CN109126780A - 一种IrO2@Ir核壳结构电催化析氧反应催化剂 - Google Patents

一种IrO2@Ir核壳结构电催化析氧反应催化剂 Download PDF

Info

Publication number
CN109126780A
CN109126780A CN201811028293.9A CN201811028293A CN109126780A CN 109126780 A CN109126780 A CN 109126780A CN 201811028293 A CN201811028293 A CN 201811028293A CN 109126780 A CN109126780 A CN 109126780A
Authority
CN
China
Prior art keywords
core
iro
oxygen evolution
evolution reaction
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811028293.9A
Other languages
English (en)
Other versions
CN109126780B (zh
Inventor
王宗鹏
林志萍
冯尚申
钟文武
申士杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN201811028293.9A priority Critical patent/CN109126780B/zh
Publication of CN109126780A publication Critical patent/CN109126780A/zh
Application granted granted Critical
Publication of CN109126780B publication Critical patent/CN109126780B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种制备IrO2@Ir核壳结构电催化析氧反应催化剂的方法,包含以下步骤:材料的预处理;称量和分散;激光处理;退火。本发明还公开一种IrO2@Ir核壳结构电催化析氧反应催化剂,采用上述方法制备而成。

Description

一种IrO2@Ir核壳结构电催化析氧反应催化剂
技术领域
本发明涉及电催化材料应用领域,具体涉及一种用于电催化析氧反应的催化剂。
技术背景
由于人类对自然资源的过度消耗,特别是对化石燃料的过度开采和使用,能源资源短缺、环境污染问题日趋严重,可持续清洁能源的开发利用日益紧迫。在各类清洁能源中,氢气储能密度高、元素丰度高,且燃烧产物为水,从而成为理想的能源材料。电催化分解水被认为是快速、高效获得氢气的方法之一。电催化分解水包括两个半反应,分别为电催化析氢反应和电催化析氧反应。其中,电催化析氢反应过程中,包含了两个电子-质子耦合转移过程,而电催化析氧反应包括四个电子-质子转移过程。电催化析氧反应的复杂性导致其过电位高,成为电催化分解水的瓶颈。为了降低电催化析氧反应的过电位,电催化剂起到决定性作用。因此,设计和寻找具有低成本、高效率的电催化析氧反应催化剂,是将氢能推向实际应用的重中之重。
通常,增强电催化析氧反应催化剂催化活性两个重要的方法是,增加催化活性位点负载量和增强电导率。构造不同的纳米形貌以及减小颗粒大小以增大比表面积,一般可以提高活性位点负载量;而与高导电率材料复合,或在导电衬底上合成催化剂,一般可以提高材料整体的导电率。以上两种手段是获得良好的电催化析氢反应催化剂的技术路径。已有报道,贵金属铱的氧化物是具有较高催化活性和稳定性的电催化析氧反应催化剂,但在电催化析氧反应的过程中,过电位及塔菲尔斜率仍然较高。
发明内容
本发明的目的在于通过结合铱、氧化铱的电催化析氧反应的催化能力,提高活性位点的负载量和导电性,提出一种IrO2@Ir核壳结构电催化析氧反应催化剂,提高电催化析氧反应的催化活性。
本发明提出的一种IrO2@Ir核壳结构电催化析氧反应催化剂,具有以下特点:
①包含核壳结构,核心材料为IrO2,壳层材料为Ir;
②核心的直径为30纳米到50纳米,壳层的厚度为2纳米至3纳米;
③壳层由大量Ir球紧密堆积而成,Ir球的直径为2纳米至3纳米;
④Ir球内部包含孪晶界。
本发明的另一个目的在于提出一种通过对IrO2原料进行简单而快速的加工,得到所述的IrO2@Ir核壳结构电催化析氧反应催化剂的制备方法。
本发明的实现包括以下步骤:
①材料的预处理:采用纯度为99.99%的IrO2,研磨成粉末;
②称量和分散:称量3克 IrO2粉末,均匀分散于1 cm2 的玻璃片上,采用盖玻片紧压,使样品各处厚度均一,称量误差为± 0.005克;
③激光处理:采用纳秒激光器对样品进行照射,脉冲时间为8-15纳秒,激光频率为10-25千赫兹,照射时长为60秒;
④退火:在800摄氏度下退火2小时。
本发明提出的一种IrO2@Ir核壳结构电催化析氧反应催化剂,用于电催化析氧反应时,在电流密度为10 mA/cm2的条件下,过电位明显低于商用的IrO2催化剂;塔菲尔斜率明显低于商用的IrO2催化剂。
附图说明
图1为本发明提出的IrO2@Ir核壳结构电催化析氧反应催化剂三维示意图。
图2为按照实施例的方法制备的IrO2@Ir核壳结构电催化析氧反应催化剂透射电子显微镜图。
图3为按照实施例的方法制备的IrO2@Ir核壳结构电催化析氧反应催化剂高分辨透射电子显微镜图。
图4为按照实施例的方法制备的IrO2@Ir核壳结构催化剂与按照对比例的方法制备的IrO2催化剂X射线粉末衍射谱对比图。
图5为按照实施例的方法制备的IrO2@Ir核壳结构催化剂与按照对比例的方法制备的IrO2催化剂电催化析氧反应过电势对比图。
图6为按照实施例的方法制备的IrO2@Ir核壳结构催化剂与按照对比例的方法制备的IrO2催化剂电催化析氧反应塔菲尔斜率对比图。
具体实施方式
以下结合具体实施例对本发明的实现进行详细的描述。
本实施例的具体步骤如下:
①材料的预处理:采用纯度为99.99%的IrO2,研磨成粉末;
②称量和分散:称量3克 IrO2粉末,均匀分散于1 cm2 的玻璃片上,采用盖玻片紧压,使样品各处厚度均一,称量误差为± 0.005克;
③激光处理:采用纳秒激光器对样品进行照射,脉冲时间为8-15纳秒,激光频率为10-25千赫兹,照射时长为60秒;
④退火:在800摄氏度下退火2小时。
为了说明本实施例的技术效果,按照以下步骤制备样品作为本实施例的对比例:
①材料的预处理:采用纯度为99.99%的IrO2,研磨成粉末;
②称量和分散:称量3克 IrO2粉末,均匀分散于1 cm2 的玻璃片上,采用盖玻片紧压,使样品各处厚度均一,称量误差为± 0.005克;
③退火:在800摄氏度下退火2小时。
下面结合附图,通过具体实施例,进一步阐述本发明。
图1为本发明提出的IrO2@Ir核壳结构电催化析氧反应催化剂三维示意图,形象地表示了结构特点。图2为按实施例的方法制备的样品的透射电子显微镜图,可以看到明显的核壳结构,其中壳层厚度为2.4纳米。图3为按照实施例的方法制备的IrO2@Ir核壳结构电催化析氧反应催化剂高分辨透射电子显微镜图,可以看到Ir小球出现孪晶结构。对按照实施例和对比例的方法获得的样品进行X射线粉末衍射谱测定,结果如图4所示。可以看出按照实施例的方法获得的样品,除了IrO2的特征峰,还出现明显的Ir特征峰,而按照对比例的方法获得的样品只有IrO2的特征峰,说明按照实施例的方法获得的样品有Ir的出现。对按照实施例和对比例的方法获得的样品进行电催化析氧反应过电势测定,结果如图5所示。对按照实施例和对比例的方法获得的样品进行电催化析氧反应塔菲尔斜率测定,结果如图6所示。从图5和图6可以看出,按照实施例方法获得的样品的电催化析氧反应的过电势和塔菲尔斜率均明显优于按照对比例方法获得的样品。在电流密度为10 mA/cm2的条件下,按照实施例的方法获得的样品的过电位比按照对比例方法获得的样品低100 mV;按照实施例的方法获得的样品的塔菲尔斜率比按照对比例方法获得的样品低34 mV/dec。
需要声明的是,以上所述的仅是本发明的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的基本构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (3)

1.一种IrO2@Ir核壳结构电催化析氧反应催化剂的制备方法,其特征在于,包含以下步骤:
① 材料的预处理:采用纯度为99.99%的IrO2,研磨成粉末;
② 称量和分散:称量3克 IrO2粉末,均匀分散于1 cm2 的玻璃片上,采用盖玻片紧压,使样品各处厚度均一,称量误差为±0.005克;
③ 激光处理:采用纳秒激光器对样品进行照射,脉冲时间为8-15纳秒,激光频率为10-25千赫兹,照射时长为60秒;
④ 退火:在800摄氏度下退火2小时。
2.根据权利要求1所述的方法制备的Ag/PbBiO2Cl纳米片复合光催化剂,其特征在于:包括有PbBiO2Cl纳米片、Ag纳米颗粒,Ag纳米颗粒沉积在PbBiO2Cl纳米片表面。如权利要求1所述的一种IrO2@Ir核壳结构电催化析氧反应催化剂的制备方法,其特征在于,所述的研磨均采用研钵或球磨机等仪器,优选球磨机进行研磨。
3.一种IrO2@Ir核壳结构电催化析氧反应催化剂,其特征在于,采用权利要求1和权利要求2所述的方法制备而成,包含以下特点:
① 包含核壳结构,核心材料为IrO2,壳层材料为Ir;
② 核心的直径为30纳米到50纳米,壳层的厚度为2纳米至3纳米;
③ 壳层由大量Ir球紧密堆积而成,Ir球的直径为2纳米至3纳米;
④ Ir球内部包含孪晶界。
CN201811028293.9A 2018-09-04 2018-09-04 一种IrO2@Ir核壳结构电催化析氧反应催化剂 Expired - Fee Related CN109126780B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811028293.9A CN109126780B (zh) 2018-09-04 2018-09-04 一种IrO2@Ir核壳结构电催化析氧反应催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811028293.9A CN109126780B (zh) 2018-09-04 2018-09-04 一种IrO2@Ir核壳结构电催化析氧反应催化剂

Publications (2)

Publication Number Publication Date
CN109126780A true CN109126780A (zh) 2019-01-04
CN109126780B CN109126780B (zh) 2021-01-29

Family

ID=64826923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811028293.9A Expired - Fee Related CN109126780B (zh) 2018-09-04 2018-09-04 一种IrO2@Ir核壳结构电催化析氧反应催化剂

Country Status (1)

Country Link
CN (1) CN109126780B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068670A (zh) * 2019-12-03 2020-04-28 天津大学 酸性产氧电催化剂含有拉伸应变的钌@二氧化钌核壳纳米球的制备方法
CN111570788A (zh) * 2020-05-21 2020-08-25 中国科学院福建物质结构研究所 一种双金属纳米材料、催化剂及其制备方法与应用
CN113355695A (zh) * 2021-08-11 2021-09-07 国家电投集团氢能科技发展有限公司 核壳结构催化剂及其制备方法和包含该催化剂的膜电极
CN113964336A (zh) * 2021-10-20 2022-01-21 中汽创智科技有限公司 一种抗反极催化剂及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106423173A (zh) * 2016-09-22 2017-02-22 中国科学院化学研究所 一种高性能非贵金属析氧催化剂及其制备方法与应用
CN107630228A (zh) * 2017-09-19 2018-01-26 中国科学院长春应用化学研究所 一种表面氧化铱富集的纳米多孔结构析氧催化剂及其制备方法
CN107904614A (zh) * 2017-10-17 2018-04-13 华南理工大学 一种Ni3S2@Ni‑Fe LDH析氧电催化电极及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106423173A (zh) * 2016-09-22 2017-02-22 中国科学院化学研究所 一种高性能非贵金属析氧催化剂及其制备方法与应用
CN107630228A (zh) * 2017-09-19 2018-01-26 中国科学院长春应用化学研究所 一种表面氧化铱富集的纳米多孔结构析氧催化剂及其制备方法
CN107904614A (zh) * 2017-10-17 2018-04-13 华南理工大学 一种Ni3S2@Ni‑Fe LDH析氧电催化电极及其制备方法与应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068670A (zh) * 2019-12-03 2020-04-28 天津大学 酸性产氧电催化剂含有拉伸应变的钌@二氧化钌核壳纳米球的制备方法
CN111068670B (zh) * 2019-12-03 2023-02-21 天津大学 酸性产氧电催化剂含有拉伸应变的钌@二氧化钌核壳纳米球的制备方法
CN111570788A (zh) * 2020-05-21 2020-08-25 中国科学院福建物质结构研究所 一种双金属纳米材料、催化剂及其制备方法与应用
CN111570788B (zh) * 2020-05-21 2021-12-14 中国科学院福建物质结构研究所 一种双金属纳米材料、催化剂及其制备方法与应用
CN113355695A (zh) * 2021-08-11 2021-09-07 国家电投集团氢能科技发展有限公司 核壳结构催化剂及其制备方法和包含该催化剂的膜电极
CN113964336A (zh) * 2021-10-20 2022-01-21 中汽创智科技有限公司 一种抗反极催化剂及其制备方法和用途

Also Published As

Publication number Publication date
CN109126780B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
Zhou et al. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition
Guo et al. Amorphous cobalt–iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process
Hou et al. Promoting active sites in core–shell nanowire array as Mott–Schottky electrocatalysts for efficient and stable overall water splitting
CN109126780A (zh) 一种IrO2@Ir核壳结构电催化析氧反应催化剂
Shao et al. Phase‐Reconfiguration‐Induced NiS/NiFe2O4 Composite for Performance‐Enhanced Zinc− Air Batteries
CN110252335B (zh) 一种碳包覆镍钌纳米材料及其制备方法和应用
Panomsuwan et al. Electrocatalytic oxygen reduction activity of boron-doped carbon nanoparticles synthesized via solution plasma process
Zhang et al. Mesoporous NiCo2O4 micro/nanospheres with hierarchical structures for supercapacitors and methanol electro–oxidation
Figueiredo et al. Development of carbon nanotube and carbon xerogel supported catalysts for the electro-oxidation of methanol in fuel cells
Wu et al. Facile synthesis of cobalt oxide as an efficient electrocatalyst for hydrogen evolution reaction
Zhang et al. Suppressing the Pd-C interaction through B-doping for highly efficient oxygen reduction
Li et al. Synthesis of nitrogen-rich porous carbon nanotubes coated Co nanomaterials as efficient ORR electrocatalysts via MOFs as precursor
Kong et al. Plasma-assisted synthesis of nickel-cobalt nitride–oxide hybrids for high-efficiency electrochemical hydrogen evolution
Xu et al. Optimizing the electronic spin state and delocalized electron of NiCo2 (OH) x/MXene composite by interface engineering and plasma boosting oxygen evolution reaction
Gao et al. Interfacial engineering of CeO2 on NiCoP nanoarrays for efficient electrocatalytic oxygen evolution
Xie et al. Hollow Fe4C/FeP nanoboxes with heterostructure and carbon armor for efficient and stable hydrogen evolution
Yin et al. Synthesis of mesoporous hollow polypyrrole spheres and the utilization as supports of high loading of Pt nanoparticles
Ilanchezhiyan et al. Highly efficient overall water splitting performance of gadolinium‐indium‐zinc ternary oxide nanostructured electrocatalyst
Liu et al. C/N-co-doped Pd coated Ag nanowires as a high-performance electrocatalyst for hydrogen evolution reaction
Wang et al. Facile Synthesis of cobalt and nitrogen coordinated carbon nanotube as a high-Performance electrocatalyst for oxygen reduction reaction in both acidic and alkaline media
CN109261186A (zh) 一种氮掺杂氢氧化镍纳米片阵列及其制备方法和应用
CN111359613B (zh) 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料
Zhang et al. Spatial construction of ultrasmall Pt-decorated 3D spinel oxide-modified N-doped graphene nanoarchitectures as high-efficiency methanol oxidation electrocatalysts
Tang et al. Operando spectroscopies capturing surface reconstruction and interfacial electronic regulation by FeOOH@ Fe2O3@ Ni (OH) 2 heterostructures for robust oxygen evolution reaction
Wang et al. Facile synthesis of mesoporous TiC-C nanocomposite microsphere efficient for hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210129

Termination date: 20210904

CF01 Termination of patent right due to non-payment of annual fee