CN109207715A - 一种对铜渣焙烧改性回收铁的方法 - Google Patents

一种对铜渣焙烧改性回收铁的方法 Download PDF

Info

Publication number
CN109207715A
CN109207715A CN201811210340.1A CN201811210340A CN109207715A CN 109207715 A CN109207715 A CN 109207715A CN 201811210340 A CN201811210340 A CN 201811210340A CN 109207715 A CN109207715 A CN 109207715A
Authority
CN
China
Prior art keywords
copper ashes
iron
modification
calcination
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811210340.1A
Other languages
English (en)
Other versions
CN109207715B (zh
Inventor
姜平国
刘金生
廖春发
邱廷省
曾颜亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201811210340.1A priority Critical patent/CN109207715B/zh
Priority to PCT/CN2018/123841 priority patent/WO2020077851A1/zh
Publication of CN109207715A publication Critical patent/CN109207715A/zh
Application granted granted Critical
Publication of CN109207715B publication Critical patent/CN109207715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种对铜渣焙烧改性回收铁的方法,该方法包含:(1)将脱硅改性剂和铜渣在惰性气体保护下升温至焙烧温度,使铜渣中的铁橄榄石中的氧化亚铁游离出来;(2)保持焙烧温度和惰性气体保护,焙烧体系与外界大气连通,将CO和CO2气体同时通入步骤(1)中的焙烧体系中,CO在CO和CO2总气体成分中的体积百分比为0~5%,游离的氧化亚铁被氧化成四氧化三铁,并使其晶体长大;(3)待焙烧结束,进行降温,经过磨矿和分级过程,得到不同粒度的改性渣,在磁场下磁选分离,以得到铁精矿和磁选尾矿。本发明的方法能够利用工业废气CO和CO2高效回收铜渣中的铁,得到适合做炼铁原料的铁精矿和能作为水泥等建筑材料原料的磁选尾矿。

Description

一种对铜渣焙烧改性回收铁的方法
技术领域
本发明涉及回收铜渣中铁的工艺,具体涉及一种对铜渣焙烧改性回收铁的方法。
背景技术
据统计,2017年中国的精炼铜产量达到888.9万吨,铜渣是炼铜过程中产生的渣,主要是在铜精矿造锍熔炼过程中产生的,按照一般的渣铜比为2.2:1来算,仅2017年我国产生的铜渣量就高达1777.8万吨。铜渣的典型成分是Fe为30%~40%,Cu为0.2%~5%,SiO2为35%~40%,Al2O3和CaO含量都在10%以下,还有少量的锌、镍、钴等金属元素,可见,铜渣中铁的含量很高。造锍过程(coppermatte smelting process)有复杂的物理化学反应,造渣反应是造锍熔炼的一部分,造渣过程(slag forming process)中氧化亚铁和添加的石英石熔剂反应产生硅酸铁,形成铁橄榄石(2FeO·SiO2)。在造锍过程中,其在氧化气氛条件下进行,因而铜渣过氧化,渣中Fe3O4较多。因此,在铜渣中铁主要以铁橄榄石和磁铁矿(Fe3O4)存在。
中国铁矿石的平均工业品位为29.1%,铜渣实际作为一种“人造矿石”完全满足炼铁矿石铁品位的要求。但是,目前中国国内对铜渣中铜的利用率不到12%,铁的利用率更不到1%,大部分铜渣被堆存在渣场,既占用土地又污染环境,也是资源的巨大浪费,已成为阻碍铜冶炼企业持续发展的重要因素。如果能把铜渣中的铁全部回收利用,不但解决了铜渣堆存的环境污染问题,同时还能给炼铁行业提供一种新的原材料,降低炼铁成本,使铜冶炼企业实现持续发展和循环经济的要求。
发明内容
本发明的目的是提供一种对铜渣焙烧改性回收铁的方法,该方法解决了铜渣利用率的问题,能够利用工业废气CO和CO2高效回收铜渣中的铁,得到铁精矿。
为了达到上述目的,本发明提供了一种对铜渣焙烧改性回收铁的方法,该方法包含:
(1)将脱硅改性剂和铜渣在惰性气体保护下升温至焙烧温度,使铜渣中的铁橄榄石中的氧化亚铁游离出来;
(2)保持焙烧温度和惰性气体保护,焙烧体系与外界大气连通,将CO和CO2气体同时通入步骤(1)中的焙烧体系中,CO在CO和CO2总气体成分中的体积百分比为0~5%,将游离出来的氧化亚铁氧化成四氧化三铁,并使磁性四氧化三铁晶体长大;
(3)待焙烧结束,进行降温,经过磨矿和分级过程,得到不同粒度的改性渣,在磁场下磁选分离,以得到铁精矿和磁选尾矿。
优选地,在步骤(1)中,所述的焙烧温度为800~1200℃。
优选地,在步骤(1)中,所述惰性气体包含:氮气、氩气和二氧化碳中任意一种或两种以上。
优选地,在步骤(1)中,所述脱硅改性剂包含:熟石灰。
优选地,在步骤(1)中,所述脱硅改性剂和铜渣的质量比为1:10~3:10。
优选地,在步骤(2)中,在恒温焙烧时,所述CO和CO2的进气总流量为150mL/min~250mL/min;在升温至恒定的焙烧温度,以及焙烧结束降温时,所述惰性气体的进气流量为250mL/min。
优选地,在步骤(2)中,所述通入CO与CO2的气体流速分别为0~10mL/min和190~200mL/min。
优选地,在步骤(3)中,所述磨矿采用球磨机或振动磨机;所述分级采用振动筛;所述磁选采用磁选管。
优选地,在步骤(3)中,所述改性渣的粒度为38~100μm。
优选地,在步骤(3)中,所述磁场的强度为80mT~130mT。
本发明的对铜渣焙烧改性回收铁的方法,解决了铜渣利用率的问题,具有以下优点:
本发明的方法利用工业废气CO和CO2,以及熟石灰回收废弃铜渣中的铁,其工艺流程短、设备简单,不造成二次污染,能够以较低的成本直接从铜渣中得到铁精矿,得到含铁品位60%以上的铁矿石,且回收率高达98%以上,回收的铁精矿能够达到高炉铁原料的要求,显著提高了经济效率。
具体实施方式
以下结合实施例对本发明的技术方案做进一步的说明。
一种对铜渣焙烧改性回收铁的方法,该方法包含:
(1)将脱硅改性剂和铜渣在惰性气体保护下升温至焙烧温度,使铜渣中的铁橄榄石中的氧化亚铁游离出来;
(2)保持焙烧温度和惰性气体保护,焙烧体系与外界大气连通,将CO和CO2气体同时通入步骤(1)中的焙烧体系中,CO在CO和CO2总气体成分中的体积百分比为0~5%,将游离出来的氧化亚铁氧化成四氧化三铁,并使磁性四氧化三铁晶体长大;
(3)待焙烧结束,进行降温,经过磨矿和分级过程,得到不同粒度的改性渣,在磁场下磁选分离,以得到铁精矿和磁选尾矿,铁精矿干燥后作为高炉铁原料,磁选尾矿干燥后作为制作水泥或透气砖的原料。
本发明考虑到工业废气中存在大量的CO和CO2气体,出于经济和环境保护的目的,利用CO和CO2气体以回收铜渣中的铁。通入CO和CO2气体,在总气体流速一定的前提下通过调节两气体各自的通入气体流速控制两气体在保温焙烧中的气体成分之比,控制CO在CO和CO2总气体成分中的体积百分比在5%以下。通过通入惰性气体是将空气排出焙烧体系,铜渣中铁橄榄石氧化成四氧化三铁需要弱氧化性的条件,通过CO和CO2可以调节体系的弱氧化氛围,经过研究若要保证铜渣中的铁橄榄石尽可能多的氧化成四氧化三铁,CO在总气体成分中的占比不能超过5%。本发明的焙烧体系与外界大气连通,处于动态状态下,通入和排出气体总量一样,因此惰性气体对焙烧体系整体不会产生影响。
进一步地,在步骤(1)中,焙烧温度为800~1200℃。
进一步地,在步骤(1)中,惰性气体包含:氮气、氩气和二氧化碳中任意一种或两种以上。
进一步地,在步骤(1)中,脱硅改性剂包含:碳酸钠、硫酸钙和熟石灰中的任意一种或两种以上。铜渣中铁橄榄石的氧化回收中脱硅剂的作用主要是和铁橄榄石中的SiO2成分反应并调节体系的碱度。
进一步地,在步骤(1)中,脱硅改性剂和铜渣的质量比为1:10~3:10,以使脱硅剂和铜渣中的钙和硅的摩尔质量之比尽可能为1:1,进而将铜渣中的铁尽可能的高效回收。
进一步地,在步骤(2)中,在恒温焙烧时,CO和CO2的进气总流量为150mL/min~250mL/min。对CO和CO2的进气总流量并不严格要求,对本发明分离效果的影响与CO与CO2的体积比有关,但出于经济性和可控性的要求,因而限制CO和CO2的进气总流量为150mL/min~250mL/min。
进一步地,在升温至恒定的焙烧温度,以及焙烧结束降温时,惰性气体的进气流量为250mL/min。
进一步地,在步骤(2)中,通入CO与CO2的气体流速分别为0~10mL/min和190~200mL/min。
进一步地,在步骤(3)中,磨矿采用球磨机或振动磨机;分级采用振动筛;磁选采用磁选管。磨矿主要是为了将改性渣磨细到满足磁选分离粒度,因此只要能将改性渣磨细到要求粒度的磨矿设备皆能运用其中,分级也就是将磨细后的样品进行细分粒度等级,只要是能满足分级精度的分级设备都能运用。本发明考虑到经济性和普遍性,故而选择振动筛、磁选管,以及球磨机或振动磨机。
进一步地,在步骤(3)中,改性渣的粒度为38~100μm。
进一步地,在步骤(3)中,磁场的强度为80mT~130mT。
在步骤(2)中,磨矿采用球磨机或振动磨机;分级采用振动筛;磁选采用磁选管。
在步骤(2)中,改性渣的粒度为38~100μm。通过对改性渣的粒度的选择,以利于后续的磁选分离。当磁选的粒度过大或过小都会在磁选回收的过程中造成磁选铁精矿的损失,经过研究发现,当改性渣的粒度为38~100μm时,铁精矿回收率损失较少。
在步骤(2)中,磁场的强度为80mT~130mT,以分离成铁品位高的铁精矿和铁品位低的尾矿。磁场强度也是造成磁选回收铁精矿回收率的重要影响因素,磁场强度过低或过高都会引起回收铁精矿的损失,经过研究发现,当所述磁场的强度为80mT~130mT时,铁精矿回收率损失较少。
实施例1
将干燥的熟石灰和铜渣按质量比1:10在氮气保护下焙烧,在900℃下保温,在焙烧时通入CO和CO2的混合气体,CO与CO2的进气流量速率分别为10mL/min和190mL/min,控制CO在CO与CO2总气体成分中的占比为5%,焙烧1小时。
待焙烧结束,经过磨矿和分级过程,得到粒度为38μm的改性渣(modified slag),在强度为120mT的弱磁场下磁选分离。
经上述过程,回收的铁精矿(iron concentrate)的铁品位(iron grade,指所含铁金属量占铁精矿量的百分比)为60%,回收率为98.5%,磁选尾矿(magnetic separationtailing)的回收率为1.5%,该磁选尾矿中硅含量为29.36%,实现了铁硅分离,以及对铁的回收。
实施例2
将干燥的熟石灰和铜渣按质量比1:10在氩气保护下焙烧,在950℃下保温,在焙烧时通入CO和CO2的混合气体,CO与CO2的进气流量速率分别为10mL/min和190mL/min,控制CO在CO与CO2总气体成分中的占比为5%,焙烧4小时。
待焙烧结束,经过磨矿和分级过程,得到粒度为38~50μm的改性渣,在强度为110mT的弱磁场下磁选分离。
经上述过程,回收的铁精矿铁品位为62.5%,回收率为98.83%,磁选尾矿的回收率为1.17%,该磁选尾矿中硅含量为30.05%,实现了铁硅分离,以及对铁的回收。
实施例3
将干燥的熟石灰和铜渣按质量比2:10在二氧化碳保护下焙烧,在1000℃下保温,在焙烧时通入CO和CO2的混合气体,CO与CO2的进气流量速率分别为5mL/min和195mL/min,控制CO在CO与CO2总气体成分中的占比为2.5%,焙烧8小时。
待焙烧结束,经过磨矿和分级过程,得到粒度为50~74μm的改性渣,在强度为100mT的弱磁场下磁选分离。
经上述过程,回收的铁精矿铁品位为65.7%,回收率为99.25%,磁选尾矿的回收率为0.75%,该磁选尾矿中硅含量为31.27%,实现了铁硅分离,以及对铁的回收。
实施例4
将干燥的熟石灰和铜渣按质量比2:10在二氧化碳保护下焙烧,在1050℃下保温,在焙烧时通入CO和CO2的混合气体,CO与CO2的进气流量速率分别为5mL/min和195mL/min,控制CO在CO与CO2总气体成分中的占比为2.5%,焙烧12小时。
待焙烧结束,经过磨矿和分级过程,得到粒度为74~100μm的改性渣,在强度为90mT的弱磁场下磁选分离。
经上述过程,回收的铁精矿铁品位为65.7%,回收率为99.5%,磁选尾矿的回收率为0.5%,该磁选尾矿的硅含量为32.37%,实现了铁硅分离,以及对铁的回收。
实施例5
将干燥的熟石灰和铜渣按质量比3:10在二氧化碳保护下焙烧,在1100℃下保温,在焙烧时只通入CO2气体,因为在高温下CO2也会分解出占总体积5%以下的CO,形成的混合气体实现对氧化亚铁的弱氧化处理,控制CO2的进气流量速率分别200mL/min,焙烧24小时。
待焙烧结束,经过磨矿和分级过程,得到粒度为100μm的改性渣,在强度为80mT的弱磁场下磁选分离,回收的铁精矿铁品位为66.5%,回收率为98.75%,磁选尾矿的回收率为1.25%,该磁选尾矿的硅含量为30.02%,实现了铁硅分离,以及对铁的回收。
综上所述,本发明的对铜渣焙烧改性回收铁的方法能够利用工业废气CO和CO2高效回收铜渣中的铁,得到铁精矿。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

1.一种对铜渣焙烧改性回收铁的方法,其特征在于,该方法包含:
(1)将脱硅改性剂和铜渣在惰性气体保护下升温至焙烧温度,使铜渣中的铁橄榄石中的氧化亚铁游离出来;
(2)保持焙烧温度和惰性气体保护,焙烧体系与外界大气连通,将CO和CO2气体同时通入步骤(1)中的焙烧体系中,CO在CO和CO2总气体成分中的体积百分比为0~5%,将游离出来的氧化亚铁氧化成四氧化三铁,并使磁性四氧化三铁晶体长大;
(3)待焙烧结束,进行降温,经过磨矿和分级过程,得到不同粒度的改性渣,在磁场下磁选分离,以得到铁精矿和磁选尾矿。
2.根据权利要求1所述的对铜渣焙烧改性回收铁的方法,其特征在于,在步骤(1)中,所述的焙烧温度为800~1200℃。
3.根据权利要求1所述的对铜渣焙烧改性回收铁的方法,其特征在于,在步骤(1)中,所述惰性气体包含:氮气、氩气和二氧化碳中任意一种或两种以上。
4.根据权利要求1所述的对铜渣焙烧改性回收铁的方法,其特征在于,在步骤(1)中,所述脱硅改性剂包含:熟石灰。
5.根据权利要求1所述的对铜渣焙烧改性回收铁的方法,其特征在于,在步骤(1)中,所述脱硅改性剂和铜渣的质量比为1:10~3:10。
6.根据权利要求1所述的对铜渣焙烧改性回收铁的方法,其特征在于,在步骤(2)中,在恒温焙烧时,所述CO和CO2的进气总流量为150mL/min~250mL/min;在升温至恒定的焙烧温度,以及焙烧结束降温时,所述惰性气体的进气流量为250mL/min。
7.根据权利要求3所述的对铜渣焙烧改性回收铁的方法,其特征在于,在步骤(2)中,所述通入CO与CO2的气体流速分别为0~10mL/min和190~200mL/min。
8.根据权利要求1所述的对铜渣焙烧改性回收铁的方法,其特征在于,在步骤(3)中,所述磨矿采用球磨机或振动磨机;所述分级采用振动筛;所述磁选采用磁选管。
9.根据权利要求1所述的对铜渣焙烧改性回收铁的方法,其特征在于,在步骤(3)中,所述改性渣的粒度为38~100μm。
10.根据权利要求1所述的对铜渣焙烧改性回收铁的方法,其特征在于,在步骤(3)中,所述磁场的强度为80mT~130mT。
CN201811210340.1A 2018-10-17 2018-10-17 一种对铜渣焙烧改性回收铁的方法 Active CN109207715B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811210340.1A CN109207715B (zh) 2018-10-17 2018-10-17 一种对铜渣焙烧改性回收铁的方法
PCT/CN2018/123841 WO2020077851A1 (zh) 2018-10-17 2018-12-26 一种对铜渣焙烧改性回收铁的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811210340.1A CN109207715B (zh) 2018-10-17 2018-10-17 一种对铜渣焙烧改性回收铁的方法

Publications (2)

Publication Number Publication Date
CN109207715A true CN109207715A (zh) 2019-01-15
CN109207715B CN109207715B (zh) 2020-04-07

Family

ID=64980544

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811210340.1A Active CN109207715B (zh) 2018-10-17 2018-10-17 一种对铜渣焙烧改性回收铁的方法

Country Status (2)

Country Link
CN (1) CN109207715B (zh)
WO (1) WO2020077851A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880999A (zh) * 2019-04-12 2019-06-14 北方民族大学 一种复合添加剂改质后回收铜渣中铁的方法和应用
CN110551902A (zh) * 2019-09-11 2019-12-10 武汉理工大学 一种铁橄榄石型炉渣资源回收方法
CN111185296A (zh) * 2020-01-08 2020-05-22 广西南国铜业有限责任公司 一种铜冶炼炉渣选矿方法
CN112695205A (zh) * 2020-12-16 2021-04-23 鹰潭盛发铜业有限公司 一种铜冶炼渣环保资源化利用的方法
CN112695203A (zh) * 2020-12-07 2021-04-23 鹰潭盛发铜业有限公司 一种铜渣的高效环保回收方法
CN113814061A (zh) * 2021-08-31 2021-12-21 黄石市泓义城市矿产资源产业研究院有限公司 一种从炼铜尾渣中制备磁性重介质的方法
CN115044768A (zh) * 2022-06-27 2022-09-13 安徽理工大学 一种提高铁橄榄石型炉渣还原产物中金属铁颗粒尺寸的方法
CN115780075A (zh) * 2022-12-02 2023-03-14 中南大学 一种提高铜渣磁选中的铁回收效率的方法
CN116043023A (zh) * 2022-12-30 2023-05-02 中南大学 一种改善铜冶炼渣中有价组分粒径的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528927A (zh) * 2003-09-28 2004-09-15 北京矿冶研究总院 一种铜冶炼方法
CN101328547A (zh) * 2006-10-19 2008-12-24 中国恩菲工程技术有限公司 底吹吹炼炉连续炼铜的吹炼工艺
CN102031382A (zh) * 2010-11-27 2011-04-27 江西理工大学 转炉铜渣脱铜的新方法
WO2015081385A1 (en) * 2013-12-03 2015-06-11 The University Of Queensland Copper processing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5049311B2 (ja) * 2009-03-31 2012-10-17 パンパシフィック・カッパー株式会社 銅製錬における転炉スラグの乾式処理方法及びシステム
CN102260787A (zh) * 2011-07-29 2011-11-30 西北矿冶研究院 从铜冶炼渣浮选尾矿中综合回收铁的方法
CN104404260A (zh) * 2014-11-24 2015-03-11 北京神雾环境能源科技集团股份有限公司 从铜渣中分离有价金属的方法
CN104593587A (zh) * 2014-12-10 2015-05-06 陕西大山机械有限公司 氧化铁矿的磁化焙烧方法
CN107460332A (zh) * 2017-07-28 2017-12-12 江苏省冶金设计院有限公司 一种铜渣综合利用的方法
CN108048647A (zh) * 2017-11-07 2018-05-18 江苏省冶金设计院有限公司 一种铜渣的处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528927A (zh) * 2003-09-28 2004-09-15 北京矿冶研究总院 一种铜冶炼方法
CN101328547A (zh) * 2006-10-19 2008-12-24 中国恩菲工程技术有限公司 底吹吹炼炉连续炼铜的吹炼工艺
CN102031382A (zh) * 2010-11-27 2011-04-27 江西理工大学 转炉铜渣脱铜的新方法
WO2015081385A1 (en) * 2013-12-03 2015-06-11 The University Of Queensland Copper processing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
姜平国等: ""铜渣在CO2-CO混合气体中焙烧实验研究"", 《有色金属科学与工程》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880999A (zh) * 2019-04-12 2019-06-14 北方民族大学 一种复合添加剂改质后回收铜渣中铁的方法和应用
CN109880999B (zh) * 2019-04-12 2020-07-24 北方民族大学 一种复合添加剂改质后回收铜渣中铁的方法和应用
CN110551902A (zh) * 2019-09-11 2019-12-10 武汉理工大学 一种铁橄榄石型炉渣资源回收方法
CN111185296A (zh) * 2020-01-08 2020-05-22 广西南国铜业有限责任公司 一种铜冶炼炉渣选矿方法
CN112695203A (zh) * 2020-12-07 2021-04-23 鹰潭盛发铜业有限公司 一种铜渣的高效环保回收方法
CN112695205A (zh) * 2020-12-16 2021-04-23 鹰潭盛发铜业有限公司 一种铜冶炼渣环保资源化利用的方法
CN113814061A (zh) * 2021-08-31 2021-12-21 黄石市泓义城市矿产资源产业研究院有限公司 一种从炼铜尾渣中制备磁性重介质的方法
CN115044768A (zh) * 2022-06-27 2022-09-13 安徽理工大学 一种提高铁橄榄石型炉渣还原产物中金属铁颗粒尺寸的方法
CN115044768B (zh) * 2022-06-27 2023-06-09 安徽理工大学 一种提高铁橄榄石型炉渣还原产物中金属铁颗粒尺寸的方法
CN115780075A (zh) * 2022-12-02 2023-03-14 中南大学 一种提高铜渣磁选中的铁回收效率的方法
CN115780075B (zh) * 2022-12-02 2024-07-02 中南大学 一种提高铜渣磁选中的铁回收效率的方法
CN116043023A (zh) * 2022-12-30 2023-05-02 中南大学 一种改善铜冶炼渣中有价组分粒径的方法

Also Published As

Publication number Publication date
CN109207715B (zh) 2020-04-07
WO2020077851A1 (zh) 2020-04-23

Similar Documents

Publication Publication Date Title
CN109207715A (zh) 一种对铜渣焙烧改性回收铁的方法
CN106676281B (zh) 一种铜冶炼熔融渣矿相重构综合回收铜、铁的工艺
Jian et al. Utilization of nickel slag using selective reduction followed by magnetic separation
Xian-Lin et al. Utilization of waste copper slag to produce directly reduced iron for weathering resistant steel
CN115386738B (zh) 还原硫化冶炼红土镍矿生产高冰镍的方法
CN110983061B (zh) 一种铅锌冶炼渣与铁矾渣协同资源化处理的方法
CN102925717B (zh) 含钴铜精矿综合回收铜钴的工艺
CN111118303A (zh) 一种氧压浸出锌冶炼固废渣制备次氧化锌的方法
CN110106433B (zh) 一种熔融贫化铜渣和锌渣的综合利用方法
CN102373329A (zh) 一种红土镍矿富集镍和铁方法
CN112410586B (zh) 从含铁、铌、稀土多金属矿中综合回收铌、稀土、钛的方法
CN107090551A (zh) 一种钒钛磁铁矿的直接提钒的方法
CN109880999A (zh) 一种复合添加剂改质后回收铜渣中铁的方法和应用
Tian et al. Upgrade of nickel and iron from low-grade nickel laterite by improving direct reduction-magnetic separation process
CN102796839A (zh) 一种硫酸渣还原焙烧生产直接还原铁同步脱硫的工艺方法
CA1245058A (en) Oxidizing process for copper sulfidic ore concentrate
CN210875721U (zh) 一种冶金渣中多种金属元素的回收系统
CN115404339B (zh) 一种开发利用鲕状高磷铁矿的方法
CN113215388B (zh) 将铌粗精矿中的铌矿物转化为铌钙矿及生产铌精矿的方法
CN113578521A (zh) 一种从铜渣浮选尾矿回收铁的选冶联合工艺
CN107227402A (zh) 一种水淬镍渣复配铜尾渣综合利用的方法
CN107574299B (zh) 一种低品位铁锰矿火法选矿方法
CN109369221B (zh) 一种利用旋转窑煅烧蛇纹石生产中量元素肥料的方法
CN107555482B (zh) 一种利用高铅高磷锰资源制备铁酸锰尖晶石材料的方法及添加剂
CN112281002A (zh) 从含铁、铌、稀土多金属矿中富集回收铌、稀土、钛的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant