CN109126854B - 一种CdS/g-C3N4双纳米片复合光催化剂的制备方法 - Google Patents

一种CdS/g-C3N4双纳米片复合光催化剂的制备方法 Download PDF

Info

Publication number
CN109126854B
CN109126854B CN201811062404.8A CN201811062404A CN109126854B CN 109126854 B CN109126854 B CN 109126854B CN 201811062404 A CN201811062404 A CN 201811062404A CN 109126854 B CN109126854 B CN 109126854B
Authority
CN
China
Prior art keywords
cds
double
nanosheets
nanosheet
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811062404.8A
Other languages
English (en)
Other versions
CN109126854A (zh
Inventor
张金龙
雷菊英
江振颖
刘勇弟
王灵芝
郑家豪
张嘉宽
姜森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201811062404.8A priority Critical patent/CN109126854B/zh
Publication of CN109126854A publication Critical patent/CN109126854A/zh
Application granted granted Critical
Publication of CN109126854B publication Critical patent/CN109126854B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/027Preparation from water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种硫化镉/石墨相氮化碳CdS/g‑C3N4双纳米片光催化剂的制备方法。该方法首先通过气体模板法,将气体模板、氮化碳前驱体混合研磨,在惰性氛围下一步煅烧得到g‑C3N4纳米片,然后将制备得到的g‑C3N4纳米片加入到含有半水氯化镉(CdCl2·2.5H2O)、硫粉(S)的二乙烯三胺(DETA)溶液中,在油浴加热的条件下制备得到具有特定结构即双纳米片结构的CdS/g‑C3N4材料。本发明所述方法利用半导体复合的方法,将CdS/g‑C3N4双纳米片应用于光催化产H2O2表现出非常高效的催化活性,该材料不仅有效提高了g‑C3N4纳米片的光催化活性,还有效地减弱了CdS的光腐蚀现象,该材料在光催化产氢、还原CO2、降解有机污染物等光催化领域也具有很好的应用前景。

Description

一种CdS/g-C3N4双纳米片复合光催化剂的制备方法
技术领域
本发明涉及一种可高效制备双氧水的光催化材料,属于光催化领域。
背景技术
双氧水是一种清洁的环境友好型氧化剂,在反应中只有水作为副产物,被广泛应用于工业有机合成、纸浆漂白、废水处理和杀菌中,同时双氧水也被认为是新一代的清洁能源。目前,工业生产双氧水以蒽醌法为主,该方法需要多重加氢和氧化的步骤,耗能巨大而且污染环境。有研究人员利用氢气(H2)和氧气(O2)在钯(Pd)或金-钯合金(Au-Pd)的催化下直接制备双氧水,然而氢气/氧气(H2/O2)混合气体极易发生爆炸。因此,研发一种高效、清洁且安全的方法制备双氧水具有十分广阔的应用前景。
近年来,利用半导体的光催化技术生产双氧水展现出了巨大的应用前景,该方法利用可再生能源太阳光作为驱动力,在室温下即可发生反应,并且不需要H2的参与,是一种绿色安全的生产方式。在众多材料中,石墨相氮化碳(g-C3N4)制备过程简单,光催化活性高,且由于只含有地球上两种丰量元素C和N,所以催化剂制备成本也很低。但是,g-C3N4具有较低的结晶度和偏高的激子结合能,不利于光生载流子的分离和迁移,导致光催化的量子效率偏低,严重地限制了g-C3N4的发展,也降低了其光催化活性。在对g-C3N4的改性方式中,与其他半导体复合是最常见的手段之一,该方法可以使光生载流子从一个半导体的能级转移到另一个半导体的能级上,促进光生电子空穴对的有效分离,扩展光谱响应范围,从而提高光催化效率。作为一种可以与 g-C3N4复合的窄禁带半导体材料,硫化镉(CdS)其还原电位较负,还原能力比较强,但由于CdS禁带宽度较窄,在光照下不稳定易发生光腐蚀,从而影响了光催化活性,严重地限制了CdS在光催化领域的发展。由于CdS价带位置比g-C3N4更正,所以CdS的光生空穴可转移到 g-C3N4的价带上,从而使光生电子空穴对在空间上得到有效的分离,因此在光催化方面能够表现出很高的活性,同时也减弱了CdS的光腐蚀现象,从而提高催化剂的稳定性。
在此发明中,我们采用CdS/g-C3N4双纳米片复合光催化剂,纳米片的结构提高了材料的比表面积,可以暴露更多的活性位点,增强光催化活性。CdS纳米片的引入提高了催化剂的光催化活性,使光生电子空穴对在空间上得到有效的分离,大幅度削弱了CdS的光腐蚀现象使其更适合光催化产双氧水,极大地提高了双氧水的产量。同时在该反应过程中并不需要加入任何牺牲剂,明显优于其他同类型产双氧水的光催化剂。
发明内容
本发明的目的在于提供了一种CdS/g-C3N4双纳米片复合光催化剂的制备方法。该材料的双纳米片是通过将提前煅烧好的g-C3N4纳米片加入含有半水氯化镉、硫粉的二乙烯三胺溶液中,然后通过油浴升温法制备CdS/g-C3N4双纳米片复合光催化剂。
该发明所提供的CdS/g-C3N4双纳米片复合光催化剂的制备过程如下:
(1)将一定量的二氰二胺和氯化铵一起混合研磨均匀,然后在一定温度下煅烧得到g-C3N4纳米片。
(2)将一定量的半水氯化镉(CdCl2·2.5H2O)超声分散于一定量的二乙烯三胺(DETA)溶液中,置于100mL烧瓶内,分散均匀后分别加入一定量的硫粉(S)和步骤(1)得到的g-C3N4纳米片,油浴升温至一定温度后保温一段时间,待冷却至室温后离心洗涤,干燥得到样品。
上述制备方法中,步骤(1)二氰二胺的质量为2g,氯化铵(NH4Cl) 的质量为10g。
上述制备方法中,步骤(1)煅烧过程在管式气氛炉中进行,从室温以3℃/min的升温速率升至550℃并保温4小时。煅烧全程在氮气气流保护中进行,气体流速0.1L/min。
上述制备方法中,步骤(2)CdCl2·2.5H2O的质量为79.04mg, DETA的体积为30mL,S粉的质量为68.67mg,g-C3N4纳米片的质量为50mg。
上述制备方法中,步骤(2)油浴升温至80℃后保温10个小时。
上述制备方法中,步骤(2)离心洗涤转速为3000r/min,离心时间为5min。
本发明的优势体现在:
1.该发明材料具有双纳米片结构,具有较大的比表面积,暴露活性位点,增强光催化活性。
2.发明人通过无数次试验偶然发现,将煅烧好的g-C3N4纳米片加入含有半水氯化镉(CdCl2·2.5H2O)、硫粉(S)的二乙烯三胺 (DETA)溶液中,在油浴加热的条件下,g-C3N4纳米片与半水氯化镉和硫粉在二乙烯三胺溶液中能发生协同反应,能够得到具有特定结构即双纳米片结构的CdS/g-C3N4材料。
3.该发明材料通过半导体复合的手段,复合促进了光生电子和空穴的分离,不仅能提高光催化产双氧水的活性,还有效减弱了 CdS的光腐蚀现象,提高了催化剂的稳定性。
4.该发明材料通过半导体复合的手段,大幅提高了催化剂的光催化活性,使催化剂能够在不加入牺牲剂的条件下也能生产大量的双氧水。
5.该发明材料制备过程中所涉及的原料经济易得,实验步骤简单易于操作。
附图说明
图1为对比例1中得到的g-C3N4纳米片的TEM图
图2为对比例2中得到的CdS纳米片的TEM图
图3为实施例中得到的CdS/g-C3N4双纳米片的TEM图及其相应元素的元素分布图
图4为对比例和实施例得到的CdS纳米片,g-C3N4纳米片和 CdS/g-C3N4双纳米片的XRD图
图5为对比例和实施例中得到的CdS纳米片,g-C3N4纳米片和 CdS/g-C3N4双纳米片的紫外吸收图
图6为将对比例得到的空白氮化碳和实施例中得到的CdS/g-C3N4双纳米片的双氧水产量图和拟合反应动力学的速率图
图7为CdS/g-C3N4双纳米片产双氧水的循环实验浓度柱状图
具体实施方式
本发明下面将通过具体的实施例进行更详细的描述,但本发明的保护范围并不受限于这些实施例。
对比例1
g-C3N4纳米片的制备
将2g的二氰二胺,10g的氯化铵混和放置在研钵中,研磨并混合均匀,置于瓷方舟中,盖上盖子后,放在管式炉里煅烧。升温速率3℃/min,升至550℃后保温4小时,全程持续通入0.1L/min 的氮气。
对比例2
CdS纳米片的制备
将79.04mg的CdCl2·2.5H2O分散于30mL DETA中,置于100mL 烧瓶内,超声分散均匀后分别加入68.67mg S粉,搅拌均匀后将烧瓶放入80℃油浴锅中保温10个小时。待冷却至室温后离心洗涤,干燥后得到CdS纳米片。
实施例
CdS/g-C3N4双纳米片的制备
将79.04mg的CdCl2·2.5H2O分散于30mL DETA中,置于100mL 烧瓶内,超声分散均匀后分别加入68.67mg S粉和50mg g-C3N4纳米片,搅拌均匀后将烧瓶放入80℃油浴锅中保温10个小时。待冷却至室温后离心洗涤,干燥后得到CdS/g-C3N4双纳米片。
实验与数据
本发明提供的CdS/g-C3N4双纳米片光催化活性考察方法如下:
取0.02g催化剂与20mL去离子水在光催化管中充分混合,持续通氧气10分钟以达到一个富氧环境。以300W Xe灯作为灯源,加 420nm滤光片模拟可见光源,持续照射1h,每隔10分钟取0.5mL 液体测其双氧水浓度。
本发明提供的CdS/g-C3N4双纳米片光催化产双氧水的测定方法如下:
取0.5mL反应液,加入2ml的0.1M的碘化钾(KI)溶液,0.5 mL的0.01M的钼酸铵((NH4)6Mo7O24·4H2O)溶液,混合反应10分钟后,测其吸光度。根据工作曲线计算其浓度。
图1为对比例1中得到的g-C3N4纳米片的TEM图,从TEM中可清晰的辨认出制备得到的g-C3N4为片状结构。
图2为对比例2中得到的CdS纳米片的TEM图,从TEM中可清晰的辨认出制备得到的CdS为片状结构。
图3为实施例中得到的CdS/g-C3N4双纳米片的TEM图及其相应元素的元素分布图,从图中可清晰地分辨出两种物质堆叠的信息。
图4为对比例和实施例得到的CdS纳米片,g-C3N4纳米片和 CdS/g-C3N4双纳米片的XRD图,从图中可以看出复合后的XRD图谱准确吻合CdS和g-C3N4的结构。
图5为对比例和实施例中得到的CdS纳米片,g-C3N4纳米片和 CdS/g-C3N4双纳米片的紫外吸收图,从图中可以看到复合物的吸收波长在CdS纳米片和g-C3N4纳米片两者之间,与催化剂复合规律一致,均能够吸收可见光。
图6为将对比例得到的空白氮化碳和实施例中得到的CdS/g-C3N4双纳米片的双氧水产量图和拟合反应动力学的速率图。从图中可以看出,CdS/g-C3N4双纳米片表现出相当的优势,且是在不含牺牲剂的条件下,双氧水产量大幅提升。
图7为CdS/g-C3N4双纳米片产双氧水的循环实验,四次循环后,产量略微有所下降,但整体来说催化剂稳定性依然保持良好。

Claims (1)

1.一种将CdS/g-C3N4双纳米片复合光催化剂用于光催化生产双氧水的方法,其特征在于该方法采取以下步骤:
(1)将一定量的二氰二胺和氯化铵混合,其中二氰二胺的质量为2g,氯化铵的质量为10g,研磨并混合均匀,在氮气气流下煅烧得到g-C3N4纳米片,煅烧过程在管式气氛炉中进行,从室温以3℃/min的升温速率升至550℃并保温4小时,气体流速0.1升每分钟;
(2)将一定量的氯化镉5/2水合物(CdCl2·2.5H2O)超声分散于一定量的二乙烯三胺(DETA)溶液中,分散均匀后分别加入一定量的硫粉(S)和g-C3N4纳米片,CdCl2·2.5H2O的质量为79.04mg,DETA的体积为30mL,S粉的质量为68.67mg,g-C3N4纳米片的质量为50mg,油浴升温至一定温度后保温一段时间,油浴温度保持在80℃,保温10个小时,待冷却至室温后离心洗涤,离心洗涤转速为3000r/min,离心时间为5min,干燥得到所述CdS/g-C3N4双纳米片复合光催化剂;
( 3) 将所述CdS/g-C3N4双纳米片复合光催化剂光催化用于光催化生产双氧水,包括取0.02g催化剂与20mL去离子水在光催化管中充分混合,持续通氧气10分钟以达到一个富氧环境,以300W Xe灯作为灯源,加 420nm滤光片模拟可见光源,持续照射。
CN201811062404.8A 2018-09-12 2018-09-12 一种CdS/g-C3N4双纳米片复合光催化剂的制备方法 Active CN109126854B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811062404.8A CN109126854B (zh) 2018-09-12 2018-09-12 一种CdS/g-C3N4双纳米片复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811062404.8A CN109126854B (zh) 2018-09-12 2018-09-12 一种CdS/g-C3N4双纳米片复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN109126854A CN109126854A (zh) 2019-01-04
CN109126854B true CN109126854B (zh) 2020-09-04

Family

ID=64824999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811062404.8A Active CN109126854B (zh) 2018-09-12 2018-09-12 一种CdS/g-C3N4双纳米片复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN109126854B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11827653B2 (en) 2021-06-25 2023-11-28 The Board Of Trustees Of The University Of Illinois Tridentate macrocyclic compounds

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075898A (zh) * 2019-04-22 2019-08-02 浙江大学 一种光沉积法制备g-C3N4/CdS复合催化剂的方法
CN110280296B (zh) * 2019-07-19 2022-02-25 华东理工大学 一种氮化碳纳米片上原位生长缺陷硫化亚铜纳米颗粒的方法
CN110787821B (zh) * 2019-09-10 2022-06-03 温州大学 一种毛刺球状结构的石墨相碳化氮/硫化镉光催化纳米复合材料及其制备方法与用途
CN111185217A (zh) * 2020-01-21 2020-05-22 江苏理工学院 一种铬基氮化碳催化剂的固相法制备方法及应用
CN113117696A (zh) * 2021-03-02 2021-07-16 江苏大学 一种硫化镉基复合光催化材料及制备方法与用途
CN113073344B (zh) * 2021-03-23 2022-02-18 西南科技大学 一种银掺杂硫化镉纳米棒电催化剂的制备方法
CN113398971B (zh) * 2021-06-15 2022-07-22 华东理工大学 二维RuNi/g-C3N4复合光催化剂及其制备方法和应用
CN114452998B (zh) * 2022-01-26 2023-05-09 大连理工大学 一种多壁碳纳米管和石墨化氮化碳复合材料的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785434A (zh) * 2014-03-10 2014-05-14 福州大学 一种g-C3N4纳米片/CdS复合可见光催化剂
CN105126893A (zh) * 2015-08-31 2015-12-09 中国科学院过程工程研究所 一种石墨相氮化碳材料、其制备方法和用途
CN105854921A (zh) * 2016-04-19 2016-08-17 淮北师范大学 一种大面积二维复合纳米材料的合成方法
CN108313990A (zh) * 2018-02-12 2018-07-24 贵州医科大学 一种多孔石墨相氮化碳纳米片的简便制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785434A (zh) * 2014-03-10 2014-05-14 福州大学 一种g-C3N4纳米片/CdS复合可见光催化剂
CN105126893A (zh) * 2015-08-31 2015-12-09 中国科学院过程工程研究所 一种石墨相氮化碳材料、其制备方法和用途
CN105854921A (zh) * 2016-04-19 2016-08-17 淮北师范大学 一种大面积二维复合纳米材料的合成方法
CN108313990A (zh) * 2018-02-12 2018-07-24 贵州医科大学 一种多孔石墨相氮化碳纳米片的简便制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"A g-C3N4–CdS composite catalyst with high visible-light-driven catalytic activity and photostability for methylene blue degradation";Fang Jiang et al.;《Applied Surface Science》;20140113;第295卷;第164-172页 *
"Effects of Surface Defects on Photocatalytic H2O2 Production by Mesoporous Graphitic Carbon Nitride under Visible Light Irradiation";Yasuhiro Shiraishi et al.;《ACS Catalysis》;20150409;第5卷;第3058-3066页 *
"高比表面积氮化碳纳米片的制备及光催化性能";徐晴川等;《化学与生物工程》;20180831;第35卷(第8期);第1.2节和图9 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11827653B2 (en) 2021-06-25 2023-11-28 The Board Of Trustees Of The University Of Illinois Tridentate macrocyclic compounds

Also Published As

Publication number Publication date
CN109126854A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN109126854B (zh) 一种CdS/g-C3N4双纳米片复合光催化剂的制备方法
Gu et al. Efficient sacrificial-agent-free solar H2O2 production over all-inorganic S-scheme composites
CN105772041B (zh) 一种光催化产氢助催化剂、光催化体系及产氢的方法
CN108993550B (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
CN113663693B (zh) 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用
CN108435229B (zh) 一种磷掺杂多级孔道氮化碳纳米片及其制备方法
CN105289689A (zh) 一种氮掺杂石墨烯量子点/类石墨烯相氮化碳复合材料的合成及应用
CN101972645B (zh) 可见光响应型半导体光催化剂钒酸铋的制备方法
CN106076364A (zh) 一种高效CdS‑CdIn2S4超结构光催化剂的制备方法
CN106563485A (zh) 一种氮化碳/铌酸钙钾复合材料及其制备方法与用途
CN110975918A (zh) 一种硫化铟锌-氮掺杂石墨烯泡沫复合光催化材料及其制备方法和应用
CN109201115B (zh) 一种光催化产氢催化剂及其制备方法和用途
CN105148973B (zh) 一种用作可见光催化剂的电子束辐照改性类石墨相氮化碳的制备方法
CN112076774A (zh) 一种碳化钛量子点负载碳缺陷反蛋白石氮化碳的催化剂及其制备方法
CN103395822B (zh) 一种氧化亚铜微米空心球及其合成方法、应用方法
CN106914266B (zh) 一种快速降解污染物的g-C3N4复合光催化剂及其制备方法
CN115007182A (zh) 一种钾氧共掺杂石墨相氮化碳光催化剂的制备方法
CN114471711B (zh) 一种聚噻吩-氮化碳复合光催化剂及其制备方法和应用
Luo et al. Metal organic frameworks template-directed fabrication of rod-like hollow BiOCl x Br1− x with adjustable band gap for excellent photocatalytic activity under visible light
CN114849752A (zh) 六方氮化硼/花环状石墨型氮化碳异质结复合光催化剂及其制备方法和应用
Lu et al. Dispersing agglomerated Zn 4 In 2 S 7 on gC 3 N 4 nanosheets to form a 2D/2D S-scheme heterojunction for highly selective photocatalytic cleavage of lignin models
Xu et al. Oxygen doping and hollow structure-mediated effects to enable rapid electron transfer during photocatalytic hydrogen peroxide production
CN115709090B (zh) 一种CuSCN/CoS2复合光催化材料、制备方法及应用
CN106477619A (zh) 一种制备光催化剂氧化铜的方法
CN111151278A (zh) 一种碳点复合碳酸氧铋可见光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant