CN109181740B - 不凝气再循环强化热解产油方法 - Google Patents

不凝气再循环强化热解产油方法 Download PDF

Info

Publication number
CN109181740B
CN109181740B CN201811226059.7A CN201811226059A CN109181740B CN 109181740 B CN109181740 B CN 109181740B CN 201811226059 A CN201811226059 A CN 201811226059A CN 109181740 B CN109181740 B CN 109181740B
Authority
CN
China
Prior art keywords
condensable gas
gas
pyrolysis
macromolecule
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811226059.7A
Other languages
English (en)
Other versions
CN109181740A (zh
Inventor
李爱民
张雷
姬国钊
高原
赵紫宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201811226059.7A priority Critical patent/CN109181740B/zh
Publication of CN109181740A publication Critical patent/CN109181740A/zh
Application granted granted Critical
Publication of CN109181740B publication Critical patent/CN109181740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

一种不凝气再循环强化热解产油方法,包括热解回转窑,一级冷凝装置,二级冷凝装置,冷凝气收集装置,不凝气储存装置,和风机。本发明与传统的热解产油方法相比,吹入的再循环不凝气将炉内不断生成的大分子可凝气体加速排出,大幅减少了大分子可凝气体在炉内的停留时间;吹入的再循环不凝气相比于炉内气体温度较低,在加速其排出的同时,使炉内的局部温度短暂降低;同时炉内再循环不凝气的增加,抑制了大分子可凝气体向不凝气的转化。本发明从停留时间、反应温度和反应平衡三个方面有效的解决了在炉内大分子可凝气向不凝气转变所发生的二次裂解,大幅增加了油气比,使油的产率显著提高,优化热解工艺,提高了热解产油在实际生产过程中的经济效益。

Description

不凝气再循环强化热解产油方法
技术领域
本发明属于废弃物资源化利用技术领域,具体为一种不凝气再循环强化热解产油方法。
背景技术
随着人类社会的发展,对于矿物能源这种不可再生能源利用,极大推动了社会的长足进步,矿物能源的利用已经融入到生活的各个方面,成为人类不可或缺的一部分。但是,其资源却在日益耗尽;同时,矿物能源的无节制使用,一起了日益严重的环境问题,如损害臭氧层,导致全球气候变暖等问题,因此,开发和寻找新的替代能源已成为人类社会在新世纪必须加以解决的重大问题。
目前,生物质资源的可再生性和高分子有机废弃物的可回收性逐渐进入人们的视线,生物质资源具有分布广泛、环境友好、获取容易等优点,高分子有机废弃物具有数量多,自然降解缓慢的等危害,回收再利用将是个一举两得的办法。通过热解能源转换技术可以高效地利用现有资源,生产各种清洁燃料,替代煤炭、石油和天然气等燃料,生产电力,符合社会的可持续发展原则,进而受到世界各国的高度重视。
生物质资源和高分子有机废弃物在中等温度下热裂解主要得到热解油,由于液体能源的显著重要性,生物质资源和高分子有机废弃物的热裂解及热解油的精制得到了极大的关注。但是人们在实际工业化生产过程中发现,由于热化学的难控制性导致热解产生的油气比的差异性较大,往往在热解炉中大量的大分子可凝气体发生二次裂解而转变为小分子不凝气体,导致热解油的产率大幅下降,使得针对于产品的后期精制、经济效益以及整个行业的良好推动性都是一个不小的考验,因此如何能提高产出的油气比成为了一个迫在眉睫需要解决的问题。
发明内容
针对于现有技术的不足,本发明的目的是提供种不凝气再循环强化热解产油方法,与传统的热解产油方法相比,吹入的再循环不凝气将炉内不断生成的大分子可凝气体加速排出,大幅减少了大分子可凝气体在炉内的停留时间;吹入的再循环不凝气相比于炉内气体温度较低,在加速其排出的同时,使炉内的局部温度短暂降低;同时炉内再循环不凝气的增加,抑制了大分子可凝气体向不凝气的转化。本发明从停留时间、反应温度和反应平衡三个方面有效的解决了在炉内大分子可凝气向不凝气转变所发生的二次裂解,大幅增加了油气比,使油的产率显著提高,优化热解工艺,提高了热解产油在实际生产过程中的经济效益。
本发明的技术方案:
一种不凝气再循环强化热解产油方法,所用的系统包括热解回转窑、一级冷凝装置、二级冷凝装置、热解油收集装置、不凝气储存装置和风机;
原材料经过破碎后送入热解回转窑进行400~500℃低温热解,在炉内生成炭、大分子可凝气和小分子不凝气,大分子可凝气和小分子不凝气进入到一级冷凝装置进行浅度冷凝换热后,进入二级冷凝装置进行深度冷凝,大分子可凝气冷凝后形成热解油进入热解油收集装置;降温后的小分子不凝气进入到不凝气储存装置缓存,通过风机通入到一级冷凝装置与从炉内新排出的大分子可凝气和小分子不凝气进行换热升温后,重新吹入到热解回转窑内,与新生成的大分子可凝气和小分子不凝气迅速混合,将大分子可凝气带出炉内的同时降低了其温度,从而减少了其在炉内的停留时间以及降低了大分子可凝气的温度,同时炉内瞬间增多的小分子不凝气抑制了油气转化的正向进行,抑制大分子可凝气在炉内发生二次裂解。
本发明的有益效果;
(1)与传统的热解产油方法相比,吹入的再循环不凝气将炉内不断生成的大分子可凝气体加速排出,大幅减少了大分子可凝气体在炉内的停留时间;
(2)吹入的再循环不凝气相比于炉内气体温度较低,在加速其排出的同时,使炉内的局部温度短暂降低;
(3)同时炉内再循环不凝气的增加,抑制了大分子可凝气体向不凝气的转化。
(4)从停留时间、反应温度和反应平衡三个方面有效的解决了在炉内大分子可凝气向不凝气转变所发生的二次裂解,大幅增加了油气比,使油的产率显著提高,优化热解工艺,提高了热解产油在实际生产过程中的经济效益。
附图说明
图1为本发明的不凝气再循环强化热解产油方法的流程示意图。
具体实施方式
以下结合附图和技术方案,进一步地说明本发明的具体实施方式。
参照图1,一种不凝气再循环强化热解产油方法,主要包括热解回转窑,一级冷凝装置,二级冷凝装置,热解油收集装置,不凝气储存装置和风机;
原材料经过破碎后送入热解回转窑进行400至500℃低温热解,在炉内生成炭,大分子可凝气和小分子不凝气,大分子可凝气和小分子不凝气进入到一级冷凝装置进行浅度冷凝换热后,进入二级冷凝装置进行深度冷凝,大分子可凝气冷凝后形成热解油进入热解油收集装置;降温后的小分子不凝气进入到不凝气储存装置缓存,通过风机通入到一级冷凝装置与从炉内新排出的大分子可凝气和小分子不凝气进行换热升温后,重新吹入到热解回转窑内,与新生成的大分子可凝气和小分子不凝气迅速混合,将大分子可凝气带出炉内的同时降低了其温度,从而减少了其在炉内的停留时间以及降低了大分子可凝气的温度,同时炉内瞬间增多的小分子不凝气抑制了油气转化的正向进行,抑制大分子可凝气在炉内发生二次裂解。

Claims (1)

1.一种不凝气再循环强化热解产油方法,所用的系统包括热解回转窑、一级冷凝装置、二级冷凝装置、热解油收集装置、不凝气储存装置和风机;其特征在于,步骤如下:
原材料经过破碎后送入热解回转窑进行400~500℃低温热解,在炉内生成炭、大分子可凝气和小分子不凝气,大分子可凝气和小分子不凝气进入到一级冷凝装置进行浅度冷凝换热后,进入二级冷凝装置进行深度冷凝,大分子可凝气冷凝后形成热解油进入热解油收集装置;降温后的小分子不凝气进入到不凝气储存装置缓存,通过风机通入到一级冷凝装置与从炉内新排出的大分子可凝气和小分子不凝气进行换热升温后,重新吹入到热解回转窑内,与新生成的大分子可凝气和小分子不凝气迅速混合,将大分子可凝气带出炉内的同时降低了其温度,从而减少了其在炉内的停留时间以及降低了大分子可凝气的温度,同时炉内瞬间增多的小分子不凝气抑制了油气转化的正向进行,抑制大分子可凝气在炉内发生二次裂解。
CN201811226059.7A 2018-10-22 2018-10-22 不凝气再循环强化热解产油方法 Active CN109181740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811226059.7A CN109181740B (zh) 2018-10-22 2018-10-22 不凝气再循环强化热解产油方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811226059.7A CN109181740B (zh) 2018-10-22 2018-10-22 不凝气再循环强化热解产油方法

Publications (2)

Publication Number Publication Date
CN109181740A CN109181740A (zh) 2019-01-11
CN109181740B true CN109181740B (zh) 2022-10-04

Family

ID=64945914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811226059.7A Active CN109181740B (zh) 2018-10-22 2018-10-22 不凝气再循环强化热解产油方法

Country Status (1)

Country Link
CN (1) CN109181740B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115686A (ja) * 1983-11-29 1985-06-22 J H Eng Kk プラスチツク廃棄物の連続乾溜方法
CN2484328Y (zh) * 2001-07-16 2002-04-03 中国科学院广州能源研究所 自热式循环流化床生物质热解油化装置
CN202030712U (zh) * 2011-04-01 2011-11-09 浙江大学 油泥热解再生燃料油的一体化系统
CN102807885B (zh) * 2012-08-20 2015-05-20 中国科学院广州能源研究所 基于微波活化和热解气再循环制取高品质生物油的方法

Also Published As

Publication number Publication date
CN109181740A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN113278438B (zh) 一种基于燃煤电厂的废弃风电叶片微波裂解处理系统及方法
CN101591819B (zh) 一种利用煤直接液化残渣制备的沥青基碳纤维及其制备方法
CN104261649A (zh) 一种高效油泥热解制油方法及系统
CN104073263B (zh) 蓄热式旋转床低温干馏系统和工艺
CN103194274B (zh) 一种焦炉煤气余热回收方法及装置
CN107117787A (zh) 一种含油污泥添加微藻生物质协同热解的工艺方法
CN105509059A (zh) 发电系统和发电方法
CN111996019A (zh) 无害化和资源化处理的含漆废物裂解工艺
CN103333705B (zh) 一种无载热体粉煤低温干馏方法
CN202991155U (zh) 一种炭素厂梯级余热回收多热源发电供热系统
CN109181740B (zh) 不凝气再循环强化热解产油方法
CN105038826B (zh) 一种带式炉热解装置以及带式炉热解工艺
WO2016095464A1 (zh) 一种采用间接加热分段热解方式从中、低阶煤中连续提烃的工艺及装置
CN103410578A (zh) 一种低温型有机朗肯循环工业余热发电设备
CN102787186B (zh) 一种高炉冲渣水及乏蒸汽低温余热热电双联供系统及方法
CN101457159B (zh) 两段式煤气发生炉煤气净化冷却工艺
CN111808446A (zh) 一种利用高温裂解气进行炭化的裂解炭黑及制备方法
CN110591765A (zh) 一种rdf热解气不凝气净化系统
CN210945492U (zh) 一种兰炭和低阶煤分时段改性与钢铁供热间耦合系统
CN204111560U (zh) 一种高效油泥热解制油系统
CN203603991U (zh) 一种低温型有机朗肯循环工业余热发电设备
CN204529733U (zh) 以惰性气体为介质的新型焦炉上升管荒煤气余热回收系统
CN215479756U (zh) 活性炭生产的能源循环利用系统
CN203451475U (zh) 高热值气体热载体低阶煤提质系统
CN209989336U (zh) 煤焦油分级冷凝的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant