (en) | 2009-06-11 | 2013-03-05 | Arad Ltd. | Flow meter casing having segmented external ring structure |
IT1394915B1 (it) * | 2009-07-21 | 2012-07-20 | Pietro Fiorentini Spa | Dispositivo per la misurazione di proprieta' elettriche di fluidi e metodo per misurare dette proprieta' elettriche |
US8326555B2 (en) | 2009-09-08 | 2012-12-04 | Georg Fischer Signet Llc | System and method for measuring conductivity/resistivity of water having high purity |
JP2012021899A (ja) | 2010-07-15 | 2012-02-02 | Panasonic Corp | 超音波流量計測ユニットおよびこれを用いた超音波流量計 |
US7954387B1 (en) | 2010-08-18 | 2011-06-07 | General Electric Company | Ultrasonic transducer device |
WO2013063676A1 (en) * | 2010-11-05 | 2013-05-10 | National Research Council Of Canada | Ultrasonic transducer assembly and system for monitoring structural integrity |
EP2649439B1 (en) | 2010-12-08 | 2019-09-11 | Condalign AS | Method for assembling conductive particles into conductive pathways |
FI20106349A (fi) * | 2010-12-20 | 2012-06-21 | Teknologian Tutkimuskeskus Vtt Oy | Anturi ja anturijärjestelmä |
US8523432B2 (en) | 2011-02-04 | 2013-09-03 | Honeywell International Inc. | Thermally isolated temperature sensor |
US8302455B2 (en) * | 2011-02-11 | 2012-11-06 | Daniel Measurement And Control, Inc. | Determining delay times for ultrasonic flow meters |
FR2971575B1 (fr) | 2011-02-11 | 2013-12-13 | Snecma | Element de conduit a perte de charge reduite |
US9310237B2 (en) * | 2012-09-07 | 2016-04-12 | Daniel Measurement And Control, Inc. | Ultrasonic flow metering using compensated computed temperature |
US8955392B2 (en) | 2013-03-15 | 2015-02-17 | Strain Measurement Devices, Inc. | Ultrasonic flowmeter with integrally formed acoustic noise attenuating feature |
JP5984094B2 (ja) | 2013-09-24 | 2016-09-06 | Smc株式会社 | 超音波流量計 |
US9945737B2 (en) * | 2014-03-13 | 2018-04-17 | Siemens Energy, Inc. | Method for determining waveguide temperature for acoustic transceiver used in a gas turbine engine |
US10041620B2 (en) | 2014-07-10 | 2018-08-07 | Witzenmann Gmbh | Line assembly |
ES2617999T3 (es) | 2014-10-10 | 2017-06-20 | Sick Engineering Gmbh | Dispositivo de medida de caudal para medir un parámetro de un flujo formado por un fluido |
US9465000B1 (en) * | 2015-08-18 | 2016-10-11 | Intellectual Reserves, LLC | System and method for electronically determining fluid parameters |
EP3382351B1 (en) | 2017-03-31 | 2019-10-09 | Ryusok Co., Ltd | Ultrasonic flow meter |
-
2017
- 2017-07-19 US US15/654,616 patent/US10620060B2/en active Active
-
2018
- 2018-07-06 EP EP18182109.1A patent/EP3431974B1/en active Active
- 2018-07-17 KR KR1020180083086A patent/KR102490359B1/ko active IP Right Grant
- 2018-07-19 CN CN201810794491.XA patent/CN109282846B/zh active Active
- 2018-07-19 TW TW107124908A patent/TWI774804B/zh active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5095758A (en) * | 1990-11-29 | 1992-03-17 | Texaco Inc. | Water cut monitoring means and method |
CN2475007Y (zh) * | 2001-04-29 | 2002-01-30 | 沈庆度 | 可插入水箱的变频式液位控制传感器 |
WO2003038428A1 (en) * | 2001-10-26 | 2003-05-08 | Millipore Corporation | Device for measuring the oxidizable carbon of a liquid and a method for the use thereof |
US20050097952A1 (en) * | 2003-11-12 | 2005-05-12 | Steph James C. | Conductive sensor for fluid level sensing |
CN2890910Y (zh) * | 2006-02-28 | 2007-04-18 | 广州市润索工程检测技术研究有限公司 | 带有水耦合剂性能检测传感器的超声波换能器 |
CN103492866A (zh) * | 2011-03-24 | 2014-01-01 | 埃尔泰克股份公司 | 尤其用于机动车燃料的流体检测传感器和轨道 |
CN202101788U (zh) * | 2011-04-27 | 2012-01-04 | 重庆理工大学 | 一种基于fpga的超声波温度计 |
CN203490001U (zh) * | 2013-09-05 | 2014-03-19 | 安徽达尔智能控制系统有限公司 | 道面温度传感器 |
CN103776497A (zh) * | 2014-01-26 | 2014-05-07 | 王翥 | 一种流量计用超声波传感器 |
JP2015152568A (ja) * | 2014-02-19 | 2015-08-24 | 株式会社鷺宮製作所 | 薬液濃度計 |
CN104215356A (zh) * | 2014-05-13 | 2014-12-17 | 中国计量学院 | 一种基于超声波的管道流体温度测量方法 |
CN104090020A (zh) * | 2014-07-10 | 2014-10-08 | 天津大学 | 基于电学与超声双模态多相流测量装置 |
CN104502708A (zh) * | 2014-11-05 | 2015-04-08 | 贝兹维仪器(苏州)有限公司 | 一种电网极电阻率测量器 |
CN105301056A (zh) * | 2015-11-11 | 2016-02-03 | 西安石油大学 | 电导式含水率测量装置 |
Non-Patent Citations (1)
Title |
---|
姚明林等: "超声波液体密度传感器", 《传感器技术》 * |
Also Published As
Publication number | Publication date |
---|---|
TWI774804B (zh) | 2022-08-21 |
KR20190009714A (ko) | 2019-01-29 |
KR102490359B1 (ko) | 2023-01-18 |
TW201917362A (zh) | 2019-05-01 |
CN109282846B (zh) | 2022-03-18 |
US10620060B2 (en) | 2020-04-14 |
US20190025136A1 (en) | 2019-01-24 |
EP3431974A1 (en) | 2019-01-23 |
EP3431974B1 (en) | 2020-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109282846A (zh) | 组合式超声温度和电导率传感器组件 | |
US3587312A (en) | Differential sensor bluff body flowmeter | |
US7946184B2 (en) | Electromagnetic flowmeter having temperature measurement value for correcting electrical conductivity value | |
US8844359B2 (en) | Apparatus for noninvasive measurement of properties of a fluid flowing in a tubing having a smaller inner diameter passage | |
Buess et al. | A pulsed diagonal-beam ultrasonic airflow meter | |
US8694271B2 (en) | Apparatus and method for non invasive measurement of properties of a fluid flowing in a flexible tubing or conduit | |
US6829948B2 (en) | Flow meter | |
Lötters et al. | Fully integrated microfluidic measurement system for real-time determination of gas and liquid mixtures composition | |
US7997149B1 (en) | Apparatus and method for non-invasive measurement of the sound velocity of a fluid flowing in a tubing | |
KR20160133084A (ko) | 초음파 센서를 이용한 정밀 풍향풍속 관측 장치 및 그 운용방법 | |
JP2008164329A (ja) | 超音波流量計 | |
RU2336500C1 (ru) | Система измерения покомпонентного массового расхода трехкомпонентного потока нефтяных скважин | |
RU2695282C1 (ru) | Ультразвуковой расходомер | |
US20060243065A1 (en) | Method and apparatus for measuring flow rate of fluid | |
RU2334951C1 (ru) | Система измерения массового расхода компонентов трехкомпонентного газожидкостного потока нефтяных скважин | |
JP4687293B2 (ja) | ドップラー式超音波流速分布計 | |
JP2005172518A (ja) | 超音波センサにおける超音波の到達時間検出用回路、およびこれを用いた超音波流量計 | |
RU2517996C1 (ru) | Датчик ультразвукового расходомера | |
RU2334200C1 (ru) | Система измерения массового расхода компонентов трехкомпонентного газожидкостного потока | |
KR102065262B1 (ko) | 감온 소자의 구동 방법, 구동 장치, 및 와류 유량계 | |
JP2008164330A (ja) | 超音波流量計 | |
JP2007155574A (ja) | 超音波流量計 | |
RU2162208C1 (ru) | Способ и устройство для измерения уровня потока жидкости в канале | |
RU2334950C1 (ru) | Система измерения покомпонентного массового расхода трехкомпонентного газожидкостного потока | |
RU2337325C1 (ru) | Система измерения массового расхода компонентов трехкомпонентного потока |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |