CN109166936A - 一种高阻AlGaN基光导开关器件及其制备方法 - Google Patents

一种高阻AlGaN基光导开关器件及其制备方法 Download PDF

Info

Publication number
CN109166936A
CN109166936A CN201810902734.7A CN201810902734A CN109166936A CN 109166936 A CN109166936 A CN 109166936A CN 201810902734 A CN201810902734 A CN 201810902734A CN 109166936 A CN109166936 A CN 109166936A
Authority
CN
China
Prior art keywords
anode
cathode
substrate
sio
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810902734.7A
Other languages
English (en)
Inventor
陆海
周东
渠凯军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjiang Jia Xin Electro-Optical Technology Inc (us) 62 Martin Road Concord Massachusetts 017
Original Assignee
Zhenjiang Jia Xin Electro-Optical Technology Inc (us) 62 Martin Road Concord Massachusetts 017
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenjiang Jia Xin Electro-Optical Technology Inc (us) 62 Martin Road Concord Massachusetts 017 filed Critical Zhenjiang Jia Xin Electro-Optical Technology Inc (us) 62 Martin Road Concord Massachusetts 017
Priority to CN201810902734.7A priority Critical patent/CN109166936A/zh
Publication of CN109166936A publication Critical patent/CN109166936A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本专利公布了一种高阻AlGaN基光导开关器件及其制备方法,高阻AlGaN基光导开关器件包括:衬底、SiO2层、阳极1、阳极2、阴极1、阴极2,高阻AlGaN基光导开关器件制备方法包括:制作衬底、制作电极2、制作SiO2层、制作电极1。本发明主要是解决衬底材料生长、电极制作的问题,本发明采用AlGaN衬底,化学气相沉积法形成SiO2层,电极分为两段,本发明提供一种可靠性高、响应更为迅速、性能更为优越的高阻AlGaN基光导开关器件及其制备方法。

Description

一种高阻AlGaN基光导开关器件及其制备方法
技术领域
本发明涉及半导体感光器件技术领域,尤其涉及高阻AlGaN基光导开关器件及其制备方法。
背景技术
光导开关是一种利用半导体电阻随外界条件会发生极大变化的特性,而制作成的固体开关。当其受到光照时其电阻会迅速减小,没有光照的黑暗环境中其电阻又极大,且电阻变化的响应时间又极短,是皮秒甚至亚皮秒量级的。
自1972年S.Jayaraman等人发现,光电半导体收到皮秒两极光脉冲作用时,其做出响应的时间也是皮秒量级起,光导开关便收到人们的普遍关注,不断对其进行研究,并取得了一定的研究成果。
1975年,Auston等人使用Si为材料成功制造出第一代的光导开关,并在此后的一端时间内Si单晶半导体占据了光导开关的主要市场地位,但因其电阻率、载流子寿命、热导率等的影响使其出现了不少缺陷;随着人们对光电开关技术研究的不断加深,第二代半导体出现,其以砷化镓为制作材料,其载流子寿命短、迁移率高,解决了第一代半导体中存在的一些问题;随着各领域应用要求的提高,目前光电开关已进入第三代半导体材料SiC器件的新时代。
目前的光导开关由于其构造简单、性能稳定、电磁等难以干扰、故障率低、响应速度快的优点,受到许多领域的青睐,光导开关在军事、脉冲功率、超快瞬态电子学、医疗、通讯等领域有普遍应用。
随着光导开关技术的不断研究与开发,起初光电开关中存在的载流子寿命、迁移率、电阻率的问题均在第三代半导体材料SiC中得到解决,虽然先有的光电开关技术解决了以往的许多问题,具备许多优点,但其仍存以下缺点:(1)SiC材料本身缺陷和设计不合理使得其未达击穿电压,提前被击穿;(2)大尺寸高质量半绝缘衬底材料生长存在问题;(3)制备低比接触电阻率欧姆电极困难;(4)开关结构对性能存在不良影响。
发明内容
本发明的目的是解决现有光导开关中存在的衬底材料生长、电极制作的问题,提供一种可靠性高、响应更为迅速、性能更为优越的高阻AlGaN基光导开关器件及其制备方法。
本发明所采用的技术方案:一种高阻AlGaN基光导开关器件,包括:衬底、SiO2层、阳极1、阳极2、阴极1、阴极2,所述阳极1和阳极2共同组成光导开关的电极阳极;所述阴极1和阴极2共同组成光导开关的电极阴极;所述衬底由高阻AlGaN材料制备,位于整个器件底部;所述SiO2层位于衬底上方;所述阳极1位于SiO2层上方,与阳极2相连,阳极1对外连接外部线路;所述阳极2介于衬底与SiO2层之间,与阳极1相连,二者共同组成阳极;所述阴极1位于SiO2层上方,与阴极2相连,阴极1对外连接外部线路;所述阴极2介于衬底与SiO2层之间,与阴极1相连,二者共同组成阴极。
本发明的高阻AlGaN基光导开关器件制备方法如下:
制作衬底:衬底所用材料为AlGaN,其制备是在蓝宝石衬底上,通过金属有机化合物化学气相淀积法制成,在1100℃条件下,AlN缓冲层外延出非故意掺杂的Al0.4Ga0.6N,然后利用激光剥离或蚀刻将蓝宝石衬底与其分离,再对AlGaN进行抛光,然后在300℃下快速退火3分钟,最终得到制作所需的AlGaN衬底。
制作电极2:使用光刻制作叉指电极,将阳极2和阴极2通过电子束蒸发和自剥离工艺进行沉淀,再在850℃的条件下,进行30s快速退火,最后形成欧姆接触。
制作SiO2层:为缓和器件表面的闪络效应,利用化学气相沉积法制成SiO2层。
制作电极1:SiO2层制成后,在其表面利用光刻使得阳极2和阴极2的边缘部分能够露出SiO2层的覆盖,再利用光刻和电子蒸发淀积的方法安装阳极1和阴极1。
本发明的有益效果:(1)采用快速退火,优化器件,性能更加优异;(2)结构简单,不易出错,因此可靠性更强;(3)优化了制备工艺,优选制备材料,使得器件电阻变化迅速,响应时间极短。
附图说明
图1是本发明剖面结构示意图。
图2是本发明俯视结构示意图。
图中:1—衬底,2—SiO2层,3—阳极1,4—阳极2,5—阴极1,6—阴极2。
具体实施方式
下面结合附图与具体实例对本发明进行详细说明。
如图1所示,本发明所采用的技术方案:本发明的装置包括:衬底(1)、SiO2层(2)、阳极1(3)、阳极2(4)、阴极1(5)、阴极2(6),所述阳极1(3)和阳极2(4)共同组成光导开关的电极阳极;所述阴极1(5)和阴极2(6)共同组成光导开关的电极阴极;所述衬底(1)由高阻AlGaN材料制备,位于整个器件底部;所述SiO2层(2)位于衬底(1)上方;所述阳极1(3)位于SiO2层(2)上方,与阳极2(4)相连,所述阳极1(3)对外连接外部线路;所述阳极2(4)介于衬底(1)与SiO2层(2)之间,与阳极1(3)相连,二者共同组成阳极;所述阴极1(5)位于SiO2层(2)上方,与阴极2(6)相连,阴极1(5)对外连接外部线路;所述阴极2(6)介于衬底(1)与SiO2层(2)之间,与阴极1(5)相连,二者共同组成阴极。
一种高阻AlGaN基光导开关器件的制备方法,包括如下步骤:制作衬底(1):衬底(1)所用材料为AlGaN,其制备是在蓝宝石衬底上,通过改进后的金属有机化合物化学气相淀积法制成,利用高温AlN缓冲层外延出非故意掺杂的Al0.4Ga0.6N,然后利用激光剥离或蚀刻将蓝宝石衬底与其分离,再对AlGaN进行抛光,然后在300℃下快速退火3分钟,最终得到制作所需的AlGaN衬底。
制作电极2:使用光刻制作叉指电极,将阳极2(4)和阴极2(6)通过电子束蒸发和自剥离工艺进行沉淀,再在850℃的高温下进行30s快速退火,最后形成欧姆接触。
制作SiO2层(2):为缓和器件表面的闪络效应,利用化学气相沉积法形成SiO2层(2)。
制作电极1:SiO2层(2)形成后,在其表面利用光刻使得阳极2(4)和阴极2(6)的边缘部分能够露出SiO2层(2)的覆盖,再利用光刻和电子蒸发淀积的方法安装阳极1(3)和阴极1(5)。

Claims (3)

1.一种高阻AlGaN基光导开关器件,包括:衬底(1)、SiO2层(2)、阳极1(3)、阳极2(4)、阴极1(5)、阴极2(6);所述阳极1(3)和阳极2(4)共同组成光导开关的电极阳极;所述阴极1(5)和阴极2(6)共同组成光导开关的电极阴极;所述衬底(1)位于整个器件底部;所述SiO2层(2)位于衬底(1)上方;所述阳极1(3)位于SiO2层(2)上方,与阳极2(4)相连,阳极1(3)对外连接外部线路;所述阳极2(4)介于衬底(1)与SiO2层(2)之间,与阳极1(3)相连,二者共同组成阳极;所述阴极1(5)位于SiO2层(2)上方,与阴极2(6)相连,阴极1(5)对外连接外部线路;所述阴极2(6)介于衬底(1)与SiO2层(2)之间,与阴极1(5)相连,二者共同组成阴极。
2.根据权利要求1所述的一种高阻AlGaN基光导开关器件,其特征在于:所述衬底(1)由高阻AlGaN材料制成。
3.一种高阻AlGaN基光导开关器件制备方法,其特征在于:
制作衬底(1):衬底(1)所用材料为AlGaN,其制备是在蓝宝石衬底上,通过金属有机化合物化学气相淀积法制成,利用高温AlN缓冲层外延出非故意掺杂的Al0.4Ga0.6N,然后利用激光剥离或蚀刻将蓝宝石衬底与其分离,再对AlGaN进行抛光,然后在300℃下快速退火3分钟,最终得到制作所需的AlGaN衬底;
制作电极2:使用光刻定义插指电极,将阳极2(4)和阴极2(6)通过电子束蒸发和自剥离工艺进行沉淀,再在850℃的高温下进行30s快速退火,最后形成欧姆接触;
制作SiO2层(2):利用化学气相沉积法形成SiO2层(2);
制作电极1:SiO2层(2)形成后,在其表面利用光刻的方法使阳极2(4)和阴极2(6)的边缘部分暴露出来,再利用光刻和电子蒸发淀积的方法安装阳极1(3)和阴极1(5)。
CN201810902734.7A 2018-08-09 2018-08-09 一种高阻AlGaN基光导开关器件及其制备方法 Withdrawn CN109166936A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810902734.7A CN109166936A (zh) 2018-08-09 2018-08-09 一种高阻AlGaN基光导开关器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810902734.7A CN109166936A (zh) 2018-08-09 2018-08-09 一种高阻AlGaN基光导开关器件及其制备方法

Publications (1)

Publication Number Publication Date
CN109166936A true CN109166936A (zh) 2019-01-08

Family

ID=64895325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810902734.7A Withdrawn CN109166936A (zh) 2018-08-09 2018-08-09 一种高阻AlGaN基光导开关器件及其制备方法

Country Status (1)

Country Link
CN (1) CN109166936A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012551A (ja) * 1998-06-23 2000-01-14 Tokin Corp 半導体装置の製造方法
JP2011210752A (ja) * 2010-03-26 2011-10-20 Nec Corp 半導体装置、電子装置、半導体装置の製造方法、および半導体装置の動作方法
CN103077891A (zh) * 2013-01-21 2013-05-01 桂林电子科技大学 基于超级结的氮化镓hemt器件及制备方法
CN103700583A (zh) * 2014-01-06 2014-04-02 中国科学院微电子研究所 一种氮化镓基场效应晶体管的t型栅的制作方法
CN103779409A (zh) * 2014-01-20 2014-05-07 西安电子科技大学 基于耗尽型AlGaN/GaN HEMT器件结构及其制作方法
CN103904112A (zh) * 2014-01-20 2014-07-02 西安电子科技大学 耗尽型绝缘栅AlGaN/GaN器件结构及其制作方法
CN105679838A (zh) * 2016-01-11 2016-06-15 西安电子科技大学 基于AlGaN/GaN异质结多沟道结构的太赫兹肖特基二极管及制作方法
US20160276518A1 (en) * 2015-03-20 2016-09-22 Xi'an University Of Technology Insulated-gate photoconductive semiconductor switch
US20180053872A1 (en) * 2014-12-02 2018-02-22 Gwangju Institute Of Science And Technology Photoconductive semiconductor switch and method for manufacturing the same
CN107799624A (zh) * 2017-09-08 2018-03-13 大连民族大学 一种基于纳米NiO/AlGaN异质结构的倒置式快速紫外光响应器件及制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012551A (ja) * 1998-06-23 2000-01-14 Tokin Corp 半導体装置の製造方法
JP2011210752A (ja) * 2010-03-26 2011-10-20 Nec Corp 半導体装置、電子装置、半導体装置の製造方法、および半導体装置の動作方法
CN103077891A (zh) * 2013-01-21 2013-05-01 桂林电子科技大学 基于超级结的氮化镓hemt器件及制备方法
CN103700583A (zh) * 2014-01-06 2014-04-02 中国科学院微电子研究所 一种氮化镓基场效应晶体管的t型栅的制作方法
CN103779409A (zh) * 2014-01-20 2014-05-07 西安电子科技大学 基于耗尽型AlGaN/GaN HEMT器件结构及其制作方法
CN103904112A (zh) * 2014-01-20 2014-07-02 西安电子科技大学 耗尽型绝缘栅AlGaN/GaN器件结构及其制作方法
US20180053872A1 (en) * 2014-12-02 2018-02-22 Gwangju Institute Of Science And Technology Photoconductive semiconductor switch and method for manufacturing the same
US20160276518A1 (en) * 2015-03-20 2016-09-22 Xi'an University Of Technology Insulated-gate photoconductive semiconductor switch
CN105679838A (zh) * 2016-01-11 2016-06-15 西安电子科技大学 基于AlGaN/GaN异质结多沟道结构的太赫兹肖特基二极管及制作方法
CN107799624A (zh) * 2017-09-08 2018-03-13 大连民族大学 一种基于纳米NiO/AlGaN异质结构的倒置式快速紫外光响应器件及制备方法

Similar Documents

Publication Publication Date Title
CN100394622C (zh) 氮化镓系发光二极管
JP4597514B2 (ja) 劣化を最少に抑えたSiCバイポーラ半導体デバイス
CN107636808B (zh) 碳化硅半导体基板、碳化硅半导体基板的制造方法、半导体装置及半导体装置的制造方法
JP6312810B2 (ja) ダイヤモンド基板にショットキーダイオードを製造する方法
CN1291793A (zh) 制造半导体器件的方法
CN110379807A (zh) 微电子器件及微电子器件制作方法
CN103682010A (zh) 一种led芯片及制备方法
CN103579447A (zh) 一种倒装结构发光二极管及其制备方法
CN111739799B (zh) 一种硅基氮化镓微波器件及制备方法
CN110896098B (zh) 一种基于碳化硅基的反向开关晶体管及其制备方法
CN103928309B (zh) N沟道碳化硅绝缘栅双极型晶体管的制备方法
KR101016183B1 (ko) Tvs급 제너 다이오드 및 그 제조 방법
CN102208506B (zh) 掩埋式高亮度发光二极管结构
CN109166936A (zh) 一种高阻AlGaN基光导开关器件及其制备方法
JPS63108709A (ja) 半導体装置およびその製造方法
CN108550572A (zh) 碳化硅门极可关断晶闸管gto的器件阵列与其制备方法
CN102569556B (zh) 具有高导通n型欧姆接触的发光二极管及制作方法
CN111276533B (zh) 一种选择区域凹槽栅GaN电流孔径垂直结构晶体管结构及实现方法
CN111446335A (zh) 一种发光二极管及其制备方法
CN105244420A (zh) GaN基发光二极管的制作方法
CN105449059A (zh) 具有电流扩展增透膜层的GaN基LED芯片及其制备方法
KR20130068448A (ko) 발광다이오드
CN115312605A (zh) 改善终端边缘峰值电场的氧化镓肖特基二极管及制备方法
CN115410922A (zh) 一种垂直型氧化镓晶体管及其制备方法
US20150102361A1 (en) Semiconductor devices in sic using vias through n-type substrate for backside contact to p-type layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190108