CN109181301B - 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法 - Google Patents

一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法 Download PDF

Info

Publication number
CN109181301B
CN109181301B CN201810806949.9A CN201810806949A CN109181301B CN 109181301 B CN109181301 B CN 109181301B CN 201810806949 A CN201810806949 A CN 201810806949A CN 109181301 B CN109181301 B CN 109181301B
Authority
CN
China
Prior art keywords
boron nitride
polymer
functionalized
quantum dot
composite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810806949.9A
Other languages
English (en)
Other versions
CN109181301A (zh
Inventor
丁鹏
周帅帅
宋娜
施利毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201810806949.9A priority Critical patent/CN109181301B/zh
Publication of CN109181301A publication Critical patent/CN109181301A/zh
Application granted granted Critical
Publication of CN109181301B publication Critical patent/CN109181301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种掺杂量子点功能化氮化硼聚合物导热复合膜,该导热复合膜包括以下重量百分比组分:氮化硼量子点1~5wt%,功能化氮化硼5~50wt%,聚合物基体50~95wt%。本发明还公开了一种掺杂量子点功能化氮化硼聚合物导热复合膜制备方法。本发明掺杂量子点功能化氮化硼聚合物导热复合膜制备方法,工艺合理,反应条件温和,有利于生产的控制和推广,易于产业化。制备的复合膜,其功能化的氮化硼降低了纳米片的表面极性,有利于减少氮化硼的团聚现象。氮化硼量子点作为氮化硼片层之间的填充粒子,使得片层之间的联系更加密切,使得氮化硼聚合物复合材料形成了完整、高效的导热网络,从而提高复合材料的导热性能。具有优异的力学性能、一定的透明度和耐弯曲性。

Description

一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法
技术领域
本发明属于导热复合材料领域,具体涉及一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法。
背景技术
随着电子设备向小型化、高集成化、高功率化的快速发展,元器件产生的强热会产生热失效,性能下降,寿命缩短等问题,使得汽车、照明、电子电气以及航空航天等领域的散热问题日益严重。聚合物材料例如聚酰亚胺、聚乙烯醇、聚丙烯、聚酰胺、聚乙烯、聚碳酸酯等由于具有比传统导热材料更加优异的功能,如高强度、质轻、易加工、耐腐蚀、电绝缘性好等,受到了极大的关注。但是,聚合物材料的导热率普遍较低,使得其在导热领域的应用受到了很大的限制,因此,在聚合物中添加导热填料成为解决这一问题的关键。氮化硼由于本身高的导热率(3000W·m-1k-1)以及优异的机械性能和电绝缘性成为导热填料中炙手可热的一份子。
量子点,例如碳量子点和石墨烯量子点,具有良好的化学稳定性、对目标物的高灵敏度和选择性、低毒性、良好的生物相容性和光致发光稳定性等独特的物理化学性质,在光催化剂、传感器、能量转换、生物成像、生物标记和药物释放等领域有着广泛的应用前景。氮化硼量子点(BNQDs)由于其独特的结构以及迷人的物理和化学性质,加入到氮化硼纳米片聚合物体系中,能够填充填料与基体之间的空隙,进一步完善导热网络。
中国专利申请公开号为CN105462069A,“一种功能化氮化硼纳米片/聚丙烯复合材料及其制备方法”,该方法通过功能化改性降低了氮化硼纳米片的表面能,从而提高氮化硼纳米片在聚丙烯树脂基体中的分散程度而减少团聚现象,并且通过降低两相界面张力来进一步提高其复合材料的相容性和结合力。但是此方法操作复杂,后续处理繁琐,对设备的要求较高,限制了其生产应用。中国专利申请公开号为CN106589365A,“一种石墨烯-氮化硼复合材料、应用及其制备方法”,该方法将氮化硼片层插入到石墨烯片层之间并用聚多巴胺作为一种交联剂,提高了复合材料的导热性能。但是该方法的制备工艺相对复杂,涉及到的原材料繁多,且没有基体材料在力学性能方面略显不足,限制了其生产应用。
发明内容
本发明的目的在于,提供一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法。
为实现上述目的,本发明采用的技术方案是:
一种掺杂量子点功能化氮化硼聚合物导热复合膜,该导热复合膜包括以下重量百分比组分:
氮化硼量子点 1~5wt%,
功能化氮化硼 5~50wt%,
聚合物基体 50~95wt%;
以上各组成的重量百分比含量之和为100wt%
掺杂量子点功能化氮化硼聚合物导热复合膜,功能化氮化硼的粒径为50-200nm,氮化硼量子点的粒径为2-50nm。
掺杂量子点功能化氮化硼聚合物导热复合膜,聚合物基体为聚酰亚胺、聚乙烯醇、聚丙烯、聚酰胺、聚乙烯、聚碳酸酯中的一种或多种混合。
一种掺杂量子点功能化氮化硼聚合物导热复合膜的制备方法,该方法包括以下步骤:
(1)功能化氮化硼的制备:将h-BN与尿素按照质量比为1:20进行砂磨,研磨2-10h;过滤之后将所得的氮化硼粉末分散到20~100ml的二甲基甲酰胺(DMF)中,超声分散10~24小时得到氮化硼纳米片分散液;最后将氮化硼纳米片分散液进行溶剂热反应,在100-200℃下反应12-36小时,下层分散液即为功能化氮化硼分散液;
(2)氮化硼量子点的制备:取步骤(1)溶液热后的上层溶液,以2000~5000rpm转速下离心20~40分钟;最后将离心后的溶液过滤得到氮化硼量子点溶液;
(3)将聚合物基体加入到二甲基甲酰胺或去离子水中,在80-100℃下搅拌1-5h,配制质量分数为5~10wt%的聚合物基体溶液;
(4)将步骤(1)得到的功能化氮化硼纳米片分散液、步骤(2)得到的氮化硼量子点与步骤(3)得到的聚合物溶液按照一定的质量比进行混合,常温下搅拌0.5-2h,之后进行超声0.5-2h,得到氮化硼量子点/功能化氮化硼聚合物混合液;
(5)将步骤(4)得到的氮化硼量子点/功能化氮化硼聚合物混合液置于真空烘箱中,常温下抽真空脱气,10-30min后取出混合液,将其倒入模具中,并置于烘箱中,在40-70℃真空干燥10~48h,即可得到掺杂量子点功能化氮化硼聚合物导热复合膜。
掺杂量子点功能化氮化硼聚合物导热复合膜的制备方法,功能化氮化硼的粒径为50-200nm,氮化硼量子点的粒径为2-50nm。
掺杂量子点功能化氮化硼聚合物导热复合膜的制备方法,聚合物基体为聚酰亚胺、聚乙烯醇、聚丙烯、聚酰胺、聚乙烯、聚碳酸酯中的一种或多种混合。
本发明的有益效果为:
1、本发明掺杂量子点功能化氮化硼聚合物导热复合膜制备方法,工艺合理,反应条件温和,不需要昂贵的设备,有利于生产的控制和推广,易于产业化。
2、本发明掺杂量子点功能化氮化硼聚合物导热复合膜,其功能化的氮化硼降低了纳米片的表面极性,有利于减少氮化硼的团聚现象。氮化硼量子点作为氮化硼片层之间的填充粒子,使得片层之间的联系更加密切,使得氮化硼聚合物复合材料形成了完整、高效的导热网络,从而提高复合材料的导热性能。同时,该复合膜具有优异的力学性能、一定的透明度和耐弯曲性。
具体实施方式
实施例1
本实施例提供的掺杂量子点功能化氮化硼聚合物导热复合膜,该导热复合膜包括以下重量百分比组分:
氮化硼量子点 1~5wt%,
功能化氮化硼 5~50wt%,
聚合物基体 50~95wt%;
以上各组成的重量百分比含量之和为100wt%
掺杂量子点功能化氮化硼聚合物导热复合膜,功能化氮化硼的粒径为50-200nm,氮化硼量子点的粒径为2-50nm。
掺杂量子点功能化氮化硼聚合物导热复合膜,聚合物基体为聚酰亚胺、聚乙烯醇、聚丙烯、聚酰胺、聚乙烯、聚碳酸酯中的一种或多种混合。
本实施例提供的掺杂量子点功能化氮化硼聚合物导热复合膜的制备方法,该方法包括以下步骤:
(1)功能化氮化硼的制备:将h-BN与尿素按照质量比为1:20进行砂磨,研磨2-10h;过滤之后将所得的氮化硼粉末分散到20~100ml的二甲基甲酰胺(DMF)中,超声分散10~24小时得到氮化硼纳米片分散液;最后将氮化硼纳米片分散液进行溶剂热反应,在100-200℃下反应12-36小时,下层分散液即为功能化氮化硼分散液;
(2)氮化硼量子点的制备:取步骤(1)溶液热后的上层溶液,以2000~5000rpm转速下离心20~40分钟;最后将离心后的溶液过滤得到氮化硼量子点溶液;
(3)将聚合物基体加入到二甲基甲酰胺或去离子水中,在80-100℃下搅拌1-5h,配制质量分数为5~10wt%的聚合物基体溶液;
(4)将步骤(1)得到的功能化氮化硼纳米片分散液、步骤(2)得到的氮化硼量子点与步骤(3)得到的聚合物溶液按照一定的质量比进行混合,常温下搅拌0.5-2h,之后进行超声0.5-2h,得到氮化硼量子点/功能化氮化硼聚合物混合液;
(5)将步骤(4)得到的氮化硼量子点/功能化氮化硼聚合物混合液置于真空烘箱中,常温下抽真空脱气,10-30min后取出混合液,将其倒入模具中,并置于烘箱中,在40-70℃真空干燥10~48h,即可得到掺杂量子点功能化氮化硼聚合物导热复合膜。
掺杂量子点功能化氮化硼聚合物导热复合膜,功能化氮化硼的粒径为50-200nm,氮化硼量子点的粒径为2-50nm。
掺杂量子点功能化氮化硼聚合物导热复合膜,聚合物基体为聚酰亚胺、聚乙烯醇、聚丙烯、聚酰胺、聚乙烯、聚碳酸酯中的一种或多种混合。
实施例2
本实施例提供的掺杂量子点功能化氮化硼聚合物导热复合膜,其与实施例1基本相同,其不同之处在于:复合膜中的氮化硼量子点的质量分数为1%,功能化氮化硼纳米片的质量分数为5%,聚酰亚胺的质量分数为94%。
本实施例掺杂量子点功能化氮化硼聚合物导热复合膜的制备方法包括以下步骤:
(1)功能化氮化硼的制备:将h-BN与尿素按照质量比为1:20进行砂磨,研磨2h;过滤之后将所得的氮化硼粉末分散到100ml的二甲基甲酰胺(DMF)中,超声分散10小时得到氮化硼纳米片分散液;最后将氮化硼纳米片分散液进行溶剂热反应,在100℃下反应24小时,下层分散液即为功能化氮化硼分散液。
(2)氮化硼量子点的制备:取步骤(1)溶液热后的上层溶液,以2000rpm转速下离心40分钟;最后将离心后的溶液过滤得到氮化硼量子点溶液。
(3)将聚合物基体聚酰亚胺加入到二甲基甲酰胺中,在80℃下搅拌2h,配制质量分数为5wt%的聚合物基体溶液。
(4)将步骤(1)得到的功能化氮化硼纳米片分散液、步骤(2)得到的氮化硼量子点与步骤(3)得到的聚酰亚胺溶液按照一定的质量比进行混合,常温下搅拌0.5h,之后进行超声0.5h,得到氮化硼量子点/功能化氮化硼/聚酰亚胺混合液。
(5)将步骤(4)得到的氮化硼量子点/功能化氮化硼/聚酰亚胺混合液置于真空烘箱中,常温下抽真空脱气,10min后取出混合液,将其倒入模具中,并置于烘箱中,在40℃真空干燥48h,即可得到掺杂量子点功能化氮化硼/聚酰亚胺导热复合膜。
对实施例2制得的掺杂量子点功能化氮化硼/聚酰亚胺导热复合膜的导热率和拉伸强度进行测试,其导热率为2.67W/(m·k),拉伸强度为60MPa。
实施例3
本实施例提供的掺杂量子点功能化氮化硼聚合物导热复合膜,其与实施例1、2基本相同,其不同之处在于:该实施例中复合膜的氮化硼量子点的质量分数为3%,功能化氮化硼纳米片的质量分数为5%,聚酰亚胺的质量分数为92%。
其制备方法包括以下步骤:
(1)功能化氮化硼的制备:将h-BN与尿素按照质量比为1:20进行砂磨,研磨10h;过滤之后将所得的氮化硼粉末分散到100ml的二甲基甲酰胺(DMF)中,超声分散24小时得到氮化硼纳米片分散液;最后将氮化硼纳米片分散液进行溶剂热反应,在200℃下反应12小时,下层分散液即为功能化氮化硼分散液。
(2)氮化硼量子点的制备:取步骤(1)溶液热后的上层溶液,以5000rpm转速下离心20分钟;最后将离心后的溶液过滤得到氮化硼量子点溶液。
(3)将聚合物基体聚酰亚胺溶于二甲基甲酰胺中,在100℃下搅拌1h,配制质量分数为10wt%的聚合物基体溶液。
(4)将步骤(1)得到的功能化氮化硼纳米片分散液、步骤(2)得到的氮化硼量子点与步骤(3)得到的聚乙烯醇溶液按照一定的质量比进行混合,常温下搅拌2h,之后进行超声2h,得到氮化硼量子点/功能化氮化硼/聚酰亚胺混合液。
(5)将步骤(4)得到的氮化硼量子点/功能化氮化硼/聚酰亚胺混合液置于真空烘箱中,常温下抽真空脱气,30min后取出混合液,将其倒入模具中,并置于烘箱中,在70℃真空干燥10h,即可得到掺杂量子点功能化氮化硼/聚酰亚胺导热复合膜。
对实施例2制得的掺杂量子点功能化氮化硼聚合物导热复合膜的导热率和拉伸强度进行测试,其导热率为5.78W/(m·k),拉伸强度为61MPa。
实施例4
本实施例提供的掺杂量子点功能化氮化硼聚合物导热复合膜,其与实施例1、2、3基本相同,其不同之处在于:该实施例中复合膜的氮化硼量子点的质量分数为5%,功能化氮化硼纳米片的质量分数为5%,聚乙烯醇的质量分数为90%。
其制备方法包括以下步骤:
(1)功能化氮化硼的制备:将h-BN与尿素按照质量比为1:20进行砂磨,研磨4h;过滤之后将所得的氮化硼粉末分散到100ml的二甲基甲酰胺(DMF)中,超声分散12小时得到氮化硼纳米片分散液;最后将氮化硼纳米片分散液进行溶剂热反应,在150℃下反应24小时,下层分散液即为功能化氮化硼分散液。
(2)氮化硼量子点的制备:取步骤(1)溶液热后的上层溶液,以3000转速下离心40分钟;最后将离心后的溶液过滤得到氮化硼量子点溶液。
(3)将聚合物基体聚乙烯醇加到去离子水中,在95℃下搅拌2h,配制质量分数为5wt%的聚合物基体溶液。
(4)将步骤(1)得到的功能化氮化硼纳米片分散液、步骤(2)得到的氮化硼量子点与步骤(3)得到的聚乙烯醇溶液按照一定的质量比进行混合,常温下搅拌1h,之后进行超声1h,得到氮化硼量子点/功能化氮化硼/聚乙烯醇混合液。
(5)将步骤(4)得到的氮化硼量子点/功能化氮化硼/聚乙烯醇混合液置于真空烘箱中,常温下抽真空脱气,20min后取出混合液,将其倒入模具中,并置于烘箱中,在60℃真空干燥24h,即可得到掺杂量子点功能化氮化硼/聚乙烯醇导热复合膜。
对实施例4制得的掺杂量子点功能化氮化硼聚合物导热复合膜的导热率和拉伸强度进行测试,其导热率为6.29W/(m·k),拉伸强度为52MPa。
本发明提供的掺杂量子点功能化氮化硼聚合物导热复合膜制备方法,工艺合理,反应条件温和,不需要昂贵的设备,有利于生产的控制和推广,易于产业化。
本发明提供的掺杂量子点功能化氮化硼聚合物导热复合膜,其功能化的氮化硼降低了纳米片的表面极性,有利于减少氮化硼的团聚现象。氮化硼量子点作为氮化硼片层之间的填充粒子,使得片层之间的联系更加密切,使得氮化硼聚合物复合材料形成了完整、高效的导热网络,从而提高复合材料的导热性能。同时,该复合膜具有优异的力学性能、一定的透明度和耐弯曲性。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。故凡是未脱离本发明技术方案的内容,依据本发明之形状、构造及原理所作的等效变化,均应涵盖于本发明的保护范围内。

Claims (2)

1.一种掺杂量子点功能化氮化硼聚合物导热复合膜,其特征在于,该导热复合膜包括以下重量百分比组分:
氮化硼量子点 1~5wt%
功能化氮化硼 5~50wt%
聚合物基体 50~95wt%
以上各组成的重量百分比含量之和为100wt%;
该掺杂量子点功能化氮化硼聚合物导热复合膜,采用如下的步骤制备:
(1)功能化氮化硼的制备:将h-BN与尿素按照质量比为1:20进行砂磨,研磨2-10h;过滤之后将所得的氮化硼粉末分散到20~100ml的二甲基甲酰胺(DMF)中,超声分散10~24小时得到氮化硼纳米片分散液;最后将氮化硼纳米片分散液进行溶剂热反应,在100-200℃下反应12-36小时,下层分散液即为功能化氮化硼分散液;
(2)氮化硼量子点的制备:取步骤(1)溶液热后的上层溶液,以2000~5000rpm转速下离心20~40分钟;最后将离心后的溶液过滤得到氮化硼量子点溶液;(3)将聚合物基体加入到二甲基甲酰胺或去离子水中,在80-100℃下搅拌1-5h,配制质量分数为5~10wt%的聚合物基体溶液;
(4) 将步骤(1)得到的功能化氮化硼纳米片分散液、步骤(2)得到的氮化硼量子点与步骤(3)得到的聚合物溶液按照一定的质量比进行混合,常温下搅拌0.5-2h,之后进行超声0.5-2h,得到氮化硼量子点/功能化氮化硼聚合物混合液;
(5)将步骤(4)得到的氮化硼量子点/功能化氮化硼聚合物混合液置于真空烘箱中,常温下抽真空脱气,10-30min后取出混合液,将其倒入模具中,并置于烘箱中,在40-70℃真空干燥10~48h,即可得到掺杂量子点功能化氮化硼聚合物导热复合膜;
其中,所述功能化氮化硼的粒径为50-200nm;氮化硼量子点的粒径为2-50nm。
2.根据权利要求1所述的掺杂量子点功能化氮化硼聚合物导热复合膜,其特征在于,所述聚合物基体包括聚酰亚胺、聚乙烯醇、聚丙烯、聚酰胺、聚乙烯、聚碳酸酯中的一种或多种混合。
CN201810806949.9A 2018-07-21 2018-07-21 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法 Active CN109181301B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810806949.9A CN109181301B (zh) 2018-07-21 2018-07-21 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810806949.9A CN109181301B (zh) 2018-07-21 2018-07-21 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法

Publications (2)

Publication Number Publication Date
CN109181301A CN109181301A (zh) 2019-01-11
CN109181301B true CN109181301B (zh) 2021-01-01

Family

ID=64936974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810806949.9A Active CN109181301B (zh) 2018-07-21 2018-07-21 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法

Country Status (1)

Country Link
CN (1) CN109181301B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004712B (zh) * 2019-04-08 2021-09-07 上海电力学院 一种基于凯夫拉纳米纤维的高强度导热膜的制备方法
CN110734644A (zh) * 2019-06-24 2020-01-31 上海大学 一种导热绝缘氮化硼高分子复合材料及制备方法
CN110951254A (zh) * 2019-11-24 2020-04-03 上海大学 氮化硼复合高导热绝缘高分子复合材料及其制备方法
CN112918030B (zh) * 2019-12-05 2023-08-08 中国科学院深圳先进技术研究院 一种具有平面取向的氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用
CN112409791A (zh) * 2020-11-23 2021-02-26 中国科学院深圳先进技术研究院 导热复合材料及其制备方法
CN112552681B (zh) * 2020-12-07 2022-08-05 上海电力大学 一种功能化氮化硼纳米片/MXene/聚苯并咪唑高导热复合薄膜及制备方法
CN113179611B (zh) * 2021-03-15 2023-03-24 佛山市晟鹏科技有限公司 氮化硼散热膜及其制备方法和应用
CN116731428B (zh) * 2023-05-30 2024-02-02 服务型制造研究院(杭州)有限公司 一种废旧塑料微改性纳米复合材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104030283A (zh) * 2014-06-30 2014-09-10 上海交通大学 一种基于石墨烯量子点剥离得到二维材料的方法
CN104058393A (zh) * 2014-06-30 2014-09-24 上海交通大学 一种剥离层状三维材料得到片层二维材料的方法
CN105060262A (zh) * 2015-07-03 2015-11-18 复旦大学 一种水溶性氮化硼量子点及其制备方法
CN105349114A (zh) * 2015-10-27 2016-02-24 中国科学院深圳先进技术研究院 掺杂氮化硼复合材料及其制备方法和应用
CN106084261A (zh) * 2016-06-21 2016-11-09 电子科技大学 一种聚芳醚腈/氮化硼复合薄膜及其制备方法
CN106520354A (zh) * 2016-10-21 2017-03-22 青岛大学 一种基于二维材料纳米片/碳量子点的水基润滑液及其制备方法
CN106752676A (zh) * 2016-11-17 2017-05-31 中国科学院宁波材料技术与工程研究所 六方氮化硼环氧防腐耐磨涂料及其制备方法与应用
CN107501610A (zh) * 2017-08-30 2017-12-22 桂林电子科技大学 一种基于氮化硼的复合热界面材料及其制备方法
CN108250472A (zh) * 2018-01-16 2018-07-06 湖南国盛石墨科技有限公司 一种基于光固化pet/石墨烯导热膜及其制备方法
CN108276867A (zh) * 2018-01-16 2018-07-13 湖南国盛石墨科技有限公司 一种石墨烯散热涂料及其制备方法
CN108285547A (zh) * 2018-01-16 2018-07-17 湖南国盛石墨科技有限公司 一种基于热固化pet/石墨烯导热膜及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104030283A (zh) * 2014-06-30 2014-09-10 上海交通大学 一种基于石墨烯量子点剥离得到二维材料的方法
CN104058393A (zh) * 2014-06-30 2014-09-24 上海交通大学 一种剥离层状三维材料得到片层二维材料的方法
CN105060262A (zh) * 2015-07-03 2015-11-18 复旦大学 一种水溶性氮化硼量子点及其制备方法
CN105349114A (zh) * 2015-10-27 2016-02-24 中国科学院深圳先进技术研究院 掺杂氮化硼复合材料及其制备方法和应用
CN106084261A (zh) * 2016-06-21 2016-11-09 电子科技大学 一种聚芳醚腈/氮化硼复合薄膜及其制备方法
CN106520354A (zh) * 2016-10-21 2017-03-22 青岛大学 一种基于二维材料纳米片/碳量子点的水基润滑液及其制备方法
CN106752676A (zh) * 2016-11-17 2017-05-31 中国科学院宁波材料技术与工程研究所 六方氮化硼环氧防腐耐磨涂料及其制备方法与应用
CN107501610A (zh) * 2017-08-30 2017-12-22 桂林电子科技大学 一种基于氮化硼的复合热界面材料及其制备方法
CN108250472A (zh) * 2018-01-16 2018-07-06 湖南国盛石墨科技有限公司 一种基于光固化pet/石墨烯导热膜及其制备方法
CN108276867A (zh) * 2018-01-16 2018-07-13 湖南国盛石墨科技有限公司 一种石墨烯散热涂料及其制备方法
CN108285547A (zh) * 2018-01-16 2018-07-17 湖南国盛石墨科技有限公司 一种基于热固化pet/石墨烯导热膜及其制备方法

Also Published As

Publication number Publication date
CN109181301A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109181301B (zh) 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法
CN110951254A (zh) 氮化硼复合高导热绝缘高分子复合材料及其制备方法
CN104178076B (zh) 一种导热绝缘环氧树脂灌封胶及制备方法
CN110054864B (zh) 一种高导热复合填料及其聚合物基复合材料的制备方法
CN109205594B (zh) 一种石墨烯导电微球的制备方法及其应用
CN106977771B (zh) 氮化硼-银/纤维素复合材料及其制备方法
CN109206853B (zh) 一种高导热环氧树脂基复合材料、及其制备方法和应用
KR20160149201A (ko) 열전도성 중합체 조성물 및 열전도성 성형체
CN105176086A (zh) 取向石墨烯/聚合物复合体系、其制备方法及应用
KR101348865B1 (ko) 젤화물질을 이용한 나노 구조 복합체의 제조방법
CN108659457B (zh) 一种氮化硼包覆磺化石墨烯-环氧树脂复合材料及其制备方法
WO2015030098A1 (ja) 熱伝導性複合粒子および樹脂成形体
CN109206961A (zh) 一种石墨烯导电导热涂料及其制备方法
US20120285674A1 (en) Thermal conductive sheet, insulating sheet, and heat dissipating member
WO2021164225A1 (zh) 一种高导热填料的化学和物理处理方法
CN107641135B (zh) 有机硅烷化合物、填料、树脂组合物及覆铜板
CN112662134A (zh) 一种mof纳米片填充的环氧树脂复合材料的制备方法
Zulkarnain et al. Effects of silver microparticles and nanoparticles on thermal and electrical characteristics of electrically conductive adhesives
CN103087449A (zh) 一种高导热高介电低损耗聚合物纳米复合材料的制备方法
CN110734642B (zh) 一种绝缘高强纳米复合材料及其制备方法
Han et al. Enhanced through-thickness thermal conductivity of epoxy with cellulose-supported boron nitride nanosheets
CN108929521B (zh) 一种高导热高导电石墨烯基复合材料及其制备方法
CN101891936A (zh) 基于环氧树脂和膦腈纳米管的复合材料的制备方法
Li et al. Flexible and thermally conductive epoxy‐dispersed liquid crystal composites filled with functionalized boron nitride nanosheets
CN115746404B (zh) 表面改性六方氮化硼纳米片及其改性方法、环氧复合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant