CN109254312B - 一种基于伽玛能谱测量铅污染的快速检测方法 - Google Patents

一种基于伽玛能谱测量铅污染的快速检测方法 Download PDF

Info

Publication number
CN109254312B
CN109254312B CN201811285594.XA CN201811285594A CN109254312B CN 109254312 B CN109254312 B CN 109254312B CN 201811285594 A CN201811285594 A CN 201811285594A CN 109254312 B CN109254312 B CN 109254312B
Authority
CN
China
Prior art keywords
gamma
lead content
lead
energy spectrum
gamma ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811285594.XA
Other languages
English (en)
Other versions
CN109254312A (zh
Inventor
严家斌
郭玺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201811285594.XA priority Critical patent/CN109254312B/zh
Publication of CN109254312A publication Critical patent/CN109254312A/zh
Application granted granted Critical
Publication of CN109254312B publication Critical patent/CN109254312B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种基于伽玛能谱测量铅污染的快速检测方法,属于地球科学和环境科学领域,包括:1)采用多个已知铅含量的样品,分别对样品进行γ射线能谱测量;2)根据γ射线能谱图,获取已知铅含量的样品在0.352Mev、0.239Mev、0.829Mev对应的γ射线强度;3)利用多项式拟合,建立铅含量与γ射线强度在0.352Mev、0.239Mev、0.829Mev的函数关系;4)测量未知铅含量区的γ射线强度,根据函数关系计算该区域的铅含量。通过建立γ射线强度与铅含量的关系后,利用γ射线能谱测量值快速地估计出观测点的铅含量;γ射线能谱测量仪器轻便、测量快速,不受地形、环境的影响,可实现实时测量,面积性观测,避免了目前检测中因采样因素引起的数据代表性的局限性以及化学分析成本的昂贵和分析时间引起的时效性问题。

Description

一种基于伽玛能谱测量铅污染的快速检测方法
技术领域
本发明属于地球科学和环境科学领域,具体涉及一种基于伽玛能谱测量铅污染的快速检测方法。
背景技术
中国经济发展成就卓著的同时也饱受环境污染的困扰,据2014年全国土壤污染状况调查公报显示,我国耕地土壤环境质量堪忧,耕地总量的1/6已经不同程度的被重金属污染,主要污染物包括铅、镉、镍、铜、砷、汞等金属元素。土壤重金属污染是生态环境所面临的最严重的威胁之一,其危害直接作用于土壤生态系统、农产品、地下水等,并通过食物链危害人体健康。从分布范围和危害程度分析,污染比较严重的都是铅、汞和镉等元素。铅锌矿作为我国的一种重要战略资源,在本世纪初我国经济的快速发展时期,在全国建立了规模以上铅锌矿山、冶炼厂上千家。由于早期对环境的不够重视,各种铅尾矿、铅矿渣、铅采矿与冶炼废水排放粗放,对环境造成不同程度的损害。
随着社会对绿色健康生活要求的提高,国家对环境质量、居民生活质量和身体健康越来越重视,开展环境质量的调查、整治与修复工作得到各级政府部门的高度关注,因此对污染物性质、污染源及空间分布的准确与快速调查就成为重金属污染防治与修复的重要先决因素。
目前重金属铅检测方法按检测原理大体可分为光谱法、电化学法、生物化学法以及比色法等。重金属检测的光谱法主要包括原子吸收(AAS)、原子荧光光谱法(AFS)、电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)、X射线荧光光谱法(XRF)及激光诱导击穿光谱法(LIBS)等。光谱法普遍具有灵敏度高、检出限低、准确度好和分析速度快的优势,是现阶段国内外标准主要采用方法,但该方法工作效率不高,需要作样品采集、预处理等,检测与分析时间少则10天,多则1~3个月以上,随着样品数量的增加,检测与分析时间会成倍增长。同时检测的准确度还与采样的数量、分布有关,另外该方法还存在仪器价格贵、成本高、操作复杂等问题。电化学方法是一种比较成熟的分析方法,主要有极谱法、溶出伏安法和离子选择性电极法和电导分析法等。尽管电化学方法具有仪器体积小、操作简单、分析时间,快、灵敏度高、能耗低等优势,但该方法有样品前处理复杂,易造成污染和被杂质离子影响,检测电位范围较窄等不足。化学比色法是重金属检测的传统方法,主要是基于待测物质与化学试剂接触反应后发生颜色变化来对其进行定性定量,因而需要颜色变化明显、稳定。化学比色法主要有试纸法,受人为、环境影响均较大,因便宜简便,现多用于定性或半定量分析。生物化学法主要有酶分析法和免疫分析法。电化学方法、化学比色法及生物化学法与光谱法一样,分析精度与准确度除受到检测技术本身的制约外,还与样品采集区域的分布形态、分布密度等密切相关,因此在检测的时间成本、分析成本上会受到样品数量的制约,而样品数量的多少一定程度决定了检测分析的精确度与可靠性。同时由于自然条件的限制,存在着相当多区域或不能采样、或采样数少、或采样不均匀、或采样质量不高等因素影响着分析的精度与准确性。
如何利用有限采样点快速地描述土壤重金属的空间分布,并据此对污染状况进行分级,从而有针对性地采取保护或治理修复策略成为重金属铅检测与修复的关键技术。目前应用较为广泛是采用GIS技术,利用采样点重金属铅含量与结构因素(土壤性质、地形和气候等)、人文因素(集镇、水渠、化工厂和公路等)的空间关系,估计其相关性,描述其分布区域及可能拓展空间。同时分析随机性因素(人类活动,如汽车尾气排放、工业排放等)和结构因素、人文因素对重金属如Pb的空间分布的影响。这是目前的最主要的,也是较为可靠、经济的物理方法,但依然受到采样分布与密度的制约,同时由于采样点的稀疏与不均匀性,其污染等级的划分边界是模糊的,可靠性不高。在分析效率上除了受样品分析的影响外还受到检测区域结构因素、人文因素、随机性因素等时空属性提取难度的影响。
发明内容
针对现有技术的不足,本发明的目的在于利用重金属铅的固有物理化学性质,提供一种经济性好、时效性高、高精度和准确度的基于伽玛能谱测量铅污染的快速检测方法。
本发明提供一种基于伽玛能谱测量铅污染的快速检测方法,包括以下步骤:
步骤一、采用多个已知铅含量的样品,分别对样品进行γ射线能谱测量,得到样品的γ射线能谱图;
步骤二、根据步骤一所得γ射线能谱图,获取已知铅含量的样品在0.352Mev、0.239Mev、0.829Mev对应的γ射线强度;
步骤三、利用多项式拟合,建立铅含量与γ射线强度在0.352Mev、0.239Mev、0.829Mev的函数关系;
步骤四、测量未知铅含量区的γ射线强度,根据步骤三所得函数关系,计算该区域的铅含量。
在一个具体实施方式中,所述步骤三中,具体为:
观测点能量为0.352Mev的γ射线的强度为
Figure BDA0001848967080000031
对应观测点的铅含量Mj(j=1…N),那么可通过这N个数据建立I与M的函数关系:
M0.352=f0.352(I0.352) (1)
M的上标0.352表示该含量是由能量为0.352Mev的γ射线计算的,一旦函数关系f被建立,那么只要测量各点的γ射线的强度为I,就能计算出该测点的铅含量M;
为了提高计算精度和准确度,建立多个γ射线强度与铅含量关系式,如观测点能量为0.239Mev、0.829Mev的γ射线的强度与铅含量的关系式:
M0.239=f0.239(I0.239) (2)
M0.829=f0.829(I0.829) (3)
在一个具体实施方式中,所述步骤四中,具体为:
测量未知铅含量区的γ射线强度I0.352′、I0.239′、I0.829′,根据函数关系(1)、(2)和(3),计算得到铅含量M0.352′、M0.239′、M0.829′,取平均值得到该区域的铅含量。
在一个具体实施方式中,所述γ射线能谱测量仪的型号为:RS230。
本发明的原理如下:
1、铅的物理特性
铅是一种金属化学元素,其化学符号是Pb,原子序数为82,在自然界中铅有四种自然的、稳定的同位素:
Figure BDA0001848967080000032
Figure BDA0001848967080000041
其中后三种分别是238U、235U和232Th经过一系列裂变后的最终产物,这些反应的半衰期分别是4.47×109a、7.04×108a和1.4×1010a。这四种稳定的铅同位素在地壳中的丰度是稳定的,知道某种同位素的含量按比例可以估算出地壳中其它同位素的含量。铅在自然界中还有四种放射性同位素:
Figure BDA0001848967080000042
210Pb与214Pb经过多次α、β、γ衰变后得到稳定的铅同位素206Pb;212Pb经过多次α、β、γ衰变后得到稳定的铅同位素208Pb;211Pb经过多次α、β、γ衰变后得到稳定的铅同位素207Pb。
2、铅γ衰变释放的能量
214Pb主要发生β、γ衰变,释放几组不同能量的射线,其中主要射线能量为0.352Mev(表1);210Pb主要发生β、γ衰变,释放单一能量为0.047Mev的射线,但γ衰变的几率比较小;212Pb主要发生β、γ衰变,释放几组不同能量的射线,其中主要射线能量为0.239Mev,其它射线虽然能量较高但发生衰变的几率较低;211Pb主要发生β、γ衰变,释放几组不同能量的射线,其中主要射线能量为0.829Mev,虽然能量高但相对于214Pb和212Pb主要射线发生衰变的几率较小,不足15%(表1)。
表1铅同位素衰变的几率及释放的能量
Figure BDA0001848967080000043
3、铅γ射线强度与铅的含量关系
由于210Pb、214Pb、212Pb、211Pb它们衰变后得到的稳定同位素206Pb、208Pb、207Pb在地壳中的丰度是稳定的,比例是确定的,因此如果能建立起210Pb、214Pb与206Pb;212Pb与208Pb;211Pb与207Pb含量之间的定量关系。建立210Pb、214Pb、212Pb、211Pb的含量与所释放γ射线强度之间的定量关系。那么我们就可以通过分析一定能量的γ射线强度得出重金属铅的含量,通过观测某区域的γ射线强度分布计算出该区域铅的含量分布图。
相对于现有技术,本发明具有以下有益技术效果:
(1)本发明提供一种基于伽玛能谱测量铅污染的快速检测方法,通过建立一定能量的γ射线强度与铅含量的关系后,利用γ射线能谱测量值快速地估计出观测点的铅含量;由于γ射线能谱测量仪器轻便、测量快速,不受地形、环境的影响,可实现实时测量,面积性观测,避免了目前检测中因采样因素引起的数据代表性的局限性以及化学分析成本的昂贵和分析时间引起的时效性问题。
(2)经济性好:重金属分析检测成本为每样品约150元,样品采集成本按每天2~3人采集20个样本计算,直接采集成本在每样品30元~50元,综合直接成本每样品约200元,γ能谱测量每测量仅需20~40元(据地形环境差异)。
(3)时效性高:重金属化学分析样品检测通常需1~3个月时间分析,γ能谱测量可实时实现。
(4)精度与准确度高:重金属化学分析样品的代表性、密度、均匀性会受到环境的制约,γ能谱测量不受地形、地物的影响,只要能到达就可以测量。
附图说明
图1是实施例中一种基于伽玛能谱测量铅污染的快速检测方法的流程图。
图2是实施例中样品γ射线能谱图(横坐标表示能量,单位kev;纵坐标表示强度,单位:cps)
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合具体实施例和附图对本发明进行进一步说明:
本发明提供一种基于伽玛能谱测量铅污染的快速检测方法,如图1所示,包括以下步骤:
步骤一、在重金属铅待检测的区域,对已知有铅含量的样品(共有12个样品),分别对样品进行γ射线能谱测量,γ射线能谱测量仪的型号为RS230,其中一个样品的γ射线能谱图,如图2所示;
步骤二、根据步骤一所得γ射线能谱图,获取已知铅含量的样品在0.352Mev、0.239Mev、0.829Mev对应的γ射线强度,如表2所示;
表2铅含量-γ射线强度关系表
Figure BDA0001848967080000061
步骤三、利用多项式拟合,建立铅含量与γ射线强度在0.352Mev、0.239Mev、0.829Mev的函数关系;
观测点能量为0.352Mev的γ射线的强度为
Figure BDA0001848967080000062
对应观测点的铅含量Mj(j=1…N),那么可通过这N个数据建立I与M的函数关系:
M0.352=-0.0005I3+0.0899I2-5.0138I+94.3328
M的上标0.352表示该含量是由能量为0.352Mev的γ射线计算的,一旦函数关系f被建立,那么只要测量各点的γ射线的强度为I,就能计算出该测点的铅含量M;
为了提高计算精度和准确度,建立多个γ射线强度与铅含量关系式,如观测点能量为0.239Mev、0.829Mev的γ射线的强度与铅含量的关系式:
M0.239=0.0005I3-0.1633I2+17.8808I-648.1608
M0.829=-0.0126I3+0.4479I2-5.1686I+21.8854
步骤四、测量未知铅含量区的γ射线强度I0.352′、I0.239′、I0.829′,根据函数关系(1)、(2)和(3),计算得到铅含量M0.352′、M0.239′、M0.829′,取平均值得到该区域的铅含量。
在本实施例中,将第4号样品用于测量未知铅含量区,最终求出M0.352′=2.4862mg/kg、M0.239′=2.3331mg/kg、M0.829′=2.2768mg/kg,计算得出该区域的铅含量=2.3653mg/kg(三次测量的均值)。

Claims (3)

1.一种基于伽玛能谱测量铅污染的快速检测方法,其特征在于,包括以下步骤:
步骤一、采用多个已知铅含量的样品,分别对样品进行γ射线能谱测量,得到样品的γ射线能谱图;
步骤二、根据步骤一所得γ射线能谱图,获取已知铅含量的样品在0.352Mev、0.239Mev、0.829Mev对应的γ射线强度;
步骤三、利用多项式拟合,建立铅含量与γ射线强度在0.352Mev、0.239Mev、0.829Mev的函数关系;
步骤四、测量未知铅含量区的γ射线强度,根据步骤三所得函数关系,计算该区域的铅含量。
2.根据权利要求1所述基于伽玛能谱测量铅污染的快速检测方法,其特征在于,所述步骤三中,具体为:
观测点能量为0.352Mev的γ射线的强度为
Figure FDA0002755412470000011
对应观测点的铅含量Mj(j=1…N),那么可通过这N个数据建立I与M的函数关系:
M0.352=f0.352(I0.352) (1)
M的上标0.352表示该含量是由能量为0.352Mev的γ射线计算的,一旦函数关系f被建立,那么只要测量各点的γ射线的强度为I,就能计算出该测点的铅含量M;
为了提高计算精度和准确度,建立观测点能量为0.239Mev、0.829Mev的γ射线的强度与铅含量的关系式:
M0.239=f0.239(I0.239) (2)
M0.829=f0.829(I0.829) (3)。
3.根据权利要求1所述基于伽玛能谱测量铅污染的快速检测方法,其特征在于,所述步骤四中,具体为:
测量未知铅含量区的γ射线强度I0.352′、I0.239′、I0.829′,根据函数关系(1)、(2)和(3),计算得到铅含量M0.352′、M0.239′、M0.829′,取平均值得到该区域的铅含量。
CN201811285594.XA 2018-10-31 2018-10-31 一种基于伽玛能谱测量铅污染的快速检测方法 Expired - Fee Related CN109254312B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811285594.XA CN109254312B (zh) 2018-10-31 2018-10-31 一种基于伽玛能谱测量铅污染的快速检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811285594.XA CN109254312B (zh) 2018-10-31 2018-10-31 一种基于伽玛能谱测量铅污染的快速检测方法

Publications (2)

Publication Number Publication Date
CN109254312A CN109254312A (zh) 2019-01-22
CN109254312B true CN109254312B (zh) 2020-12-22

Family

ID=65044285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811285594.XA Expired - Fee Related CN109254312B (zh) 2018-10-31 2018-10-31 一种基于伽玛能谱测量铅污染的快速检测方法

Country Status (1)

Country Link
CN (1) CN109254312B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113821758A (zh) * 2020-06-18 2021-12-21 中国石油化工股份有限公司 环境污染评价方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175704A (zh) * 2011-02-18 2011-09-07 中国原子能科学研究院 铀同位素丰度分析方法
CN106443752A (zh) * 2016-08-31 2017-02-22 成都理工大学 一种低本底微弱放射性核素检测方法
CN107782749A (zh) * 2016-08-31 2018-03-09 上海微伏仪器科技有限公司 一种土壤环境质量在线监控系统及方法
CN108008069A (zh) * 2017-11-14 2018-05-08 华电电力科学研究院 一种粉煤灰品质综合测评系统及测评方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268076A (ja) * 2007-04-23 2008-11-06 Toshiba Corp 非破壊識別方法及び非破壊識別装置
JP2012122899A (ja) * 2010-12-09 2012-06-28 National Institute Of Advanced Industrial & Technology 粉末試料中の鉛の蛍光x線分析法
WO2015195988A1 (en) * 2014-06-18 2015-12-23 Texas Tech University System Portable apparatus for soil chemical characterization
CN105806854A (zh) * 2016-03-09 2016-07-27 邓晓钦 一种γ能谱法分析轻稀土矿及其精矿品位的方法
CN105738386A (zh) * 2016-03-09 2016-07-06 陈立 采用γ能谱法分析轻稀土镧金属及其化合物的总量方法
CN106125126B (zh) * 2016-07-30 2018-08-10 清华大学 采用溴化镧探测器测量环境中的钾40的方法
CN107490591A (zh) * 2017-04-19 2017-12-19 安徽华脉科技发展有限公司 一种土壤中重金属含量检测装置
CN107655918B (zh) * 2017-09-04 2020-01-07 北京农业质量标准与检测技术研究中心 土壤重金属能谱范围确定方法及装置
CN107655961B (zh) * 2017-09-26 2020-07-21 临沂大学 基于沉积物同位素分析的计算农业面源重金属流失负荷值的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175704A (zh) * 2011-02-18 2011-09-07 中国原子能科学研究院 铀同位素丰度分析方法
CN106443752A (zh) * 2016-08-31 2017-02-22 成都理工大学 一种低本底微弱放射性核素检测方法
CN107782749A (zh) * 2016-08-31 2018-03-09 上海微伏仪器科技有限公司 一种土壤环境质量在线监控系统及方法
CN108008069A (zh) * 2017-11-14 2018-05-08 华电电力科学研究院 一种粉煤灰品质综合测评系统及测评方法

Also Published As

Publication number Publication date
CN109254312A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
Sharma et al. Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH)
Gehrels et al. Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry
Yin et al. Trends and advances in mercury stable isotopes as a geochemical tracer
Zhao et al. Distribution, enrichment and sources of heavy metals in surface sediments of Hainan Island rivers, China
CN109920492B (zh) 一种水体沉积物中铅污染源解析的方法
Islam et al. Risk assessment and source apportionment for metals in sediments of Kaptai Lake in Bangladesh using individual and synergistic indices and a receptor model
CN101839851B (zh) 水中重金属离子的现场快速检测方法
Peralta et al. Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils
CN111678969A (zh) 利用土壤剖面表层重金属累积比例解析重金属污染来源的方法
CN104899419A (zh) 一种淡水水体中氮和/或磷含量检测的方法
CN108446715A (zh) 一种土壤重金属污染源解析方法、系统和装置
CN105044050A (zh) 农作物秸秆中金属元素快速定量分析方法
CN111272960A (zh) 一种同位素和测年相结合的浅层地下水硝酸盐源解析方法
WO2023072011A1 (zh) 一种土壤Cd/Pb复合污染双金属同位素源解析方法及系统
CN116205509A (zh) 一种全面评价土壤重金属污染状况的研究方法
CN109254312B (zh) 一种基于伽玛能谱测量铅污染的快速检测方法
Aslan et al. Determination of elements in some lichens growing in Giresun and Ordu province (Turkey) using energy dispersive X-ray fluorescence spectrometry
Lorenzi et al. Tracking flowpaths in a complex karst system through tracer test and hydrogeochemical monitoring: Implications for groundwater protection (Gran Sasso, Italy)
Maind et al. Analysis of Indian blue ballpoint pen inks tagged with rare-earth thenoyltrifluoroacetonates by inductively coupled plasma–mass spectrometry and instrumental neutron activation analysis
Pereira et al. Evaluation of an interlaboratory proficiency-testing exercise for total mercury in environmental samples of soils, sediments and fish tissue
Li et al. A historical record of trace metal deposition in northeastern Qinghai-Tibetan Plateau for the last two centuries
Bramha et al. Influence of geochemical properties on natural radionuclides in the sediment of Asia’s largest brackish water lagoon, Chilika-East Coast of India: evaluation through geo-statistical applications
Ding et al. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis
CN103983612B (zh) 一种模拟呼吸重金属的检测系统
CN111766368A (zh) 一种铅同位素的重金属源解析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201222

Termination date: 20211031

CF01 Termination of patent right due to non-payment of annual fee