CN109205562A - 一种制备氟化氢反应装置的使用方法 - Google Patents

一种制备氟化氢反应装置的使用方法 Download PDF

Info

Publication number
CN109205562A
CN109205562A CN201811207360.3A CN201811207360A CN109205562A CN 109205562 A CN109205562 A CN 109205562A CN 201811207360 A CN201811207360 A CN 201811207360A CN 109205562 A CN109205562 A CN 109205562A
Authority
CN
China
Prior art keywords
reaction
filtrate
bed body
particle
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811207360.3A
Other languages
English (en)
Inventor
杨松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201811207360.3A priority Critical patent/CN109205562A/zh
Publication of CN109205562A publication Critical patent/CN109205562A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride

Abstract

本发明涉及氟化工技术领域,具体涉及一种制备氟化氢反应装置的使用方法。其特征是:循环流化床反应炉内荧石颗粒呈沸腾状,气流吹扫荧石颗粒相互碰撞摩擦,避免荧石颗粒表面呈浆状相互粘结导致结块,荧石颗粒表面反应物反应完全后脱落,呈粉末状由气流携带进入旋风分离器,较大的颗粒经返料器返回炉内继续反应,较小的颗粒由气流携带进入颗粒层移动床过滤器,颗粒层移动床过滤器其移动床层也是第二反应室,循环流化床反应炉反应未完全的荧石颗粒可附着在颗粒层滤料表面继续反应,提高HF产品的得率。

Description

一种制备氟化氢反应装置的使用方法
技术领域
本发明涉及氟化工技术领域,具体涉及一种制备氟化氢反应装置的使用方法。
背景技术
氟化氢已广泛应用于电子、化工、石油等行业,主要用作制取氟盐、氟卤烷烃、氟致冷剂、腐蚀玻璃、浸渍木材、电解元素氟等,其反应装置是制取氟化氢关键设备之一。中国发明专利(专利号为CN 201420549695.4,专利名称为一种应用于生物质燃料制备氢氟酸的回转反应炉)公开了一种应用于生物质燃料制备氢氟酸的回转反应炉,其特征在于:所述炉体分为前、中、后三段,其中,前、后两段炉体的外周面套设有滚圈和齿圈,所述滚圈与齿圈相互配合设置用于使所述炉体进行回转运行;所述炉体的中段的外周面整个套装有一由耐火砖砌制而成的炉室,该炉室上开设有若干个进气口和出气口,所述炉体的中段用于氢氟酸的制备。中国发明专利(专利号为CN 201721407103.5,专利名称为一种氟化氢加工的回转反应炉)公开了一种氟化氢加工的回转反应炉,包括炉体、转筒、第一支架和底座,所述第一支架固定在底座上,所述炉体固定在第一支架上,所述转筒安装于炉体内部,其特征在于:所述转筒为耐腐蚀镍基高温合金转筒,所述转筒内设有呈螺旋状的导料条,所述导料条与转筒固定连接,所述炉体与转筒之间设有隔腔,所述隔腔内还设有加热器,所述加热器与炉体固定连接,所转筒的一端设有进料装置,所述转筒的另一端设有出料管,所述出料管的顶部设有出气管,所述出气管与出料管固定连接,所述进料装置的下方还设有转筒驱动装置。
现有技术1和现有技术2氢氟酸反应装置为目前常用的回转反应炉,其缺陷在于:反应产生的氟石膏一方面覆盖在荧石上阻碍反应继续进行,另一方面粘附在回转反应炉内壁上,腐蚀回转反应炉转筒内衬,缩短装置的保养周期,同时导致回转反应炉内壁结垢,使回转炉的传热效率下降。
发明内容
针对现有技术的不足,本发明的目的是提供一种制备氟化氢反应装置的使用方法,其特征是:
步骤一, 选择300~450℃、0.1MPa过热水蒸汽作为制备HF反应所需的热介质和输送介质,使用前应用过热水蒸汽使用前应用过热水蒸汽对循环流化床反应炉、颗粒层移动床过滤器进行吹扫,过热水蒸汽依次经分气盘、播散管对反应炉组件和旋风分离器进行吹扫,此时使旋风分离器与返料器组件通道隔断并向立管注入无水硫酸钙颗粒,待反应炉组件和旋风分离器温度上升到240~260℃时,根据立管料柱的高度开放旋风分离器与返料器组件通道使其进入循环流化工作状态;过热水蒸汽经旋风分离器进入主床体、副床体构成的U型床体进行吹扫,保持床体温度240~260℃,分别从分布器Ⅰ、分布器Ⅱ使用过热水蒸气向主床体、副床体播散滤料Ⅰ、滤料Ⅱ,分别打开关风阀Ⅰ、关风阀Ⅱ,观察滤料Ⅰ、滤料Ⅱ在主床体、副床体的移动下落状况。
步骤二, 萤石破碎为3~5mm颗粒经螺旋输送器送入播散管,过热水蒸汽经播散管将萤石颗粒播散送入反应室,反应室底部设计有分气盘,蒸汽流从分气盘均匀喷射将荧石颗粒快速流化成沸腾状,在流化层内萤石颗粒互相摩擦破碎为更细的粉末,硫酸从设计在分气盘上方30cm高的液体分布器喷出与蒸汽流混合形成雾状硫酸,雾状硫酸包裹荧石粉发生反应,沉积在萤石粉表面的氟石膏在颗粒物互相摩擦碰撞和蒸汽流吹扫下脱落,被蒸汽流携带送入旋风分离器,设计旋风分离器能够分离75µm的固相颗粒物,即气相部分携带小于75µm的固相颗粒物从排气管排出,而大于75µm的固相颗粒物被旋风分离器分离出来进入返料器组件,反应产生的HF随气相部分从排气管排出。
步骤三,旋风分离器分离下来的大于75µm的固相颗粒物,经立管通过底部的等压室蒸汽流输送,通过返料管送回反应室继续反应,立管与返料管之间设计有U型阀,U型阀底部有等压室蒸汽流输送以保证固相颗粒物流化,立管内的料柱与反应室的压差是驱动固相颗粒物连续不断向反应室输送的保证,堆积在立管内的料柱越高,与反应室的压差就越大,驱动固相颗粒物输送到反应室就越快,反之亦然,从而形成固相颗粒物返料量与反应室的两者压差的平衡关系,同时立管内的料柱对旋风分离器形成了封闭,使固相颗粒物不能倒流回旋风分离器,气相部分也不能穿流于返料器组件。
步骤四,滤料Ⅰ、滤料Ⅱ在主床体、副床体的移动下落运行正常后,由循环流化床反应炉排出的过热水蒸汽气流依次经过分布器Ⅰ、滤料Ⅰ、滤料Ⅱ、分布器Ⅱ、初级冷凝器,气流携带的反应未完全的荧石颗粒附着在主床体颗粒层滤料Ⅰ表面继续反应,反应完全生成的氟石膏附着在滤料Ⅰ上,在重力和气流压力的推动下滤料Ⅰ移动到主床体底部经关风阀Ⅰ排出,气流携带的细微粉尘被滤料Ⅱ拦截并随其在重力的作用下经关风阀Ⅱ排出,调节初级冷凝器冷却水的流速,使副床体出口气流温度为160℃。
发明人发现,现有技术制备氟化氢反应装置主要采用回转反应炉,使用带有夹套的预反应器和外热式回转炉,供给荧石(CaF2)和硫酸(H2SO4)送入回转反应炉中,物料随反应炉转动向出口前进,回转反应炉夹套中通过约500℃的热风,物料发生如下主反应:CaF2+2H2S04→2HF+CaSO4,其副产品CaSO4就是我们俗称的氟石膏,氟石膏一方面覆盖在荧石上阻碍反应继续进行,另一方面粘附在回转反应炉内壁上,腐蚀回转反应炉转筒内衬,缩短装置的保养周期,同时导致回转反应炉内壁结垢,使回转炉的传热效率下降。因此通常荧石被破碎、研磨、干燥、筛分至粒度小于150µm以上,以缩短反应的时间提高HF的得率。
发明人发现,利用荧石(CaF2)和硫酸(H2SO4)的反应生产氟化氢的过程中,随着其反应程度的变化,其反应物的状态也发生变化,大致在反应程度在0~70%,反应物的状态呈浆状,具有粘性和腐蚀性,反应程度在70~100%,反应物的状态呈粉末状。反应物的状态呈浆状、具有粘性和腐蚀性时,粘附在回转反应炉内壁上导致传热效率下降、阻碍反应继续,加剧反应物反应不完全的问题。而循环流化床反应炉则非常适合解决上述问题,在炉内荧石颗粒呈沸腾状,气流吹扫荧石颗粒相互碰撞摩擦,避免荧石颗粒表面呈浆状相互粘结导致结块,荧石颗粒表面反应物反应完全后脱落,呈粉末状由气流携带进入旋风分离器,较大的颗粒经返料器返回炉内继续反应,较小的颗粒由气流携带进入颗粒层移动床过滤器。
发明人发现,循环流化床反应炉能够很好地解决上述回转反应炉现有实际问题,萤石破碎为3~5mm颗粒经螺旋输送器送入播散管,选择过热水蒸汽作为制备HF反应所需的热介质和输送介质,过热水蒸汽经播散管将萤石颗粒播散送入反应室;反应室底部设计有分气盘,蒸汽流从分气盘均匀喷射将荧石颗粒快速流化成沸腾状,在流化层内萤石颗粒互相摩擦破碎为更细的粉末;硫酸从设计在分气盘上方30cm高的液体分布器喷出与蒸汽流混合形成雾状硫酸,雾状硫酸包裹荧石粉发生反应,沉积在萤石粉表面的氟石膏在颗粒物互相摩擦碰撞和蒸汽流吹扫下脱落,被蒸汽流携带送入旋风分离器,设计旋风分离器能够分离75µm的固相颗粒物,即气相部分携带小于75µm的固相颗粒物从排气管排出,而大于75µm的固相颗粒物被旋风分离器分离出来进入返料器组件,反应产生的HF随气相部分从排气管排出。
发明人发现,返料器组件的作用是把旋风分离器分离下来的大于75µm的固相颗粒物,经立管通过底部的等压室蒸汽流输送,通过返料管送回反应室继续反应,立管与返料管之间有U型阀,U型阀底部有等压室蒸汽流输送以保证固相颗粒物流化。立管内的料柱与反应室的压差是驱动固相颗粒物连续不断向反应室输送的保证,堆积在立管内的料柱越高,与反应室的压差就越大,驱动固相颗粒物输送到反应室就越快,反之亦然,从而形成固相颗粒物返料量与反应室的两者压差的平衡关系。同时立管内的料柱对旋风分离器形成了封闭,使固相颗粒物不能倒流回旋风分离器,气相部分也不能穿流于返料器组件。
发明人发现,选择过热水蒸汽作为循环流化床反应炉所需的热介质和输送介质原因是:一是过热水蒸汽不与HF反应,只是相溶,后续工艺过程容易分离,HF化学性质非常活泼,它可以与任何氟元素以外的负化合价元素或基团结合、置换或反应,除与铅、铁、锡形成氟化物保护膜外,氟化氢可以同置换系列中氢以下的所有金属反应;二是水进入锅炉前需要离子交换等纯化处理,电导率较低,换句话说就是水蒸气带入的离子杂质少,为将来纯化HF降低难度和复杂性;三是水的比热容较大,硫酸与荧石的反应为吸热反应,需要大量热能,同等体积的气流自然是水蒸气的热焓值更高。
发明人发现,循环流化床反应炉与回转反应炉比较,其反应温度可以设计得较低,原因是沉积在萤石表面的氟石膏在荧石颗粒互相碰撞摩擦和蒸汽流吹扫下脱落,等于是提高了过热水蒸汽的传热效率和硫酸的传质效率,从而提高硫酸与荧石的反应效率,本案设计的反应温度为240~260℃。正是由于反应温度降低,无需采用耐高温、昂贵的镍基合金制造反应室,降低了投资成本。
发明人发现,循环流化床反应炉与回转反应炉比较,其结构有较大优势,回转反应炉为动设备,回转筒体工作环境恶劣,需要耐高温、耐腐蚀、承受弯矩,必须采用耐腐蚀性能较好、耐高温、价格昂贵的合金,筒体为承受弯矩不变形,需要有足够的壁厚,因为提高传热效率和回转中的内衬寿命不长的缘故,通常都不设计廉价耐腐蚀的内衬,而且为防止内部高温、强腐蚀、强刺激性气体泄漏,其高温动密封也是一个技术难题;循环流化床反应炉为静设备,反应室无需采用耐高温、昂贵的镍基合金制造,降低了投资成本,内衬只承受气流冲刷,可以采用廉价耐腐蚀的材料筑砌而成,寿命大大延长。
发明人发现,HF反应过程中的硫酸、氢氟酸、颗粒物都是对环境产生危害的污染物和对操作人员产生危害的职业病危害因素,因此反应室按钢制压力容器设计,反应室设计为承正压1.0~10.0kPa,内衬三氧化二铁烧结砖,三氧化二铁烧结砖组分质量配比为三氧化二铁88~90份;镍基合金钢丝 1~2份;无水硼砂8~11份,三氧化二铁和无水硼砂均脱砷、铅至含量低于1mg/kg,设计三氧化二铁烧结砖作为氟化氢循环流化床反应炉专用衬砖,除了具有较好的防腐性能和较强的耐磨性能外,也为将来纯化HF降低难度和复杂性。
发明人发现,制备氟化氢的荧石(CaF2)和硫酸(H2SO4)发生如下主反应:CaF2+2H2S04→2HF+CaSO4,进入下一工序阶段的产物主要有重组分H2SO4、H2O,轻组分SO2、SiF4、CO2、H2S,副产品包括CaSO4、Fe2(SO4)3、H2SiF6。根据《工业无水氟化氢》GB 7746-2011国家标准的要求,对H2SO4、H2O、H2SiF6、SO2的含量均有限制,去除以上杂质制备无水氟化氢的现有技术主要采用净化、洗涤、冷凝、精馏、脱气等工艺手段,以水为溶解、吸附、洗涤、脱附、输送、分离等主要工艺介质,具体来说是现有技术制备氟化氢除尘、冷凝工艺过程中水的作用是在洗涤塔中用喷淋吸附办法吸附CaSO4、Fe2(SO4)3粉尘,同时水吸热实现工艺温度下降。由于本案的循环流化床反应炉以过热水蒸汽为主要工艺介质,现阶段就是净化过热水蒸汽携带的CaSO4、Fe2(SO4)3颗粒物,为使工艺流程变得简单、产品的得率提高、耗能下降,采用颗粒层移动床过滤器的技术方案,颗粒层移动床过滤器相对于现有技术主要有以下优点:第一,捕集效率与袋滤器相当甚至更高,过滤速度远高于袋滤器,压降较袋滤器低,而且耐高温、耐腐蚀;第二,可以就地取材利用使用生产过程中的副产品,颗粒层滤料采用氟石膏颗粒,众所周知,荧石(CaF2)和硫酸(H2SO4)发生主反应:CaF2+2H2S04→2HF+CaSO4,其副产品CaSO4就是我们俗称的氟石膏,氟石膏作为上述不可逆反应的最终产品,自然具有不被H2SO4、HF腐蚀的优点,也实现了固体废弃物循环综合利用;第三,颗粒层移动床过滤器其移动床层也是第二反应室,循环流化床反应炉反应未完全的荧石颗粒可附着在颗粒层滤料表面继续反应,提高HF产品的得率。
发明人发现,由于循环流化床反应炉反应未完全的荧石颗粒附着在颗粒层滤料表面继续反应,生成的HF随气流逸走,其固态物氟石膏附着在滤料颗粒表面上导致其长大,众所周知,影响颗粒层过滤器捕集效率的因素主要有滤料颗粒直径和床层高度,滤料颗粒长大、填充相互间空隙使捕集效率提高的同时压降将会增加、清灰变得困难,而且为防止气流带离粉尘,气流方向应与颗粒层滤料的下落方向相反,将颗粒层移动床过滤器的床体设计为U型,主床体和副床体均为井式床体,底部相互连通,循环流化床反应炉排出的过热水蒸汽气流依次经过分布器Ⅰ、滤料Ⅰ、滤料Ⅱ、分布器Ⅱ、初级冷凝器,滤料Ⅰ粒径8~10mm,滤料Ⅱ粒径1~2mm,即气流携带的反应未完全的荧石颗粒附着在主床体颗粒层滤料Ⅰ表面继续反应,反应完全生成的氟石膏附着在滤料Ⅰ上,在重力和气流压力的推动下滤料Ⅰ移动到主床体底部经关风阀Ⅰ排出,气流携带的细微粉尘被滤料Ⅱ拦截并随其在重力的作用下经关风阀Ⅱ排出。
发明人发现,由于需要考虑回收H2SO4,因此副床体出口温度应高于H2SO4的沸点,由于本案的工艺媒介为过热水蒸汽,考虑到生产负荷的变化,过热水蒸汽与H2SO4混合比有一定的波动,换言之即H2SO4的沸点有一定的波动,因此设计初级冷凝器将气流冷却,副床体出口气流温度为160℃。
相对于现有技术,本发明至少含有以下优点:第一,循环流化床反应炉与回转反应炉比较,其结构有较大优势,回转反应炉为动设备,回转筒体工作环境恶劣,需要耐高温、耐腐蚀、承受弯矩,必须采用耐腐蚀性能较好、耐高温、价格昂贵的合金,筒体为承受弯矩不变形,需要有足够的壁厚,因为提高传热效率和回转中的内衬寿命不长的缘故,通常都不设计廉价耐腐蚀的内衬,而且为防止内部高温、强腐蚀、强刺激性气体泄漏,其高温动密封也是一个技术难题;循环流化床反应炉为静设备,反应室无需采用耐高温、昂贵的镍基合金制造,降低了投资成本,内衬只承受气流冲刷,可以采用廉价耐腐蚀的材料筑砌而成,寿命大大延长;第二,循环流化床反应炉与回转反应炉比较,其反应温度可以设计得较低,原因是沉积在萤石表面的氟石膏在荧石颗粒互相碰撞摩擦和蒸汽流吹扫下脱落,等于是提高了过热水蒸汽的传热效率和硫酸的传质效率,从而提高硫酸与荧石的反应效率,本案设计的反应温度为240~260℃。正是由于反应温度降低,无需采用耐高温、昂贵的镍基合金制造反应室,降低了投资成本;第三,捕集效率与袋滤器相当甚至更高,过滤速度远高于袋滤器,压降较袋滤器低,而且耐高温、耐腐蚀;第四,可以就地取材利用使用生产过程中的副产品,颗粒层滤料采用氟石膏颗粒,众所周知,荧石(CaF2)和硫酸(H2SO4)发生主反应:CaF2+2H2S04→2HF+CaSO4,其副产品CaSO4就是我们俗称的氟石膏,氟石膏作为上述不可逆反应的最终产品,自然具有不被H2SO4、HF腐蚀的优点,也实现了固体废弃物循环综合利用;第五,颗粒层移动床过滤器其移动床层也是第二反应室,循环流化床反应炉反应未完全的荧石颗粒可附着在颗粒层滤料表面继续反应,使工艺流程变得简单、产品的得率提高、耗能下降。
附图说明
图1为本发明一种制备氟化氢反应装置的使用方法的主视结构示意图。
图2为本发明一种制备氟化氢反应装置的使用方法的右视结构示意图。
图3为本发明一种制备氟化氢反应装置的使用方法的A局部放大结构示意图。
图4为本发明一种制备氟化氢反应装置的使用方法的B局部放大结构示意图。
图5为本发明一种制备氟化氢颗粒层移动床过滤器的C向结构示意图。
Ⅰ-循环流化床反应炉 Ⅱ-颗粒层移动床过滤器
1-旋风分离器 2-返料器组件 3-反应炉组件 4-螺旋输送器
5-播散管 6-液体分布器 7-分气盘 8-反应室 9-立管
10-U型阀 11-返料管 12-等压室 13-主床体 14-副床体
15-初级冷凝器 16-分布器Ⅱ 17-滤料Ⅱ 18-关风阀Ⅱ
19-分布器Ⅰ 20-滤料Ⅰ 21-三氧化二铁烧结砖 22-关风阀Ⅰ。
具体实施方式
下面结合附图与具体实施例对本发明做进一步的说明。
如图1、图2、图3、图4、图5所示,一种制备氟化氢反应装置的使用方法,其特征是:
步骤一, 选择300~450℃、0.1MPa过热水蒸汽作为制备HF反应所需的热介质和输送介质,使用前应用过热水蒸汽对循环流化床反应炉Ⅰ、颗粒层移动床过滤器Ⅱ进行吹扫,过热水蒸汽依次经分气盘7、播散管5对反应炉组件3和旋风分离器1进行吹扫,此时使旋风分离器1与返料器组件2通道隔断并向立管9注入无水硫酸钙颗粒,待反应炉组件3和旋风分离器1温度上升到240~260℃时,根据立管9料柱的高度开放旋风分离器1与返料器组件2通道使其进入循环流化工作状态;过热水蒸汽经旋风分离器1进入主床体13、副床体14构成的U型床体进行吹扫,保持床体温度240~260℃,分别从分布器Ⅰ19、分布器Ⅱ16使用过热水蒸气向主床体13、副床体14播散滤料Ⅰ20、滤料Ⅱ17,分别打开关风阀Ⅰ22、关风阀Ⅱ18,观察滤料Ⅰ20、滤料Ⅱ17在主床体13、副床体14的移动下落状况。
步骤二, 萤石破碎为3~5mm颗粒经螺旋输送器送入播散管5,过热水蒸汽经播散管5将萤石颗粒播散送入反应室8,反应室8底部设计有分气盘7,蒸汽流从分气盘7均匀喷射将荧石颗粒快速流化成沸腾状,在流化层内萤石颗粒互相摩擦破碎为更细的粉末,硫酸从设计在分气盘7上方30cm高的液体分布器6喷出与蒸汽流混合形成雾状硫酸,雾状硫酸包裹荧石粉发生反应,沉积在萤石粉表面的氟石膏在颗粒物互相摩擦碰撞和蒸汽流吹扫下脱落,被蒸汽流携带送入旋风分离器1,设计旋风分离器1能够分离75µm的固相颗粒物,即气相部分携带小于75µm的固相颗粒物从排气管排出,而大于75µm的固相颗粒物被旋风分离器1分离出来进入返料器组件2,反应产生的HF随气相部分从排气管排出。
步骤三,旋风分离器1分离下来的大于75µm的固相颗粒物,经立管9通过底部的等压室12蒸汽流输送,通过返料管11送回反应室8继续反应,立管9与返料管11之间设计有U型阀10,U型阀10底部有等压室12蒸汽流输送以保证固相颗粒物流化,立管9内的料柱与反应室8的压差是驱动固相颗粒物连续不断向反应室8输送的保证,堆积在立管9内的料柱越高,与反应室8的压差就越大,驱动固相颗粒物输送到反应室8就越快,反之亦然,从而形成固相颗粒物返料量与反应室8的两者压差的平衡关系,同时立管9内的料柱对旋风分离器1形成了封闭,使固相颗粒物不能倒流回旋风分离器1,气相部分也不能穿流于返料器组件2。
步骤四,滤料Ⅰ20、滤料Ⅱ17在主床体13、副床体14的移动下落运行正常后,由循环流化床反应炉Ⅰ排出的过热水蒸汽气流依次经过分布器Ⅰ19、滤料Ⅰ20、滤料Ⅱ17、分布器Ⅱ16、初级冷凝器15,气流携带的反应未完全的荧石颗粒附着在主床体13颗粒层滤料Ⅰ20表面继续反应,反应完全生成的氟石膏附着在滤料Ⅰ20上,在重力和气流压力的推动下滤料Ⅰ20移动到主床体13底部经关风阀Ⅰ22排出,气流携带的细微粉尘被滤料Ⅱ17拦截并随其在重力的作用下经关风阀Ⅱ18排出,调节初级冷凝器15冷却水的流速,使副床体14出口气流温度为160℃。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (5)

1.一种制备氟化氢反应装置的使用方法,其特征是:步骤一,使用前应用过热水蒸汽对循环流化床反应炉、颗粒层移动床过滤器进行吹扫,过热水蒸汽依次经分气盘、播散管对反应炉组件和旋风分离器进行吹扫,此时使旋风分离器与返料器组件通道隔断并向立管注入无水硫酸钙颗粒,待反应炉组件和旋风分离器温度上升到240~260℃时,根据立管料柱的高度开放旋风分离器与返料器组件通道使其进入循环流化工作状态;过热水蒸汽经旋风分离器进入主床体、副床体构成的U型床体进行吹扫,保持床体温度240~260℃,分别从分布器Ⅰ、分布器Ⅱ使用过热水蒸气向主床体、副床体播散滤料Ⅰ、滤料Ⅱ,分别打开关风阀Ⅰ、关风阀Ⅱ,观察滤料Ⅰ、滤料Ⅱ在主床体、副床体的移动下落状况;步骤二, 萤石破碎为3~5mm颗粒经螺旋输送器送入播散管,过热水蒸汽经播散管将萤石颗粒播散送入反应室,反应室底部设计有分气盘,蒸汽流从分气盘均匀喷射将荧石颗粒快速流化成沸腾状,在流化层内萤石颗粒互相摩擦破碎为更细的粉末,硫酸从设计在分气盘上方30cm高的液体分布器喷出与蒸汽流混合形成雾状硫酸,雾状硫酸包裹荧石粉发生反应,沉积在萤石粉表面的氟石膏在颗粒物互相摩擦碰撞和蒸汽流吹扫下脱落,被蒸汽流携带送入旋风分离器,气相部分携带小于75µm的固相颗粒物从排气管排出,而大于75µm的固相颗粒物被旋风分离器分离出来进入返料器组件,反应产生的HF随气相部分从排气管排出;步骤三,旋风分离器分离下来的大于75µm的固相颗粒物,经立管通过底部的等压室蒸汽流输送,通过返料管送回反应室继续反应;步骤四,滤料Ⅰ、滤料Ⅱ在主床体、副床体的移动下落运行正常后,由循环流化床反应炉排出的过热水蒸汽气流依次经过分布器Ⅰ、滤料Ⅰ、滤料Ⅱ、分布器Ⅱ、初级冷凝器,在重力和气流压力的推动下滤料Ⅰ移动到主床体底部经关风阀Ⅰ排出,气流携带的细微粉尘被滤料Ⅱ拦截并随其在重力的作用下经关风阀Ⅱ排出,调节初级冷凝器冷却水的流速,使副床体出口气流温度为160℃。
2.根据权利要求1所述的一种制备氟化氢反应装置的使用方法,其特征是:选择300~450℃、0.1MPa过热水蒸汽作为制备HF反应所需的热介质和输送介质。
3.根据权利要求1所述的一种制备氟化氢反应装置的使用方法,其特征是:设计旋风分离器能够分离75µm的固相颗粒物。
4.根据权利要求1所述的一种制备氟化氢反应装置的使用方法,其特征是:立管与返料管之间设计有U型阀,U型阀底部有等压室蒸汽流输送以保证固相颗粒物流化,立管内的料柱与反应室的压差是驱动固相颗粒物连续不断向反应室输送的保证,堆积在立管内的料柱越高,与反应室的压差就越大,驱动固相颗粒物输送到反应室就越快,反之亦然,从而形成固相颗粒物返料量与反应室的两者压差的平衡关系,同时立管内的料柱对旋风分离器形成了封闭,使固相颗粒物不能倒流回旋风分离器,气相部分也不能穿流于返料器组件。
5.根据权利要求1所述的一种制备氟化氢反应装置的使用方法,其特征是:气流携带的反应未完全的荧石颗粒附着在主床体颗粒层滤料Ⅰ表面继续反应,反应完全生成的氟石膏附着在滤料Ⅰ上。
CN201811207360.3A 2018-10-17 2018-10-17 一种制备氟化氢反应装置的使用方法 Withdrawn CN109205562A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811207360.3A CN109205562A (zh) 2018-10-17 2018-10-17 一种制备氟化氢反应装置的使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811207360.3A CN109205562A (zh) 2018-10-17 2018-10-17 一种制备氟化氢反应装置的使用方法

Publications (1)

Publication Number Publication Date
CN109205562A true CN109205562A (zh) 2019-01-15

Family

ID=64980635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811207360.3A Withdrawn CN109205562A (zh) 2018-10-17 2018-10-17 一种制备氟化氢反应装置的使用方法

Country Status (1)

Country Link
CN (1) CN109205562A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142009A (zh) * 2020-09-22 2020-12-29 宜章弘源化工有限责任公司 无水氟化氢生产方法及其设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142009A (zh) * 2020-09-22 2020-12-29 宜章弘源化工有限责任公司 无水氟化氢生产方法及其设备

Similar Documents

Publication Publication Date Title
CN102441321B (zh) 用于除去废气中的酸性气体的装置和方法
CN107090317A (zh) 具有封闭的循环骤冷的部分氧化反应
CN102849745B (zh) 一种用于三氯氢硅生产的除尘工艺及系统
CN105586093B (zh) 一种带部分余热回收装置的气化反应器及其气化方法
CN110038371A (zh) 等离子体气化熔融危险废弃物处置系统及工艺
CN1328356C (zh) 一种干粉固体燃料气化方法
CN103836948B (zh) 一种高碳钼镍矿用的沸腾焙烧炉及系统
CN104925821B (zh) 一种利用四氯化硅生产气相法白炭黑的生产系统
CN101537329B (zh) 一种流化床反应器及用此反应器合成甲基氯硅烷的方法
CN108975275A (zh) 一种制备氟化氢反应装置
CN106554018B (zh) 一种冷氢化除尘系统及工艺
CN108707479A (zh) 一种辐射废锅系统及其工作方法
CN107446626A (zh) 一种焦炭加压连续气化生产方法
CN109205562A (zh) 一种制备氟化氢反应装置的使用方法
CN114135880A (zh) 一种有机硅废气废液资源化焚烧环保处理系统及方法
CN203549812U (zh) 加压灰渣处理系统
CN107827086A (zh) 一种液体二氧化硫的生产装置及其方法
CN108946668A (zh) 一种无水氟化氢制备工序
CN100404137C (zh) 颗粒状铁基费托合成催化剂的工业还原方法
CN115430370B (zh) 一种氯硅烷合成装置
CN208667617U (zh) 一种辐射废锅系统
CN108892104A (zh) 一种制备氟化氢工艺装置的使用方法
CN105132036A (zh) 常压空气气化的气流床干煤粉气化设备及其气化方法
CN109019517A (zh) 一种制备氟化氢循环流化床反应炉的使用方法
CN211199138U (zh) 一种粉尘分离回收设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190115