CN109148594A - 一种高性能薄膜晶体管的近室温制备工艺及应用 - Google Patents

一种高性能薄膜晶体管的近室温制备工艺及应用 Download PDF

Info

Publication number
CN109148594A
CN109148594A CN201810778756.7A CN201810778756A CN109148594A CN 109148594 A CN109148594 A CN 109148594A CN 201810778756 A CN201810778756 A CN 201810778756A CN 109148594 A CN109148594 A CN 109148594A
Authority
CN
China
Prior art keywords
film transistor
thin film
high performance
room temperature
performance thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810778756.7A
Other languages
English (en)
Other versions
CN109148594B (zh
Inventor
丁士进
邵龑
刘文军
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201810778756.7A priority Critical patent/CN109148594B/zh
Publication of CN109148594A publication Critical patent/CN109148594A/zh
Application granted granted Critical
Publication of CN109148594B publication Critical patent/CN109148594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种高性能薄膜晶体管的近室温制备工艺及应用,该工艺包含:步骤1,将导电衬底放入原子层沉积反应腔中,抽真空;步骤2,在20~40℃下,沉积生长Al2O3;步骤3,将步骤2所得器件放入磁控溅射沉积腔中,抽真空;步骤4,在20~40℃下,生长IGZO沟道层;步骤5,对步骤4所得的器件进行紫外曝光、刻蚀形成沟道;步骤6,进行第二次光刻,蒸镀源漏电极,去光刻胶,无需进行退火处理,得到底栅型高性能薄膜晶体管。本发明提供了高性能薄膜晶体管的近室温制备工艺,并且该薄膜晶体管具有对不同波长光的响应能力可用于柔性电子、光电探测、生物电子等领域。

Description

一种高性能薄膜晶体管的近室温制备工艺及应用
技术领域
本发明属于半导体器件领域,具体涉及一种高性能薄膜晶体管的近室温制备工艺及其应用。
背景技术
近年来,柔性电子技术因其柔韧性出色,轻便易携,工艺成本低廉,可大面积制造等特点受到人们的广泛关注,在柔性显示、智能穿戴、医疗电子等信息领域显示出巨大的应用潜力。而如何将薄膜晶体管(Thin film transistor,TFT)器件直接制作到柔性衬底上成为该项技术的关键。这就要求在制备TFT器件的过程中,尽量降低制作工艺的温度。而其主要的技术难点在于,如何在低温条件下获得高质量的栅介质层薄膜。
磁控溅射或者溶液法制备的栅介质薄膜往往受到漏电流大、界面态密度高等问题的困扰。因此为提高其薄膜质量,通常需要在>300℃条件下进行退火。这使得它们无法与柔性塑料衬底兼容。
等离子体增强化学气相沉积(Plasma enhanced chemical vapor deposition,PECVD)技术可以在90℃的条件下制备栅介质薄膜,但由于其反应速率快,薄膜的厚度难以精确控制,且生长出来的薄膜同样需要退火来进行优化。金属阳极氧化工艺可以在近室温的条件下进行,但是该工艺必须首先在衬底上生长一层较厚的金属薄膜,因此工艺相对复杂,且无法用于制备全透明的器件。
因此,寻找一种能够在近室温条件下生长、无需进行后续退火的栅介质材料,并实现透明柔性高性能薄膜晶体管制备的方法仍然是一个难题。
发明内容
本发明是为了解决上述问题而进行的,目的在于提供一种高性能薄膜晶体管的近室温制备工艺,能够在近室温条件下生长栅介质,无需对所制备的器件进行后续退火处理,可以满足柔性和生物兼容的薄膜晶体管的制备工艺,并在光感应探测领域具有很好的应用价值。
为达到上述目的,本发明提供了一种高性能薄膜晶体管的近室温制备工艺,其包含以下步骤:
步骤1,将导电衬底放入原子层沉积(ALD)反应腔中,然后进行抽真空;
步骤2,在20~40℃下,沉积生长Al2O3作为栅介质层;
步骤3,将步骤2所得器件放入磁控溅射沉积腔,并抽真空
步骤4,在20~40℃下,使用磁控溅射生长IGZO沟道层;
步骤5,对步骤4所得的器件进行紫外曝光、刻蚀,形成沟道图形;
步骤6,对步骤5所得的器件进行第二次光刻,蒸镀源漏电极,去光刻胶,无需进行退火处理,得到底栅型高性能薄膜晶体管。
较佳地,在步骤1中,导电衬底选择重掺杂的Si(电阻率<0.0015Ω/cm)、AZO/玻璃(该“AZO/玻璃”的含义是在玻璃上沉积AZO薄膜制作出来的导电玻璃衬底)、ITO/玻璃、AZO/塑料、ITO/塑料中的任意一种。
较佳地,步骤2中,沉积生长Al2O3所使用的氧化剂为氧气等离子体。
较佳地,步骤2中,采用原子层沉积技术生长Al2O3,其一个循环周期由0.1s~2s三甲基铝脉冲,10~30s氮气吹扫,0.1~10s氧气等离子体脉冲,10~30s氮气吹扫构成。
较佳地,步骤2中,所述栅介质层的厚度为20~150nm。
较佳地,步骤4中,生长的沟道层是非晶IGZO。
较佳地,步骤4中,所述沟道层的厚度为30~80nm,最佳厚度为40nm。
较佳地,步骤6中,生长的源漏电极是Cr/Au、Ti/Au、Mo、AZO、ITO中的任意一种。
本发明还提供了一种上述的高性能薄膜晶体管的近室温制备工艺的应用,其中,该工艺提供的高性能薄膜晶体管用于光学探测领域。
本发明所述的“近室温”是指温度范围处于20-40℃之间。
本发明使用ALD方法,直接在衬底上近室温(20~40℃)生长栅绝缘层,其厚度为20~150nm。其中ALD具有生长温度低、厚度精确可控、薄膜均匀性好等特点;同时在此栅介质薄膜上制备的薄膜晶体管器件,无需后续的退火处理,就能获得优异的电学特性,使本发明可以直接用于柔性薄膜晶体管的制造。经测试,采用本方法制备的薄膜晶体管的性能参数如下:迁移率为19.8cm2/(V·s),开关电流比为108,阈值电压为0.1V,亚阈值摆幅为0.16V/dec,施加-10V偏压应力40分钟后的阈值电压迁移量为0.11V。此外,该薄膜晶体管器件表现出良好的光学响应特性,可应用于光学探测领域。
附图说明
图1为本发明方法所制备的底栅底接触型薄膜晶体管的结构示意图。
图2为用于光学探测时薄膜晶体管的光学响应特性。
具体实施方式
以下结合附图和实施例对本发明的技术方案做进一步的说明。
实施例
将重掺杂的P型Si衬底10放入ALD反应腔内,在30℃下,沉积Al2O3栅绝缘层20,其厚度为40nm;将长好Al2O3栅绝缘层的Si衬底放入磁控溅射沉积腔内,在近室温条件下生长IGZO层30,其厚度为40nm。然后将所得的器件在超净间内进行加工,首先进行第一次光刻使光刻胶在薄膜表面形成沟道图案,然后配置稀盐酸溶液,刻蚀IGZO薄膜形成沟道,再使用丙酮去除表面的残余光刻胶。然后进行第二次光刻,将负胶均匀涂布于样品表面,然后在曝光机下曝光30s,随后使用负胶显影液显影形成源漏电极图案。接着使用电子束蒸发生长30nm/70nm的Ti/Au金属叠层40,最后使用丙酮去除多余部分的光刻胶残留,得到底栅底接触型的薄膜晶体管,如图1所示。
性能测试:
所得的薄膜晶体管迁移率为19.8cm2/(V·s),开关电流比(On/off ratio)为108,阈值电压为0.1V,亚阈值摆幅为0.16V/dec;施加-10V偏压应力40分钟后的阈值电压迁移量为0.11V。
表1:近室温工艺薄膜晶体管器件与其它温度工艺薄膜晶体管器件性能对比
表1所示是近室温工艺薄膜晶体管器件与其它温度工艺器件性能的对比,其中场效应迁移率描述了晶体管中载流子运动的速度,并影响器件的功耗和工作频率。迁移率越大,晶体管的功耗越小,工作频率越高;亚阈值摆幅描述了晶体管在亚阈区的工作速度,因此SS越小越好;阈值电压描述的是晶体管进入临界导通状态所对应的电压值,该值越接近0越好;开关电流比反映了器件开关性能的好坏,该值越高越好。综合这些参数可以看出本发明近室温工艺所制备的薄膜晶体管具有最佳的电学性能。
表2:近室温工艺薄膜晶体管器件与其它温度工艺薄膜晶体管稳定性对比
表2是近室温工艺薄膜晶体管器件与其它温度工艺器件在不同偏压情况下阈值电压偏移的对比,其数值越小说明器件工作时越稳定。从表2结果可以看出,本发明近室温工艺所制备的薄膜晶体管具有优秀的稳定性。
应用实例
本发明所提供的高性能薄膜晶体管可以有效用于光学探测领域。如图2所示是本发明近室温工艺制备晶体管与较高温度工艺制备晶体管的光暗电流比,反映了器件对于不同波长光响应的差异。可以看到近室温工艺制备的晶体管具有更高的光暗电流比,而且对较长波长的光(400~500nm)也具有明显的响应特性。
以上实施案例仅仅是对本发明技术方案所做的举例说明。本发明所涉及的高性能薄膜晶体管的近室温制备工艺并不仅仅限定于在以上实施例中所描述的内容,而是以权利要求所限定的范围为准。本发明所属领域技术人员在该实施例的基础上所做的任何修改或补充或等效替换,都在本发明的权利要求所要求保护的范围内。
综上所述,本发明提供的一种高性能薄膜晶体管的近室温制备工艺,创新地将近室温Al2O3与IGZO制备工艺条件结合在一起,近室温制备氧化铝提供了大量氢元素可以掺杂到IGZO沟道中,从而获得更高的载流子浓度,提高器件性能和稳定性。所有薄膜的生长均可在近室温条件下进行,并无需退火就能够制备出大面积、均匀而且性能优秀的薄膜晶体管。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (9)

1.一种高性能薄膜晶体管的近室温制备工艺,其特征在于,其包含以下步骤:
步骤1,将导电衬底放入原子层沉积反应腔中,然后进行抽真空;
步骤2,在20~40℃下,沉积生长Al2O3作为栅介质层;
步骤3,将步骤2所得器件放入磁控溅射沉积腔中,然后抽真空;
步骤4,在20~40℃下,生长IGZO沟道层;
步骤5,对步骤4所得的器件进行紫外曝光、刻蚀,形成沟道图形;
步骤6,对步骤5所得的器件进行第二次光刻,蒸镀源漏电极,去光刻胶,无需进行退火处理,得到底栅型高性能薄膜晶体管。
2.如权利要求1所述的高性能薄膜晶体管的近室温制备工艺,其特征在于,在步骤1中,导电衬底选择重掺杂的Si、AZO/玻璃、ITO/玻璃、AZO/塑料、ITO/塑料中的任意一种。
3.如权利要求1所述的高性能薄膜晶体管的近室温制备工艺,其特征在于,步骤2中,沉积生长Al2O3所使用的氧化剂为氧气等离子体。
4.如权利要求1所述的高性能薄膜晶体管的近室温制备工艺,其特征在于,步骤2中,采用原子层沉积技术生长Al2O3,其一个循环周期由0.1s~2s三甲基铝脉冲,10~30s氮气吹扫,0.1~10s氧气等离子体脉冲,10~30s氮气吹扫构成。
5.如权利要求1所述的高性能薄膜晶体管的近室温制备工艺,其特征在于,步骤2中,所述栅介质层的厚度为20~150nm。
6.如权利要求1所述的高性能薄膜晶体管的近室温制备工艺,其特征在于,步骤4中,生长的沟道层是非晶IGZO。
7.如权利要求1所述的高性能薄膜晶体管的近室温制备工艺,其特征在于,步骤4中,所述沟道层的厚度为30~80nm。
8.如权利要求1所述的高性能薄膜晶体管的近室温制备工艺,其特征在于,步骤5中,生长的源漏电极是Cr/Au、Ti/Au、Mo、AZO、ITO中的任意一种。
9.根据权利要求1-8所述的高性能薄膜晶体管的近室温制备工艺的应用,其特征在于,该工艺提供的高性能薄膜晶体管用于光学探测领域。
CN201810778756.7A 2018-07-16 2018-07-16 一种高性能薄膜晶体管的近室温制备工艺及应用 Active CN109148594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810778756.7A CN109148594B (zh) 2018-07-16 2018-07-16 一种高性能薄膜晶体管的近室温制备工艺及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810778756.7A CN109148594B (zh) 2018-07-16 2018-07-16 一种高性能薄膜晶体管的近室温制备工艺及应用

Publications (2)

Publication Number Publication Date
CN109148594A true CN109148594A (zh) 2019-01-04
CN109148594B CN109148594B (zh) 2021-03-30

Family

ID=64800610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810778756.7A Active CN109148594B (zh) 2018-07-16 2018-07-16 一种高性能薄膜晶体管的近室温制备工艺及应用

Country Status (1)

Country Link
CN (1) CN109148594B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310985A (zh) * 2019-07-05 2019-10-08 山东大学 一种基于双有源层的铟铝锌氧化物薄膜晶体管及其制备方法
CN111009582A (zh) * 2019-12-22 2020-04-14 复旦大学 基于薄膜晶体管结构的光电编程多态存储器及其制备方法
CN111628017A (zh) * 2020-06-16 2020-09-04 深圳先进技术研究院 掺杂氢的铟镓锌氧化物膜层、其制备方法及其应用、晶体管及其制备方法
CN112164723A (zh) * 2020-09-24 2021-01-01 山东华芯半导体有限公司 随机存取存储器的底栅薄膜晶体管及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212033A1 (en) * 2004-03-24 2005-09-29 Micron Technology, Inc. Memory device with high dielectric constant gate dielectrics and metal floating gates
US20050272206A1 (en) * 2004-03-24 2005-12-08 Micron Technology, Inc. NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals
CN102117887A (zh) * 2009-12-31 2011-07-06 中国科学院微电子研究所 一种低电压有机薄膜晶体管及其制备方法
CN105405893A (zh) * 2015-12-21 2016-03-16 华南理工大学 一种平面分离双栅薄膜晶体管及其制备方法
CN107768255A (zh) * 2017-10-20 2018-03-06 武汉大学 低温薄膜晶体管的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212033A1 (en) * 2004-03-24 2005-09-29 Micron Technology, Inc. Memory device with high dielectric constant gate dielectrics and metal floating gates
US20050272206A1 (en) * 2004-03-24 2005-12-08 Micron Technology, Inc. NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals
CN102117887A (zh) * 2009-12-31 2011-07-06 中国科学院微电子研究所 一种低电压有机薄膜晶体管及其制备方法
CN105405893A (zh) * 2015-12-21 2016-03-16 华南理工大学 一种平面分离双栅薄膜晶体管及其制备方法
CN107768255A (zh) * 2017-10-20 2018-03-06 武汉大学 低温薄膜晶体管的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310985A (zh) * 2019-07-05 2019-10-08 山东大学 一种基于双有源层的铟铝锌氧化物薄膜晶体管及其制备方法
CN111009582A (zh) * 2019-12-22 2020-04-14 复旦大学 基于薄膜晶体管结构的光电编程多态存储器及其制备方法
CN111009582B (zh) * 2019-12-22 2021-07-23 复旦大学 基于薄膜晶体管结构的光电编程多态存储器及其制备方法
CN111628017A (zh) * 2020-06-16 2020-09-04 深圳先进技术研究院 掺杂氢的铟镓锌氧化物膜层、其制备方法及其应用、晶体管及其制备方法
CN112164723A (zh) * 2020-09-24 2021-01-01 山东华芯半导体有限公司 随机存取存储器的底栅薄膜晶体管及其制造方法

Also Published As

Publication number Publication date
CN109148594B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN109148594A (zh) 一种高性能薄膜晶体管的近室温制备工艺及应用
US9991135B2 (en) Method for fabricating a metal oxide thin film transistor
CN103325840B (zh) 薄膜晶体管及其制作方法
Brox-Nilsen et al. Sputtered ZnO Thin-Film Transistors With Carrier Mobility Over 50${\rm cm}^{2}/{\rm Vs} $
JP2008192721A (ja) 薄膜トランジスタ及びその製造方法
CN104282576B (zh) 一种金属氧化物薄膜晶体管制作方法
KR20130092628A (ko) 반도체 박막, 그의 제조 방법 및 박막 트랜지스터
KR101441542B1 (ko) 박막 트랜지스터 기판, 이를 포함하는 표시 장치 및 박막트랜지스터 기판의 제조 방법
JP2010251604A (ja) 薄膜トランジスタの製造方法
CN102157565A (zh) 一种薄膜晶体管的制作方法
CN103117226B (zh) 一种合金氧化物薄膜晶体管的制备方法
Walker et al. Low temperature fabrication of high performance ZnO thin film transistors with high-k dielectrics
CN105633280A (zh) 莫特晶体管及制备方法
CN103985764A (zh) 氧化物tft及其制备方法、阵列基板、显示器件
CN104992981B (zh) 氧化物薄膜晶体管及其制备方法和反相器及其制备方法
CN110010710A (zh) 一种用于光检测应用的a-IGZO薄膜传感器及其制作方法
CN107104151A (zh) 一种双栅电极金属氧化物薄膜晶体管及其制备方法
CN105800566A (zh) 交替注入反应物生长单层和多层过渡金属硫化物的方法
CN108183165A (zh) 有机晶体管、阵列基板、显示装置及相关制备方法
Jiang et al. Self-assembled in-plane gate oxide-based homojunction thin-film transistors
CN103956325B (zh) 一种多层复合氧化物高k介质薄膜晶体管的制备方法
CN109801875A (zh) 阵列基板的制作方法、阵列基板和显示面板
CN210866187U (zh) 一种场效应晶体管
CN107768255A (zh) 低温薄膜晶体管的制备方法
CN105355663A (zh) 一种氢钝化氧化锌基双沟道层薄膜晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant