CN109133183A - α-Fe2O3纳米微球硫化氢气敏材料及元件的制作 - Google Patents

α-Fe2O3纳米微球硫化氢气敏材料及元件的制作 Download PDF

Info

Publication number
CN109133183A
CN109133183A CN201811090873.0A CN201811090873A CN109133183A CN 109133183 A CN109133183 A CN 109133183A CN 201811090873 A CN201811090873 A CN 201811090873A CN 109133183 A CN109133183 A CN 109133183A
Authority
CN
China
Prior art keywords
nanosphere
hydrogen sulfide
sulfide gas
gas sensitive
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811090873.0A
Other languages
English (en)
Other versions
CN109133183B (zh
Inventor
王平
于海霞
徐蕾
隋丽丽
郭祥峰
贾丽华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN201811090873.0A priority Critical patent/CN109133183B/zh
Publication of CN109133183A publication Critical patent/CN109133183A/zh
Application granted granted Critical
Publication of CN109133183B publication Critical patent/CN109133183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种α‑Fe2O3纳米微球硫化氢气敏材料及气敏元件的制作方法,以FeCl3·6H2O为原料,[C12‑2‑C12im]Br2为辅助试剂,用水热法在不锈钢自压反应釜中150‑210℃下反应8‑12 h,自然冷却至室温后离心分离,将产物分别用乙醇和超纯水洗涤数次,真空干燥获得α‑Fe2O3纳米微球。将α‑Fe2O3前驱体在250℃焙烧2 h,获得具有多孔结构的α‑Fe2O3纳米微球硫化氢气敏材料。本发明的有益效果是首次采用离子液体型Gemini咪唑表面活性剂([C12‑2‑C12im]Br2)辅助合成了具有自组装多孔结构的α‑Fe2O3纳米微球硫化氢气敏材料,为有害气体气敏新材料的开发及实时检测开辟了一条全新的途径。

Description

α-Fe2O3纳米微球硫化氢气敏材料及元件的制作
技术领域
本发明涉及一种α-Fe2O3纳米微球硫化氢气敏材料,本发明还涉及一种采用该气敏材料制作气敏元件的方法。
背景技术
硫化氢(H2S)是一种易燃、可溶性剧毒气体,吸入人体后可穿过细胞膜与线粒体细胞色素酶中的铁结合形成复合物,从而导致细胞呼吸受阻,引起急性中毒和慢性损害。在工业生产中低浓度硫化氢不仅危害工人的生命而且还会引起爆炸。因此,实现硫化氢气体的提前识别和实时检测是保障人身安全和防止工业事故的一项重要手段。
目前硫化氢气体的常用检测方法包括色谱法、分光光度计法和光纤传感器法等。这些方法虽然准确,但是存在设备昂贵、操作复杂,不能快速测定等缺点,无法满足实际需要。因此,开发经济、便捷,特别是能够适合实时检测的硫化氢气体传感器是一项十分重要的研究课题。
将金属氧化物与合适的载体复合制备分级结构氧化物纳米材料是近年发展起来的一种重点途径。通过贵金属、碳素材料和异质氧化物材料的复合,能有效改善气敏材料在灵敏度、检出限及稳定性。目前硫化氢气体传感器的研制重点在于氧化物半导体敏感材料的开发,目前已经应用的氧化物半导体敏感材料主要有ZnO,SnO2,CuO, MoO3,WO3和α-Fe2O3等。研究重心是通过原料科学设计和最佳制备手段来实现产品的特殊结构和优良特性。
离子液体具有无可燃性、无蒸汽压、稳定性高、电导率高和电化学窗口宽等诸多独特的物理化学性质,在辅助合成金属氧化物纳米材料过程中不仅控制产物的尺寸和形貌,在某种条件下甚至主导纳米材料的形成。因而已被广泛应用于无机合成等领域。
氧化物半导体敏感材料中的α-Fe2O3n型半导体材料,具有良好的耐光性、耐候性,并且廉价易得、绿色环保,因而得到了诸多研究者的重视,在离子液体辅助合成α-Fe2O3纳米材料及其气敏性中取得了以下重要进展。
等(J. Mater. Chem. A, 2017, 5, 19846;Sens. Actuators B,2017, 241,967)采用离子液体型表面活性剂[C12mim][Br]和[C12mim][BF4]为辅助试剂,在水热条件下制备出棒状α-Fe2O3纳米阵列和α-Fe2O3纳米球,分别对三甲胺和丙酮气体显示出优异的气敏性能。Ma等(J. Mater. Chem., 2012, 22, 11694)以离子液体[Bmim][Cl]为溶剂,合成了多孔片状的α-Fe2O3纳米材料,在270 ℃时对丙酮气体显示出良好的气敏性能,最低检出限为5 ppm;另外, Ma等(Nanoscale, 2013, 5, 895)采用醋酸铵离子热法合成了α-Fe2O3纳米链,高温热处理后制备的气敏元件在285℃时对H2S气体显示出良好的气敏性能,最低检出限为1 ppm。
以上α-Fe2O3纳米材料合成中采用的离子液体为阳离子表面活性剂,且制备的气敏元件中离子液体对纳米材料气敏性能的影响研究比较少,适用于硫化氢气体的离子液体/α-Fe2O3异质结构气敏材料尚属空白。在材料的结构设计方面,气敏材料的响应-恢复速度、选择性和检测温度是目前重点解决的一个重要瓶颈。就离子液体然而言,在纳米材料制备过程中离子液体用量大,制备成本高则是另外一个亟待完善的问题。
发明内容
本发明要解决的技术问题是提供一种α-Fe2O3纳米微球硫化氢气敏材料,要解决的另外一个技术问题是提供一种采用该气敏材料制作气敏元件的方法。采用该方法制作的气敏材料及气敏元件不仅对硫化氢具有良好的稳定性、选择性和灵敏性,而且还具有离子液体用量少,制备成本低的优点。
本发明α-Fe2O3纳米微球硫化氢气敏材料是采用以下方法制作的:
1、以FeCl3·6H2O为原料,离子液体型双子(Gemini)咪唑表面活性剂[C12-2-C12im]Br2为辅助试剂,采用水热法在具有聚四氟乙烯内衬,体积适宜的不锈钢自压反应釜中150-210℃下反应8-12 h,自然冷却至室温后离心分离,得红色沉淀。
、将上述产物分别采用乙醇和超纯水洗涤数次,真空干燥获得直径为2 μm,由粒径为20-100 nm的纳米粒子构筑而成的α-Fe2O3纳米微球。将α-Fe2O3前驱体在250 ℃焙烧2 h,获得具有多孔结构的α-Fe2O3纳米微球硫化氢气敏材料。
本发明采用上述气敏材料制作气敏元件的方法如下:
将产物与松油醇按比例(10:1)充分混合后涂覆至镀有金电极的氧化铝陶瓷管表面,250 ℃煅烧 2 h,将一根加热丝放入陶瓷管中,并将其整体焊接在底座上,在250℃老化处理三天。
本发明的有益效果是首次采用离子液体型Gemini咪唑表面活性剂([C12-2-C12im]Br2)辅助合成了具有自组装多孔结构的α-Fe2O3纳米微球硫化氢气敏材料,为有害气体气敏新材料的开发及实时检测开辟了一条全新的途径。本发明气敏材料结构稳定,形貌均一,由于材料在低温热处理后保留一定数量的离子液体,并将其制成的厚膜传感器对H2S具有较好的气敏特性,在170 °C下具有快速的响应-恢复特性,最低检测线仅为100 ppb,且环境湿度对其测量无影响。本发明产品合成及后处理方法简单,材料纯度高、分散性好的具有自组装多孔结构的α-Fe2O3微纳米球,产物易于分离提纯,易于大规模生产。
附图说明
以下结合附图和具体实施方式对本发明加以详细说明。
图1为本发明α-Fe2O3微纳米球的扫描电镜图a。
图2为α-Fe2O3微纳米球的扫描电镜图b。
图3为热处理前后α-Fe2O3的XRD图。
图4为α-Fe2O3在170℃时对不同浓度硫化氢的浓度-灵敏度曲线a。
图5为α-Fe2O3在170℃时对不同浓度硫化氢的响应-恢复曲线b。
具体实施方式
首先将2.0 mmol FeCl3·6H2O和0.05-0.1 mmol [C12mim][PF6]混合溶解在35 mL水中,磁力搅拌60 min;将得到的混合液转移到体积为30-50 mL的具有聚四氟乙烯内衬的不锈钢自压反应釜中,密封,在 150-210 ℃下反应8-12小时。自然冷却至室温后离心分离,得红色的铁氧化物前驱体。
前驱体经超纯水和乙醇洗涤数次后在80 ℃真空干燥12 小时,粉体的扫描电镜图如图1-2所示。由图可以看出前驱体是直径约为2 μm的单分散的纳米球,由粒径为20-100nm的纳米粒子自组装堆积而成的粗糙球面结构。
将前驱体分别在250、400和600 ℃热处理2小时后获得的XRD图(见图3)可知,不同条件制备产物的衍射峰均与标准XRD 卡片上α-Fe2O3(JCPDS no. 33-0664)的谱图相一致,说明产物为α-Fe2O3
为了研究离子液体辅助水热合成获得的α-Fe2O3纳米微球的气敏性能,将材料经过250 ℃热处理制备成相应的厚膜型气敏元件,并对元件的气敏性能进行测试。
测试方法采用静态配气法,在10 L 真空容器中注入一定体积的硫化氢,待溶液挥发后,用空气调节真空容器的内外压力达到平衡,当传感器元件电阻在空气中达到稳定状态时,将气敏元件转移到含有一定浓度硫化氢气体的容器中测量,当传感器元件电阻再次达到稳态时,将传感器移出。测量范围:92~252℃。
灵敏度计算公式为S= R a/R g。其中,R a表示气敏元件在洁净空气中的稳定电阻值,R g表示气敏元件在一定浓度被测气体中的电阻值。响应时间和恢复时间分别对应于气敏传感器置于被测气体中阻值从R a变化到R a-90%(R a-R g)所需的时间和从被测气体中移出后阻值由R g变化到R g+90%(R a-R g)所需的时间。
如图3所示,由图4可知,在170℃测试温度下随着H2S浓度提高,制成的α-Fe2O3器件的灵敏度逐渐增加,最低检测限为100 ppb,且在检测范围内具有较好的线性关系(R=99.68%)。图5为α-Fe2O3器件在170℃时对不同浓度H2S气体的响应-恢复曲线,由图可知α-Fe2O3器件对H2S气体有着快速的响应特性,其响应时间在1~5 s,恢复时间在35~280 s,表明在浓度100 ppb~100 ppm范围内自组装多孔结构α-Fe2O3微纳米球可以用于测量H2S气体。在工作温度170 ℃时对H2S气体显示出优异的气敏性能,最低检出限为100 ppb。
本发明传感器的气敏性能分析结论:低温焙烧的α-Fe2O3纳米微球制成的厚膜传感器对H2S具有较好的气敏特性,在170 °C下具有快速的响应-恢复特性、较好的选择性和较低的检测限,且环境湿度对其测量无影响。[C12-2-C12im]Br2的存在不仅对α-Fe2O3纳米微球的形成具有重要的影响,而且对测试气体H2S具有较好的吸附作用。

Claims (2)

1.一种α-Fe2O3纳米微球硫化氢气敏材料,该材料是采用以下方法制作的:
a、以FeCl3·6H2O为原料,离子液体型双子(Gemini)咪唑表面活性剂[C12-2-C12im]Br2为辅助试剂,采用水热法在具有聚四氟乙烯内衬,体积适宜的不锈钢自压反应釜中150-210℃下反应8-12 h,自然冷却至室温后离心分离,得红色沉淀;
b、将上述产物分别采用乙醇和超纯水洗涤数次,真空干燥获得直径为2 μm,由粒径为20-100 nm的纳米粒子构筑而成的α-Fe2O3纳米微球;将α-Fe2O3前驱体在250 ℃焙烧2 h,获得具有多孔结构的α-Fe2O3纳米微球硫化氢气敏材料。
2.一种采用如权利要求1所述α-Fe2O3纳米微球硫化氢气敏材料制备气敏元件的方法:将所获α-Fe2O3纳米微球硫化氢气敏材料与松油醇按比例(10:1)充分混合后涂覆至镀有金电极的氧化铝陶瓷管表面,250 ℃煅烧 2 h,将一根加热丝放入陶瓷管中,并将其整体焊接在底座上,在250℃老化处理三天。
CN201811090873.0A 2018-09-19 2018-09-19 α-Fe2O3纳米微球硫化氢气敏材料及元件的制作 Active CN109133183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811090873.0A CN109133183B (zh) 2018-09-19 2018-09-19 α-Fe2O3纳米微球硫化氢气敏材料及元件的制作

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811090873.0A CN109133183B (zh) 2018-09-19 2018-09-19 α-Fe2O3纳米微球硫化氢气敏材料及元件的制作

Publications (2)

Publication Number Publication Date
CN109133183A true CN109133183A (zh) 2019-01-04
CN109133183B CN109133183B (zh) 2021-02-02

Family

ID=64814855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811090873.0A Active CN109133183B (zh) 2018-09-19 2018-09-19 α-Fe2O3纳米微球硫化氢气敏材料及元件的制作

Country Status (1)

Country Link
CN (1) CN109133183B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108760A (zh) * 2019-05-15 2019-08-09 东北大学 一种基于Zn离子掺杂α-Fe2O3纳米棒的气敏元件及其制备方法
CN112357978A (zh) * 2020-11-10 2021-02-12 黑河学院 一种NiO中空纳米球的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394165B1 (en) * 2002-08-28 2005-10-19 Samsung Electronics Co., Ltd. Gemini surfactants and method for preparing mesoporous materials
CN101327953A (zh) * 2008-07-24 2008-12-24 中南大学 一种介孔氧化锆的制备方法
CN101475222A (zh) * 2009-01-22 2009-07-08 中国科学院上海硅酸盐研究所 铁氧化物空心微球及其制备方法
CN105439210A (zh) * 2015-07-29 2016-03-30 黑龙江大学 α-Fe2O3微纳米球的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394165B1 (en) * 2002-08-28 2005-10-19 Samsung Electronics Co., Ltd. Gemini surfactants and method for preparing mesoporous materials
CN101327953A (zh) * 2008-07-24 2008-12-24 中南大学 一种介孔氧化锆的制备方法
CN101475222A (zh) * 2009-01-22 2009-07-08 中国科学院上海硅酸盐研究所 铁氧化物空心微球及其制备方法
CN105439210A (zh) * 2015-07-29 2016-03-30 黑龙江大学 α-Fe2O3微纳米球的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANWU HUANG等: "A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3operates at room-temperature", 《APPLIED SURFACE SCIENCE》 *
郑乐驰等: "以双子表面活性剂为模板剂的纳米氧化锌的制备", 《武汉工程大学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108760A (zh) * 2019-05-15 2019-08-09 东北大学 一种基于Zn离子掺杂α-Fe2O3纳米棒的气敏元件及其制备方法
CN110108760B (zh) * 2019-05-15 2020-10-09 东北大学 一种h2s气敏元件及其制备方法
CN112357978A (zh) * 2020-11-10 2021-02-12 黑河学院 一种NiO中空纳米球的制备方法及其应用

Also Published As

Publication number Publication date
CN109133183B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
Li et al. Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application
Han et al. Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination
Zhang et al. Highly-sensitivity acetone sensors based on spinel-type oxide (NiFe2O4) through optimization of porous structure
Yao et al. MOF thin film‐coated metal oxide nanowire array: significantly improved chemiresistor sensor performance
David et al. Room temperature operatable high sensitive toluene gas sensor using chemiresistive Ag/Bi2O3 nanocomposite
Gao et al. Highly sensitive and selective H2S sensor based on porous ZnFe2O4 nanosheets
Wang et al. Dispersed WO3 nanoparticles with porous nanostructure for ultrafast toluene sensing
Wang et al. Template-free synthesized hollow NiO–SnO2 nanospheres with high gas-sensing performance
Guo et al. Fe2O3 nanomaterials derived from Prussian blue with excellent H2S sensing properties
Yang et al. Metal-oxide gas sensors for exhaled-breath analysis: A review
Meng et al. Solvothermal synthesis of dual-porous CeO2-ZnO composite and its enhanced acetone sensing performance
Zhu et al. Conductometric acetic anhydride gas sensors based on S-doped porous ZnO microspheres with enhanced Lewis base interaction
CN102012386A (zh) 基于准定向三氧化钨纳米带的氮氧化物气体传感器元件的制备方法
Han et al. Enhanced NOx gas sensing properties of ordered mesoporous WO3/ZnO prepared by electroless plating
CN109946358A (zh) 一种以MTiO3为敏感电极的YSZ基混成电位型SO2传感器、制备方法及其应用
CN109133183A (zh) α-Fe2O3纳米微球硫化氢气敏材料及元件的制作
CN106365204B (zh) 用于氨气气敏传感器的三氧化钨敏感材料的制备方法
Li et al. NH3 sensing performance of Pt-doped WO3· 0.33 H2O microshuttles induced from scheelite leaching solution
Li et al. The preparation of Cr 2 O 3@ WO 3 hierarchical nanostructures and their application in the detection of volatile organic compounds (VOCs)
CN113155912A (zh) 一种CuO-ZnO花状结构复合敏感材料制备方法及其应用
CN104502413A (zh) 氧化铜掺杂的二氧化锡基硫化氢气敏材料及制备和应用
Wang et al. Highly sensitive and selective sub ppb level acetone sensing platform based on Co3O4–ZnO heterojunction composites
Chu et al. The gas-sensing properties of thick film sensors based on nano-ZnFe2O4 prepared by hydrothermal method
CN108680609B (zh) 一种以p型铜铁矿结构氧化物为敏感材料的室温氨气传感器及其制备方法
CN104445376B (zh) 硫化氢敏感的橄榄形多孔氧化锡及制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant