CN109173345A - 一种具有pH响应性的超双疏材料的制备方法及其应用 - Google Patents

一种具有pH响应性的超双疏材料的制备方法及其应用 Download PDF

Info

Publication number
CN109173345A
CN109173345A CN201811107203.5A CN201811107203A CN109173345A CN 109173345 A CN109173345 A CN 109173345A CN 201811107203 A CN201811107203 A CN 201811107203A CN 109173345 A CN109173345 A CN 109173345A
Authority
CN
China
Prior art keywords
super
oil
water
amphiphobic
responsiveness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811107203.5A
Other languages
English (en)
Other versions
CN109173345B (zh
Inventor
屈孟男
何金梅
马利利
王嘉鑫
周亦晨
赵彧
张毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Naiwei New Materials Co.,Ltd.
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN201811107203.5A priority Critical patent/CN109173345B/zh
Publication of CN109173345A publication Critical patent/CN109173345A/zh
Application granted granted Critical
Publication of CN109173345B publication Critical patent/CN109173345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lubricants (AREA)

Abstract

一种具有pH响应性的超双疏材料的制备方法及其应用,向全氟辛酸的乙醇溶液中加入高岭土,混合均匀后,加入硅烷的乙醇溶液,搅拌下加热至50~60℃,并保温2~4h,得到悬浊液,将悬浊液涂覆于基底表面,干燥,得到具有pH响应性的超双疏材料。该材料具有优异的超双疏性,良好的耐磨性及耐腐蚀性能,受pH诱导所引发的材料表面润湿性的改变可在原位或非原位发生,而且这种超亲疏性间的转换可反复进行多次等优点,因此,可应用于有效分离多种类型的油水混合物,特别是水包油乳液的处理,在处理泄漏原油和净化工业含油废水方面有着广泛的应用前景。

Description

一种具有pH响应性的超双疏材料的制备方法及其应用
技术领域
本发明属于响应型超双疏材料的制备及应用技术领域,具体涉及一种具有pH响应性的超双疏材料的制备方法及其应用。
背景技术
工业含油废水和频发的泄漏原油对生态环境及人类健康已构成严重威胁,如何有效地分离含油污水成为全球性的挑战。近年来,随着界面学和仿生学的快速发展,人们已开发出各种对油或水有特殊润湿性的材料以作为实现油水分离的新型分离材料,它们具有新颖,经济且高效的特点,因此在含油污水的处理领域展现出广阔的应用前景。通常,这种特殊浸润性分离材料分为三类,即“除油”材料,“除水”材料及智能可转换润湿性材料。“除油”材料表现出超疏水/超亲油性,因此可以将油与油/水混合物选择性地分离开,而“除水”材料是超亲水/超疏油性的,可用于含水油的纯化。智能可转换润湿性材料是指材料表面的超润湿性可通过一些外部刺激,如pH值,光照,温度及电场等来控制,能够实现复杂环境下的油水混合物的选择性分离。
目前,已开发出多种用于构造这种特殊润湿性表面的方法,包括刻蚀,电沉积,层层自组装,化学气相沉积和静电纺丝法等。然而,这些制备方法大都存在制备过程复杂,耗时较长且成本较高等问题,降低了其实用性并且限制了其商业化应用。此外,实际的油水混合物大多较为复杂,因此对分离材料的要求更高。具有刺激响应性的润湿型材料因其表面特殊的润湿行为而受到了广泛的关注,并且这种响应性能还能实现远程控制,便于实现油水分离过程的自动化,是实现高效可控油/水混合物分离的良好候选,因此已引起了越来越多的基础研究及实际应用方面的兴趣。
能使材料表面润湿性能发生转换的外部刺激有多种,如光照,pH,电压,溶剂,磁性,但它们大多都操作复杂,且需要特殊的设备,而pH响应型材料操作相对简便,由反应引发的表面润湿性的转变也较快,因此更具吸引力。大多数pH响应性材料都具有可离子化的基团,例如磺酸盐,羧酸,吡啶和胺等,这些基团在不同pH条件下会发生质子化或去质子化作用,从而使材料表面的润湿性发生转变。目前,关于pH响应型材料的报道很多,但大部分材料只能实现两种极端亲疏性间的有限次转换。此外,与涂料相关,同时涉及原位pH响应性的报道也很少见。
发明内容
本发明针对上述现有技术的不足,目的在于制备一种具有pH响应性的超双疏材料的制备方法及其应用,这种智能型特殊润湿性材料的制备方法简单,易于实现,不需要苛刻的反应条件和复杂的反应设备,以成本低廉的高岭土纳米颗粒为改性原料,通过简单的操作步骤,温和的反应条件便可得到具有pH响应性的超双疏材料。该材料具有优异的超双疏性,良好的耐磨性及耐腐蚀性能,同时能够进行原位及非原位pH响应,超亲疏性间的转换可多次反复进行等优点,因此可用于分离多种类型的油水混合物以及乳化含油废水。
为实现上述目的,本发明采用的技术方案是:
一种具有pH响应性的超双疏材料的制备方法,向全氟辛酸的乙醇溶液中加入高岭土,混合均匀后,加入硅烷的乙醇溶液,搅拌下加热至50~60℃,并保温2~4h,得到悬浊液,将悬浊液涂覆于基底表面,干燥,得到具有pH响应性的超双疏材料。
本发明进一步的改进在于,全氟辛酸的乙醇溶液中全氟辛酸与乙醇的比为0.60~0.75g:8.5mL。
本发明进一步的改进在于,硅烷为双[3-(三甲氧基硅基)丙基]乙二胺。
本发明进一步的改进在于,硅烷的乙醇溶液的体积浓度为1.8%~2.5%。
本发明进一步的改进在于,全氟辛酸、高岭土与硅烷的乙醇溶液的比为0.60~0.75g:4.5g:2.5~3mL。
本发明进一步的改进在于,高岭土的粒径为300~400nm。
一种具有pH响应性的超双疏材料在选择性油水分离中的应用。
与现有技术相比,本发明具有的有益效果如下:
1、本发明中采用来源广泛的高岭土纳米颗粒为原料,通过在颗粒表面接枝低表面能的含氟物质以及具有交联作用的硅烷偶联剂,使得所制备的材料表面的获得足够低的自由能以及丰富的微纳米粗糙结构,赋予材料表面稳定的超疏油的性能。此外,在改性过程中,材料表面还引入了具有pH响应性的基团,如-COOH和-NH-等,通过利用这些基团在不同pH条件下的质子化及去质子化作用而改变材料表面亲疏水性官能团的占比,使得所制备得的材料在酸性及中性条件下表现超双疏性能,在强碱性条件(pH≥13)下表现出超亲水-超疏油性。而且,这种超双疏性到超亲水-超疏油性的润湿性转变可通过pH值的调控反复实现,因此制备得到了具有pH响应性的超双疏材料。这不仅拓宽了矿土颗粒的应用领域,为超双疏材料的发展开拓了新的领域,也为实现油水混合物的有效分离提供了新思路。
2、本发明制备过程简单,反应条件温和,易于实现,不需要苛刻的反应条件和复杂的反应设备。
3、本发明制得的超双疏材料具有优异的超疏水/超疏油性,良好的耐磨性及抗腐蚀性,出色的载物浮力,同时兼具一定的阻燃性,这使得超双疏材料在实际应用中有了进一步的发展,可以运用到建筑业,船舶制造,管道运输以及废水处理等许多领域。
4、采用本发明方法制备的超双疏材料具有优异的pH响应性。将材料在pH<13的水溶液中浸泡10min后,其表面的润湿性未发生变化,仍表现超双疏性,而在pH≥13的水溶液中浸泡10min后,其表面润湿性则转换为超亲水/超疏油。材料表面这种润湿性的响应可在原位或非原位进行,并且这两种极端亲疏性间的转变可进行多次,因此可用于实现复杂环境下的油水混合物的可控分离。
5、这种具有pH响应性的超双疏材料不受基底限制,应用范围较广。更为重要的是,可用于分离多种类型的油水混合物,特别是水包油乳液,表现出显著的分离效果,因此在处理泄漏原油和工业含油废水的应用中有着广阔的前景。
附图说明
图1为制得的超双疏材料在不同基底上的应用及其表面对水和油的润湿性能。其中,水由甲基蓝染成蓝色,橄榄油、葵花籽油、蓖麻油由甲基红染色,图(b)-图(f)中的十六烷、丙三醇、橄榄油、水、葵花籽油、蓖麻油的位置与图(a)中的位置相同。(a)为玻璃基底,(b)为纤维织物基底,(c)为不锈钢网基底,(d)为无纺布基底,(e)为棉花基底,(f)为泡沫基底。
图2为制得的超双疏材料分别经pH=1的酸溶液和pH=13的碱溶液处理后其表面对水和油的润湿性能的变化。其中,水由甲基蓝染成蓝色,十六烷由甲基红染成黄色;(a)为经pH=1的酸溶液处理后的材料表面对水滴(蓝色)和十六烷滴(黄色)均表现出超疏性能(b)为经pH=13的碱溶液处理后的材料表面对水滴(蓝色)表现超亲液性,而对十六烷滴表现超疏性能。
图3为原始高岭土涂层材料,改性高岭土材料以及分别经pH=1酸溶液和pH=13的碱溶液处理后的改性高岭土材料的扫描电镜图。其中图(a1)为原始高岭土涂层材料的表面形貌图,图(b1)为改性高岭土材料的表面形貌图,图(c1)为经pH=1的酸溶液处理后的改性高岭土材料的表面形貌图,图(d1)为经pH=13的碱溶液处理后的改性高岭土材料的表面形貌图,图(a2)为图(a1)的局部放大图,图(b2)为图(b1)的局部放大图,图(c2)为图(c1)的局部放大图,图(d2)为图(d1)的局部放大图。
图4为经pH不同的水溶液处理后的改性材料表面的水滴接触角随时间的变化。
图5为经pH=1和pH=13的水溶液交替处理后的改性材料表面对水滴的接触角的变化。
图6为将具有pH响应性的超双疏材料应用于正己烷/水/二氯甲烷三相体系的分离。其中(a)为待分离的正己烷/水溶液/二氯甲烷三相体系油水混合物,(b-c)为将二氯甲烷从三相体系油水混合物中分离的过程,(d-h)为将水溶液从三相体系油水混合物中分离的过程,(i)为三相体系油水混合物最终分离的结果。
图7为用具有pH响应性的超双疏材料来分离无表面活性剂的水包油乳液(pH=13)和表面活性剂稳定的水包油乳液(pH=13)。其中(a)为pH响应性的超双疏材料分离无表面活性剂的水包油乳液的过程,(a-i)为无表面活性剂的水包油乳液分离前的照片,(a-ii)为无表面活性剂的水包油乳液分离过程中的照片,(a-iii)为无表面活性剂的水包油乳液分离后的照片,(b)为pH响应性的超双疏材料分离表面活性剂稳定的水包油乳液的过程,(b-iv)为表面活性剂稳定的水包油乳液分离前的照片,(b-v)为表面活性剂稳定的水包油乳液分离过程中的照片,(b-vi)为表面活性剂的水包油乳液分离后的照片。
图8为无表面活性剂的水包油乳液(pH=13)和表面活性剂稳定的水包油乳液(pH=13)分离前后的照片及光学显微图像。其中(a)为无表面活性剂的水包油乳液分离前后的照片及所对应的光学显微图像,(b)为表面活性剂稳定的水包油乳液分离前后的照片及所对应的光学显微图像。
图9为制得的超双疏材料表面的自清洁测试。其中(a)是被甲基蓝粉末污染的超双疏材料,(b)是被甲基蓝粉末污染的超双疏材料表面的自清洁后,(c)是被甲基红粉末污染的超双疏材料,(d)是被甲基红粉末污染的超双疏材料表面的自清洁后。
图10为制得的超双疏材料的耐磨性测试及磨损后材料表面对水及油的润湿性。其中(a)是材料表面对水和油的静态接触角及滑动角随磨损距离的变化,(b)是经过220cm的磨损长度,材料表面对水和油的润湿性。
图11为应用于不同基底的超双疏材料分别在油和水中的浮力测试。其中(a)为应用于玻璃基底的超双疏材料在油中的浮力测试,(b)为应用于滤纸基底的超双疏材料在油中的浮力测试,(c)为应用于纤维织物基底的超双疏材料在油中的浮力测试。(d)为应用于玻璃基底的超双疏材料在水中的浮力测试,(e)为应用于滤纸基底的超双疏材料在水中的浮力测试,(f)为应用于纤维织物基底的超双疏材料在水中的浮力测试。(g)为应用于玻璃基底、滤纸基底和纤维织物基底的超双疏材料分别在油和水中的承力性能。
图12为原始铝片和经超双疏材料分别进行单面和双面涂布后的铝片的Nyquist图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细说明。
实施例1
一种具有pH响应性的超双疏材料的制备方法,包括以下步骤:
步骤一、配制体积分数为1.8%~2.5%的双[3-(三甲氧基硅基)丙基]乙二胺(即1834硅烷)的乙醇溶液:将0.2mL纯度为98%的1834硅烷和与其体积比(即V1834:V无水乙醇)约为1:49的无水乙醇混合,然后将得到的混合溶液连续搅拌30min,得到体积分数约为1.8%~2.5%的1834硅烷的乙醇溶液,备用。
步骤二、制备具有pH响应性的超双疏材料:称取0.65g纯度为98%的全氟辛酸(PFOA),将其加入8.5mL的无水乙醇并磁力搅拌至全部溶解,再向该混合溶液中加入与PFOA质量比(W高岭土:WPFOA)约为6~7.5:1的高岭土颗粒,超声振荡30min以使高岭土均匀地分散在溶液中,然后在其中加入步骤一配制好的3mL体积分数为1.8%~2.5%的1834硅烷/乙醇溶液,将得到的混合溶液55℃水浴搅拌3h,得到乳白色的悬浊液;
步骤三、将步骤二得到的悬浊液涂覆于基底表面并在室温下晾干,再将其在80℃的真空干燥箱中干燥2h,由此制得具有pH响应性的超双疏材料。
图1是本实施例制备的超双疏材料在不同基底上的应用及其表面对水和油的润湿性能。从图1中可以看出,所制备的这种超双疏材料可以应用到多种不同类型基底表面,如玻璃,织物,不锈钢网,海绵,泡沫等,均表现出优异的超双疏性能。
图2是制得的超双疏材料分别经pH=1的酸溶液和pH=13的碱溶液处理后其表面对水和油的润湿性能的变化。具体的处理过程是将涂覆于玻璃基底的超双疏材料分别在pH=1的强酸溶液以及pH=13的强碱溶液中浸泡10min,取出后再在80℃的烘箱中干燥1h。由图2可以看出,在经pH=1的强酸溶液处理后的超双疏材料表面,水滴和油滴均呈现球状,所以材料仍表现出优异的疏液性能,而经pH=13的强碱溶液处理后的超双疏材料表面,水滴在短短2秒内便可完全浸润铺展,而油滴仍保持原来的球状,因此材料表面的润湿性由原来的超双疏转变为超亲水-超疏油。
图3是原始高岭土涂层材料,改性高岭土材料以及分别经pH=1酸溶液和pH=13的碱溶液处理后的改性高岭土材料的扫描电镜图。从图3可以看出,未改性的原始材料表面,高岭土颗粒只是松散的团聚在一起,且与基底表面的结合不牢固,而经改性的超双疏材料表面高岭土颗粒相互之间以及与基底之间结合的很牢固,并且在形成的微米结构上又生成许多细小的突起,共同构成了丰富的微纳米复合结构,再结合低的表面能,赋予材料表面优异的超双疏性能。此外,将这种超双疏材料分别经pH=1酸溶液和pH=13的碱溶液处理后,其表面的粗糙结构仍然很丰富,并未发生明显变化,所以材料仍可展现出稳定的超疏油性。
图4为经pH不同的水溶液处理后的改性材料表面的水滴接触角随时间的变化。由图4可以看出,当制得的超双疏材料经pH≤9的酸性以及微碱性溶液处理后,其表面对水滴的润湿性不会随着时间的推移而发生明显变化,仍表现出稳定的超双疏性能,而当该材料经pH≥11的强碱性溶液处理后,其表面的水滴接触角小于150°,表现疏水性,但随着时间的推移,水滴的接触角会变小,特别是经pH≥13的强碱性溶液处理后,滴于材料表面的水滴在短短2s内便可完全浸润铺展,接触角由原来的128°快速降低至0°,由此表明材料表面对水滴的润湿性在强碱性条件下会发生转变,可由原来的超疏水转化为超亲水。
图5是将制得的超双疏材料经pH=1和pH=13的溶液交替处理后其表面的水滴接触角的变化。当改性材料经pH为1的酸溶液处理后,其表面对水滴的润湿性并没有发生明显变化,仍表现超疏水性,但经pH=13的碱溶液处理后,材料表面表现出超亲水性。此外,将碱溶液处理后的材料再经pH=1酸溶液处理后,材料表面又可恢复其超疏水性,如此反复可进行多次,表明材料表面具有良好的响应性。
图6是将制得的具有pH响应性的超双疏材料用于正己烷/水/二氯甲烷三相体系的分离。具体是:先将超双疏材料的颗粒填充于柱层析管的底部,然后将二氯甲烷(20mL,经甲基红染成红色),水(20mL,pH=8,经百里溴酚兰染成蓝色)和正己烷(20mL,经甲基红染成黄色)的混合溶液倒入管内,形成正己烷/水/二氯甲烷三相体系层。当打开柱层析管的旋塞后,由于下方的二氯甲烷是重油,所以它可下快速渗透过管底部的超双疏颗粒层,而pH=8的水溶液和正己烷均被阻留在上方。然后再将pH=13的碱性水溶液(20mL,经百里溴酚兰染成蓝色)倒入层析管内,此时下层混合水溶液的pH值为12.7。由于这种超双疏材料在强碱性条件下表面润湿性会转变为超亲水-超疏油,所以下层的混合水溶液可渗透过颗粒层,一段时间后便被完全分离。最后,由于材料的水下超疏油性,颗粒层上方的正己烷被阻留并收集于层析管内,由此实现了正己烷/水/二氯甲烷三相体系的分离。
图7是用制得的超双疏材料来分离pH=13的无表面活性剂稳定的水包油(十六烷)乳液以和pH=13的表面活性剂稳定的水包油乳液,并展示了其分离前后的照片。具体的,所分离乳液为水与十六烷的水包油乳液,添加的表面活性剂为司班80)。由图可看出两种不同的水包油乳液在分离前均呈乳白色,当将其倒入底部填充有超双疏材料的层析管内后,乳液中的水滴会通过颗粒层并被收集于下方的烧杯中。分离完后,可发现收集于烧杯中的水变得透明澄澈。这是因为超双疏材料在碱性条件下表面润湿性会由超双疏转变为超亲水-超疏油,因此乳液中的水滴可渗透过颗粒层,而分散在水中的油滴由于材料的超疏油性以及紧密填充的颗粒层间存在大量的细小缝隙,其尺寸远小于油滴,所以水中的油滴被捕获,由此实现了这两种不同油水乳液的分离。
图8是无表面活性剂的水包油乳液(pH=13)和表面活性剂稳定的水包油乳液(pH=13)分离前后的照片及光学显微图像。无表面活性剂的水包油乳液,由其光学显微图像可观察到,油相呈大小不一的液滴分散于水相,但经分离后的水变得澄澈透明,观察其光学显微图像,并未发现任何油滴,说明水包油乳液被成功分离。表面活性剂稳定的水包油乳液,由其光学显微图像可发现,油相在活性剂的作用下均匀地分散于水中。另外,经分离后的水,从其光学显微图像中同样观察不到任何油滴,因此也被成功分离。对比两种油水乳液被分离后得到水的照片可发现,加由表面活性剂的水包油乳液经分离后得到的水比未加表面活性剂的水包油乳液分离后得到的水透明度要低一点,这是因为表面活性剂会在水中溶解,因此,分离后的水透明度降低。
图9是对制得的超双疏材料进行自清洁测试,将甲基蓝染色的水滴和甲基红染色的油滴分别滴于被甲基蓝粉末和甲基红粉末污染的倾斜超双疏材料表面,滚落下来的水滴和油滴快速从材料表面滚落并将其表面的污染物带走,产生清晰的滚落痕迹,由此说明制得的超双疏材料具有优异的自清洁性。
图10是对制得的超双疏材料进行机械磨损测试,由图可看出,这种加有200g砝码的超双疏材料可在800目砂纸上磨损220cm,而且磨损后的表面仍然具有优异的疏水/疏油性,表明材料具有良好的机械稳定性。
图11是对应用于不同基底的超双疏材料分别在油和水中进行的浮力测试。将这种超双疏材料应用到玻璃,滤纸和布片三种不同基底表面,然后将这三种不同基底的材料分别在水和油中进行浮力承重测试。由图可以看出,应用于不同基底的超双疏材料都可以承受一定重力而稳定的漂浮在水面和油面,这主要归因于材料表面的超双疏性以及材料本身所受到的浮力。另外,可以看出材料在水中的承重能力要高于油中的,这主要是因为水的密度大于油,所以相同的材料在水中受到的浮力要大于在油中的浮力。以上结果表明材料具有出色的浮力承重性能。
图12是对制得的超双疏材料进行耐腐蚀性能的测试。将铝片的单面和双面分别涂布这种超双疏材料,然后将得到的材料浸入3.5%NaCl溶液中进行耐腐蚀测试,由图可看出,与原始铝片相比,涂布有超双疏材料的铝片其阻抗性能较为优异,说明其计划电阻率较大,受到溶液的腐蚀程度较小。这主要是因为材料本身所具有的超疏水性,被覆盖的铝片不会与盐溶液接触而受到腐蚀,由此表明制得的超双疏材料具有良好的耐腐蚀性能。
实施例2
向全氟辛酸的乙醇溶液中加入粒径为300~400nm的高岭土,混合均匀后,加入硅烷的乙醇溶液,搅拌下加热至50℃,并保温4h,得到悬浊液,将悬浊液涂覆于基底表面,干燥,得到具有pH响应性的超双疏材料。
其中,硅烷为双[3-(三甲氧基硅基)丙基]乙二胺,全氟辛酸的乙醇溶液中全氟辛酸与乙醇的比为0.60g:8.5mL。硅烷的乙醇溶液的体积浓度为1.8%。全氟辛酸、高岭土与硅烷的乙醇溶液的比为0.60g:4.5g:2.5mL。
实施例3
向全氟辛酸的乙醇溶液中加入粒径为300~400nm的高岭土,混合均匀后,加入硅烷的乙醇溶液,搅拌下加热至60℃,并保温2h,得到悬浊液,将悬浊液涂覆于基底表面,干燥,得到具有pH响应性的超双疏材料。
其中,硅烷为双[3-(三甲氧基硅基)丙基]乙二胺,全氟辛酸的乙醇溶液中全氟辛酸与乙醇的比为0.70g:8.5mL。硅烷的乙醇溶液的体积浓度为2.5%。全氟辛酸、高岭土与硅烷的乙醇溶液的比为0.70g:4.5g:2.7mL。
实施例4
向全氟辛酸的乙醇溶液中加入粒径为300~400nm的高岭土,混合均匀后,加入硅烷的乙醇溶液,搅拌下加热至50℃,并保温4h,得到悬浊液,将悬浊液涂覆于基底表面,干燥,得到具有pH响应性的超双疏材料。
其中,硅烷为双[3-(三甲氧基硅基)丙基]乙二胺,全氟辛酸的乙醇溶液中全氟辛酸与乙醇的比为0.75g:8.5mL。硅烷的乙醇溶液的体积浓度为2.1%。全氟辛酸、高岭土与硅烷的乙醇溶液的比为0.60g:4.5g:3mL。
本发明制备的具有pH响应性的超双疏材料能够应用在选择性油水分离中。
本发明直接使用高岭土为原料,通过简单的操作步骤,温和的反应条件便可得到具有pH响应性的超双疏材料,且该材料不仅具有不受基底限制的优点,而且还具有优异的油水分离性能、良好的耐磨、耐腐蚀性和浮力承重性能等优点,因此将在实际工业生产及生活中具有广阔的应用前景。该材料具有优异的超双疏性,良好的耐磨性及耐腐蚀性能,受pH诱导所引发的材料表面润湿性的改变可在原位或非原位发生,而且这种超亲疏性间的转换可反复进行多次等优点,因此,可应用于有效分离多种类型的油水混合物,特别是水包油乳液的处理,在处理泄漏原油和净化工业含油废水方面有着广泛的应用前景。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何限制,凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (7)

1.一种具有pH响应性的超双疏材料的制备方法,其特征在于,向全氟辛酸的乙醇溶液中加入高岭土,混合均匀后,加入硅烷的乙醇溶液,搅拌下加热至50~60℃,并保温2~4h,得到悬浊液,将悬浊液涂覆于基底表面,干燥,得到具有pH响应性的超双疏材料。
2.根据权利要求1所述的一种具有pH响应性的超双疏材料的制备方法,其特征在于,全氟辛酸的乙醇溶液中全氟辛酸与乙醇的比为0.60~0.75g:8.5mL。
3.根据权利要求1所述的一种具有pH响应性的超双疏材料的制备方法,其特征在于,硅烷为双[3-(三甲氧基硅基)丙基]乙二胺。
4.根据权利要求1所述的一种具有pH响应性的超双疏材料的制备方法,其特征在于,硅烷的乙醇溶液的体积浓度为1.8%~2.5%。
5.根据权利要求1所述的一种具有pH响应性的超双疏材料的制备方法,其特征在于,全氟辛酸、高岭土与硅烷的乙醇溶液的比为0.60~0.75g:4.5g:2.5~3mL。
6.根据权利要求1所述的一种具有pH响应性的超双疏材料的制备方法,其特征在于,高岭土的粒径为300~400nm。
7.一种根据权利要求1-6中任意一项所述的方法制备的具有pH响应性的超双疏材料在选择性油水分离中的应用。
CN201811107203.5A 2018-09-21 2018-09-21 一种具有pH响应性的超双疏材料的制备方法及其应用 Active CN109173345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811107203.5A CN109173345B (zh) 2018-09-21 2018-09-21 一种具有pH响应性的超双疏材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811107203.5A CN109173345B (zh) 2018-09-21 2018-09-21 一种具有pH响应性的超双疏材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109173345A true CN109173345A (zh) 2019-01-11
CN109173345B CN109173345B (zh) 2019-10-11

Family

ID=64909368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811107203.5A Active CN109173345B (zh) 2018-09-21 2018-09-21 一种具有pH响应性的超双疏材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109173345B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957964A (zh) * 2019-03-29 2019-07-02 西安科技大学 耐久且具自修复性能的pH响应型智能超浸润织物的制备方法及其应用
CN110283529A (zh) * 2019-06-06 2019-09-27 四川大学 一种阻燃抗菌透明的超双疏涂料及其制备方法和应用
CN111001191A (zh) * 2019-12-23 2020-04-14 西安科技大学 一种环境友好的pH响应型油水分离材料的制备方法
CN112569637A (zh) * 2020-12-01 2021-03-30 广州中国科学院先进技术研究所 面向油水分离可切换表面润湿性能的涂层及其制备方法
CN114177896A (zh) * 2021-12-15 2022-03-15 中国石油大学(北京) 一种具有高表面自由能层和低表面自由能层的纳微米颗粒及其制备方法与应用
CN114308584A (zh) * 2022-01-07 2022-04-12 中国科学院兰州化学物理研究所 一种智能多相介质超疏液涂层的制备方法
CN114344950A (zh) * 2021-12-15 2022-04-15 北京中石大绿色能源科技有限公司 一种在空气-水-油中稳定的超亲水-超疏油表面及其制备方法与应用
CN115254569A (zh) * 2022-07-18 2022-11-01 哈尔滨工业大学 一种形状记忆可响应超浸润涂层的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875254A (en) * 1970-04-06 1975-04-01 Gen Electric Block copolymers of silicones with vinyl pyridine
CN106632829A (zh) * 2016-12-21 2017-05-10 齐鲁工业大学 pH控制由超双疏至超疏水/超亲油转变的材料及制备方法
CN108517202A (zh) * 2018-05-23 2018-09-11 中国石油大学(北京) 聚合物超双疏剂及超双疏强自洁高效能水基钻井液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875254A (en) * 1970-04-06 1975-04-01 Gen Electric Block copolymers of silicones with vinyl pyridine
CN106632829A (zh) * 2016-12-21 2017-05-10 齐鲁工业大学 pH控制由超双疏至超疏水/超亲油转变的材料及制备方法
CN108517202A (zh) * 2018-05-23 2018-09-11 中国石油大学(北京) 聚合物超双疏剂及超双疏强自洁高效能水基钻井液

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957964A (zh) * 2019-03-29 2019-07-02 西安科技大学 耐久且具自修复性能的pH响应型智能超浸润织物的制备方法及其应用
CN109957964B (zh) * 2019-03-29 2021-04-27 西安科技大学 耐久且具自修复性能的pH响应型智能超浸润织物的制备方法及其应用
CN110283529A (zh) * 2019-06-06 2019-09-27 四川大学 一种阻燃抗菌透明的超双疏涂料及其制备方法和应用
CN111001191A (zh) * 2019-12-23 2020-04-14 西安科技大学 一种环境友好的pH响应型油水分离材料的制备方法
CN112569637A (zh) * 2020-12-01 2021-03-30 广州中国科学院先进技术研究所 面向油水分离可切换表面润湿性能的涂层及其制备方法
CN114177896A (zh) * 2021-12-15 2022-03-15 中国石油大学(北京) 一种具有高表面自由能层和低表面自由能层的纳微米颗粒及其制备方法与应用
CN114344950A (zh) * 2021-12-15 2022-04-15 北京中石大绿色能源科技有限公司 一种在空气-水-油中稳定的超亲水-超疏油表面及其制备方法与应用
CN114308584A (zh) * 2022-01-07 2022-04-12 中国科学院兰州化学物理研究所 一种智能多相介质超疏液涂层的制备方法
CN115254569A (zh) * 2022-07-18 2022-11-01 哈尔滨工业大学 一种形状记忆可响应超浸润涂层的制备方法

Also Published As

Publication number Publication date
CN109173345B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN109173345B (zh) 一种具有pH响应性的超双疏材料的制备方法及其应用
Guo et al. Multifunctional hollow superhydrophobic SiO2 microspheres with robust and self-cleaning and separation of oil/water emulsions properties
Xu et al. Fabrication of TiO2/SiO2 superhydrophobic coating for efficient oil/water separation
CN105542221B (zh) 一种耐磨超疏水超亲油聚氨酯海绵、制备方法及其在油水连续分离中的应用
Xie et al. An effective and low-consumption foam finishing strategy for robust functional fabrics with on-demand special wettability
CN104802488B (zh) 用于油水分离的具有阶层粗糙结构的超疏水涂层、超疏水材料及其制备方法
CN104046152B (zh) 超疏水涂料、超疏水涂层及该超疏水涂层的制备方法
Zhang et al. Facile preparation of flexible and stable superhydrophobic non-woven fabric for efficient oily wastewater treatment
Teng et al. The zein-based fiber membrane with switchable superwettability for on-demand oil/water separation
CN110041741A (zh) 一种高效集水自清洁超双疏涂层及其制备方法
CN105148563B (zh) 湿度响应性超亲水超疏油油水分离膜及其制备方法和应用
CN104878592B (zh) 一种单面超疏水棉织物的整理方法
WO2017219610A1 (zh) 用于制备超双疏表面的涂层液的生产方法、具有超双疏表面的织物及多功能织物
CN108771982A (zh) 一种超疏水/超亲油高效油水分离膜的制备方法
CN106243271A (zh) pH响应性的二维薄膜和三维海绵油水分离材料的制备及油水分离的应用
CN109825179A (zh) 一种水性超亲水超疏油涂料及其制备方法和应用
Zhu et al. Super-hydrophobic F-TiO2@ PP membranes with nano-scale “coral”-like synapses for waste oil recovery
Lin et al. Simply realizing durable dual Janus superwettable membranes integrating underwater low-oil-adhesive with super-water-repellent surfaces for controlled oil–water permeation
Tie et al. Controllable preparation of multiple superantiwetting surfaces: From dual to quadruple superlyophobicity
CN108659600A (zh) 一种超双疏、自清洁氟硅涂层材料及其制备方法
Dong et al. Superhydrophilic PVDF nanofibrous membranes with hierarchical structure based on solution blow spinning for oil-water separation
Xu et al. Modified metal mesh with bipolar wettability for rapid and gravity-driven oil-water separation and oil collection
CN106110901A (zh) 一种抗菌防污油水分离材料及其制备方法
CN105214344B (zh) 一种具有自清洁功能的超疏水超亲油油水分离网膜及其制备方法
Wang et al. Superhydrophobic fibers with strong adhesion to water for oil/water separation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221226

Address after: 710086 Room 008, F2001, 20th Floor, Building 4-A, Xixian Financial Port, Fengdong New City Energy Jinmao District, Xixian New District, Xi'an, Shaanxi

Patentee after: Xi'an Naiwei New Materials Co.,Ltd.

Address before: 710054 No. 58, Yanta Road, Shaanxi, Xi'an

Patentee before: XI'AN University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right