CN109161091B - 一种高阻燃性eva发泡材料及其制备方法 - Google Patents

一种高阻燃性eva发泡材料及其制备方法 Download PDF

Info

Publication number
CN109161091B
CN109161091B CN201811154822.XA CN201811154822A CN109161091B CN 109161091 B CN109161091 B CN 109161091B CN 201811154822 A CN201811154822 A CN 201811154822A CN 109161091 B CN109161091 B CN 109161091B
Authority
CN
China
Prior art keywords
eva
magnesium hydroxide
parts
modified
modified magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811154822.XA
Other languages
English (en)
Other versions
CN109161091A (zh
Inventor
陈渠鍫
丁华雄
曹峥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansd Jiangsu Environmental Protection Technology Co ltd
Original Assignee
Sansd Jiangsu Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansd Jiangsu Environmental Protection Technology Co ltd filed Critical Sansd Jiangsu Environmental Protection Technology Co ltd
Priority to CN201811154822.XA priority Critical patent/CN109161091B/zh
Publication of CN109161091A publication Critical patent/CN109161091A/zh
Application granted granted Critical
Publication of CN109161091B publication Critical patent/CN109161091B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/104Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof
    • C08J9/105Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种高阻燃性EVA发泡材料及其制备方法,以改性氢氧化镁‑EVA复合材料100份、发泡剂3‑6份、氧化锌1‑3份、硬脂酸1‑2份、交联剂0.5‑1.0份、填料30‑100份制备而成;其中改性氢氧化镁‑EVA复合材料首先将氢氧化镁用改性树脂进行改性处理,然后进行低温等离子体改性处理得到改性氢氧化镁,再将改性氢氧化镁与EVA材料共混干燥后经双螺杆挤出机共混造粒;加入质量比例10%的石蜡油、3%的β环糊精、钛酸酯偶联剂采用熔融共混接枝法进行改性处理得改性氢氧化镁‑EVA复合材料。发泡材料成品阻燃性能高,氧指数超过35,且具备更为优异的拉伸强度较高和断裂伸长率。

Description

一种高阻燃性EVA发泡材料及其制备方法
技术领域
本发明涉及发泡材料领域,尤其涉及一种高阻燃性EVA发泡材料及其制备方法。
背景技术
发泡材料是指在物质内部气化产生气泡使之成为多孔物质的发泡的物质,具有重量轻、比强度高、绝缘性能优异、缓冲能力显著以及吸附能力强的优势,已经被广泛的应用在了汽车工业、建筑工业、包装工业、农业、水处理和空气过滤等领域;如制造泡沫塑料、泡沫橡胶、泡沫树脂等。
EVA发泡材料与其他发泡材料一样,在应用于建筑包装工业时,其阻燃性能的要求显得十分重要,目前的做法都是在配方中适当的添加阻燃剂达到效果,常用的阻燃剂氢氧化镁对于EVA发泡产品具有一定的效果,不过氢氧化镁和高分子材料的相容性、分散性均很差;往高分子材料中直接添加氢氧化镁阻燃剂虽然会改善其阻燃性能,但是同样常常会严重影响材料的力学性能与加工性能,尤其是对拉伸强度和断裂伸长率有一定影响。
若能对氢氧化镁结合EVA主料共同进行一定的改性处理,将会大大提高其余高分子材料的相容性和分散性,获得阻燃和力学性能的双赢。
发明内容
发明目的:为了解决现有技术中所存在的问题,本发明提出了一种高阻燃性EVA发泡材料及其制备方法,制备而成的高阻燃性EVA发泡材料不仅具备优异的阻燃性能,还具备较高的拉伸强度和断裂伸长率,综合力学性能佳。
技术方案:为达以上目的,本发明采取以下技术方案:一种高阻燃性EVA发泡材料,包括如下以重量计算的制备原料:改性氢氧化镁-EVA复合材料100份、发泡剂3-6份、氧化锌1-3份、硬脂酸1-2份、交联剂0.5-1.0份、填料30-100份;
所述改性氢氧化镁-EVA复合材料的制备方法为:首先将氢氧化镁用改性树脂进行改性处理,然后进行低温等离子体改性处理得到改性氢氧化镁,再将改性氢氧化镁与EVA材料共混干燥后经双螺杆挤出机共混造粒;加入质量比例10%的石蜡油、3%的β环糊精、钛酸酯偶联剂采用熔融共混接枝法进行改性处理得改性氢氧化镁-EVA复合材料。
更为优选的,所述改性氢氧化镁占改性氢氧化镁-EVA复合材料的3%-6%。
更为优选的,所述改性树脂为磷氮-改性酚醛树脂。
更为优选的,所述EVA的VA含量为15%-20%。
更为优选的,所述EVA的熔融指数MI值范围为3.0-5.0g/10min。
更为优选的,所述发泡剂为4,4’-氧代双苯磺酰肼。
更为优选的,所述交联剂为二叔丁过氧基二异丙苯。
更为优选的,所述填料为滑石粉、碳酸钙中的至少一种。
本发明还公开了上述高阻燃性EVA发泡材料的制备方法,包括如下步骤:将所需原料按需备好,置于密闭式炼胶机内进行混料塑炼处理,置于密炼机进行混料处理,经开炼、出片、硫化发泡、冷却成型、切割、冲裁、印刷,得到所需高阻燃性EVA发泡材料。
有益效果:本发明提供的一种高阻燃性EVA发泡材料及其制备方法,与现有技术相比具备以下优点:
(1)发泡材料成品阻燃性能佳,氧指数在35以上。
(2)发泡材料成品拉伸强度较高,断裂伸长率高。
(3)制备材料不含甲醛、增塑剂、氯化物等有害物质,安全环保性能高。
具体实施方式
实施例以及对比例中的改性氢氧化镁-EVA复合材料的制备方法如下:
首先将氢氧化镁用改性树脂进行改性处理,然后进行低温等离子体改性处理得到改性氢氧化镁,再将改性氢氧化镁与EVA材料共混干燥后经双螺杆挤出机共混造粒;加入质量比例10%的石蜡油、3%的β环糊精、钛酸酯偶联剂采用熔融共混接枝法进行改性处理得改性氢氧化镁-EVA复合材料;具体接枝处理温度为220℃,钛酸酯偶联剂具体为异丙基-三(磷酸二辛酯)钛酸酯。
实施例1:
一种高阻燃性EVA发泡材料,包括如下以重量计算的制备原料:改性氢氧化镁-EVA复合材料4kg(改性氢氧化镁的比例为3%),4,4’-氧代双苯磺酰肼(OBSH)200g,氧化锌80g,硬脂酸60g、二叔丁基过氧异丙基苯(BIBP)40g,滑石粉2.4kg。其中EVA的VA含量为18%,生产厂家为美国杜邦,熔融指数MI值范围为4.0g/10min。
其制备方法如下:将所需原料按需备好,置于密闭式炼胶机内进行混料塑炼处理,置于密炼机进行混料处理,经开炼、出片、硫化发泡、冷却成型、切割、冲裁、印刷,得到所需高阻燃性EVA发泡材料。
实施例2:
一种高阻燃性EVA发泡材料,包括如下以重量计算的制备原料:改性氢氧化镁-EVA复合材料4kg(改性氢氧化镁的比例为4%),4,4’-氧代双苯磺酰肼(OBSH)200g,氧化锌80g,硬脂酸60g、二叔丁基过氧异丙基苯(BIBP)40g,滑石粉2.4kg。其中EVA的VA含量为18%,生产厂家为美国杜邦,熔融指数MI值范围为4.0g/10min。制备方法也与实施例1相同。
实施例3:
一种高阻燃性EVA发泡材料,包括如下以重量计算的制备原料:改性氢氧化镁-EVA复合材料4kg(改性氢氧化镁的比例为5%),4,4’-氧代双苯磺酰肼(OBSH)200g,氧化锌80g,硬脂酸60g、二叔丁基过氧异丙基苯(BIBP)40g,滑石粉2.4kg。其中EVA的VA含量为18%,生产厂家为美国杜邦,熔融指数MI值范围为4.0g/10min。制备方法也与实施例1相同。
实施例4:
一种高阻燃性EVA发泡材料,包括如下以重量计算的制备原料:改性氢氧化镁-EVA复合材料4kg(改性氢氧化镁的比例为6%),4,4’-氧代双苯磺酰肼(OBSH)200g,氧化锌80g,硬脂酸60g、二叔丁基过氧异丙基苯(BIBP)40g,滑石粉2.4kg。其中EVA的VA含量为18%,生产厂家为美国杜邦,熔融指数MI值范围为4.0g/10min。制备方法也与实施例1相同。
对比例1:
并未对氢氧化镁以及EVA进行改性处理,氢氧化镁和EVA二者总共4kg,其中氢氧化镁的质量比为4%,其他制备原料的种类用量均与实施例1相同;且制备方法也与实施例1相同。
对比例2:
未加入氢氧化镁,仅仅采用EVA 4kg,其他制备原料的种类用量均与实施例1相同;且制备方法也与实施例1相同。
成品测试测试方法:
断裂伸长率以及拉伸强度的测定方法:
根据GB/T6344-2008《软质泡沫聚合材料拉伸强度和断裂伸长率的测定》使用仪器电子万能试验机型号:日本岛津AGS-X5KN。试样尺寸为140mm×12mm×10mm,横截面为矩形;拉伸速度为500mm/min±50mm/min;测定温度23℃±2℃,相对湿度50%±5%。
氧指数的测定方法:依据GB/T 5455垂直燃烧测试进行测定。
表1:不同配方制备的高阻燃性EVA发泡材料对比
Figure BDA0001818702810000041
从表1中可以看出,本发明实施例1-4制备的高阻燃性EVA发泡材料其成品的氧指数均子35以上,且断裂伸长率较高,拉伸强度较高,而对比例1中未对氢氧化镁以及EVA进行改性,虽然氧指数超过了30的标准,但是其断裂伸长率以及拉伸强度有了明显的负面影响;本发明发泡材料其显现的综合力学性能更佳。
本发明一种高阻燃性EVA发泡材料成品阻燃性能高,氧指数超过35,且具备更为优异的拉伸强度较高和断裂伸长率。
应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (7)

1.一种高阻燃性EVA发泡材料,其特征在于包括如下以重量计算的制备原料:改性氢氧化镁-EVA复合材料100份、发泡剂3-6份、氧化锌1-3份、硬脂酸1-2份、交联剂0.5-1.0份、填料30-100份;
所述改性氢氧化镁-EVA复合材料的制备方法为:首先将氢氧化镁用改性树脂进行改性处理,然后进行低温等离子体改性处理得到改性氢氧化镁,再将改性氢氧化镁与EVA材料共混干燥后经双螺杆挤出机共混造粒;加入质量比例10%的石蜡油、3%的β环糊精、钛酸酯偶联剂采用熔融共混接枝法进行改性处理得改性氢氧化镁-EVA复合材料;所述改性氢氧化镁占改性氢氧化镁-EVA复合材料的3%-6%;所述改性树脂为磷氮-改性酚醛树脂。
2.根据权利要求1所述的高阻燃性EVA发泡材料,其特征在于:所述EVA的VA含量为15%-20%。
3.根据权利要求1所述的高阻燃性EVA发泡材料,其特征在于:所述EVA的熔融指数MI值范围为3.0-5.0g/10min。
4.根据权利要求1所述的高阻燃性EVA发泡材料,其特征在于:所述发泡剂为4,4’-氧代双苯磺酰肼。
5.根据权利要求1所述的高阻燃性EVA发泡材料,其特征在于:所述交联剂为二叔丁过氧基二异丙苯。
6.根据权利要求1所述的高阻燃性EVA发泡材料,其特征在于:所述填料为滑石粉、碳酸钙中的至少一种。
7.如权利要求1所述的高阻燃性EVA发泡材料的制备方法,其特征在于包括如下步骤:将所需原料按需备好,置于密闭式炼胶机内进行混料塑炼处理,置于密炼机进行混料处理,经开炼、出片、硫化发泡、冷却成型、切割、冲裁、印刷,得到所需高阻燃性EVA发泡材料。
CN201811154822.XA 2018-09-30 2018-09-30 一种高阻燃性eva发泡材料及其制备方法 Active CN109161091B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811154822.XA CN109161091B (zh) 2018-09-30 2018-09-30 一种高阻燃性eva发泡材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811154822.XA CN109161091B (zh) 2018-09-30 2018-09-30 一种高阻燃性eva发泡材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109161091A CN109161091A (zh) 2019-01-08
CN109161091B true CN109161091B (zh) 2021-03-26

Family

ID=64877321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811154822.XA Active CN109161091B (zh) 2018-09-30 2018-09-30 一种高阻燃性eva发泡材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109161091B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007980B4 (de) * 2000-02-22 2007-07-12 Hilti Ag Zweikomponenten-Ortschaumsystem und dessen Verwendung zum Ausschäumen von Öffnungen zum Zwecke des Brandschutzes
CN102093626B (zh) * 2010-12-20 2013-11-06 安徽中鼎密封件股份有限公司 一种无卤阻燃低温收缩热缩管材及其制备方法
CN105440420A (zh) * 2014-08-07 2016-03-30 中国石油化工股份有限公司 纳米级镁铝水滑石阻燃eva发泡材料及其制备方法
CN107698227B (zh) * 2015-06-17 2020-08-21 天津城建大学 一种无机发泡建筑保温板的制备方法

Also Published As

Publication number Publication date
CN109161091A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
CN112250935B (zh) 一种高阻燃等级低烟无卤材料及其制备方法和应用
WO2017075855A1 (zh) 一种聚丙烯专用高效无卤阻燃剂母粒及其制备方法和应用
CN102649850B (zh) 一种聚烯烃微孔膜及其制备方法
CN109627568B (zh) 聚烯烃电缆护套料及其制备方法
CN112321945B (zh) 一种耐析出无卤阻燃聚丙烯复合材料及其制备方法
WO2023179555A1 (zh) 一种无卤阻燃聚碳酸酯/苯乙烯类树脂合金及其制备方法和应用
CN108003444B (zh) 一种低烟无卤阻燃聚烯烃电缆料及其制备方法
CN114181457A (zh) 一种无卤阻燃母粒及其制备方法、增强聚丙烯复合材料
CN110819000B (zh) 一种聚丙烯防水透气膜
CN112322020B (zh) 一种聚苯醚树脂组合物及其制备方法和线槽及其制备方法
CN108912642B (zh) 一种抗静电、低烟、无卤阻燃pc/abs合金材料及其制备工艺
CN108570205B (zh) 一种阻燃苯乙烯组合物及其制备方法
CN109161091B (zh) 一种高阻燃性eva发泡材料及其制备方法
CN101875773A (zh) 无卤阻燃聚苯醚插头料及其制备方法
CN108250573B (zh) 一种耐热氧老化的无卤环保阻燃聚丙烯材料及其制备方法
CN109880206B (zh) 一种聚乙烯增塑剂
CN111073123B (zh) 一种聚乙烯母料及制备方法、聚乙烯组合物
CN112662037B (zh) 一种高性能高阻燃聚乙烯滚塑专用料及其制备方法和应用
CN111019287B (zh) 石墨烯协同阻燃abs/sbs复合材料及其制备方法
CN111057316B (zh) 一种不粘模聚磷酸铵阻燃改性聚丙烯材料及其制备方法
CN111138657B (zh) 一种三元共聚树脂
CN114539758A (zh) 一种无卤阻燃pc/abs复合材料及其制备方法
CN112679826A (zh) 一种阻燃聚乙烯组合物及其制备方法
CN113717471A (zh) 一种高表面张力聚丙烯复合材料及其制备方法
CN116041933B (zh) 一种无卤耐高温阻燃abs复合pc合金材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Chen Quqiao

Inventor after: Ding Huaxiong

Inventor after: Cao Zheng

Inventor before: Ding Huaxiong

Inventor before: Chen Quqiao

Inventor before: Cao Zheng

GR01 Patent grant
GR01 Patent grant