CN109111233A - 一种TiB2陶瓷增材的制造方法 - Google Patents

一种TiB2陶瓷增材的制造方法 Download PDF

Info

Publication number
CN109111233A
CN109111233A CN201810631409.1A CN201810631409A CN109111233A CN 109111233 A CN109111233 A CN 109111233A CN 201810631409 A CN201810631409 A CN 201810631409A CN 109111233 A CN109111233 A CN 109111233A
Authority
CN
China
Prior art keywords
manufacturing
tib
powder
ceramics
laser melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810631409.1A
Other languages
English (en)
Inventor
陈志伟
牛文彬
林锐霖
吴利翔
郭伟明
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201810631409.1A priority Critical patent/CN109111233A/zh
Publication of CN109111233A publication Critical patent/CN109111233A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于材料技术领域,尤其涉及一种TiB2陶瓷增材的制造方法。本发明提供了一种TiB2陶瓷增材的制造方法,为:步骤一、Ti球形粉和硼粉球磨后干燥,得Ti‑B混合粉体;步骤二、在惰性保护气或真空氛围中,所述Ti‑B混合粉体经选择性激光熔融打印成型,得产品。本发明提供的技术方案中,利用Ti‑B混合粉体在进行选择性激光熔融打印成型的过程中,同步反应制备复杂形状的TiB2陶瓷,后续无需再进行烧结和热处理,制备步骤简单;同时,经实验测定可得,所制得的TiB2陶瓷的相对密度大于95%,硬度为30~35GPa,断裂韧性为8~12MPa·m1/2,抗弯强度为800~1000MPa。本发明提供了一种TiB2陶瓷增材的制造方法,用于解决现有技术中,对于复杂形状的TiB2陶瓷无法实现一次成型的技术缺陷。

Description

一种TiB2陶瓷增材的制造方法
技术领域
本发明属于材料技术领域,尤其涉及一种TiB2陶瓷增材的制造方法。
背景技术
TiB2陶瓷材料作为一种结构材料,具有优异的力学性能,例如高硬度、高强、耐磨、耐高温、物理化学稳定性等,可广泛应用于结构件、刀具切削、航空航天等方面。然而,正因为其优异的力学性能限制了其加工多样化,对于复杂形状的陶瓷材料依靠传统的加工工艺无法得到。
目前,TiB2陶瓷成型工艺有:注射成型、注凝成型、压滤成型、压力成型、凝胶注模成型等。但是这些技术难以满足对个性化、精细化、轻量化和复杂化的高端产品快速制造的需求,限制了高性能陶瓷产品的开发与应用。虽然目前增材制造已经应用于陶瓷成型,但是,主要是通过光固化成型、直接挤压成型、喷墨打印、选择性激光烧结等技术实现陶瓷材料的增材制造。对于以上增材制造技术,在成型后都需要下一步热处理。选择性激光熔融技术可以直接通过激光熔化一步成型制备所需形状样品,然而,陶瓷材料通常没有固定熔点或者熔点太高(高于2000℃),所以,目前还没有直接将陶瓷材料运用选择性激光熔融技术成型。
因此,研发出一种TiB2陶瓷增材的制造方法,用于解决现有技术中,对于复杂形状的TiB2陶瓷无法实现一次成型的技术缺陷,成为了本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本发明提供了一种TiB2陶瓷增材的制造方法,用于解决现有技术中,对于复杂形状的TiB2陶瓷无法实现一次成型的技术缺陷。
本发明提供了一种TiB2陶瓷增材的制造方法,所述制造方法为:
步骤一、Ti球形粉和硼粉球磨后干燥,得Ti-B混合粉体;
步骤二、在惰性保护气或真空氛围中,所述Ti-B混合粉体经选择性激光熔融打印成型,得产品。
优选地,步骤一中,所述Ti球形粉的粒径为10~50μm,所述Ti球形粉的纯度大于99%。
优选地,步骤一中,所述硼粉的粒径小于1μm,所述硼粉的纯度大于99%。
优选地,步骤一中,所述球磨的球磨介质为Si3N4,所述球磨的时间为 4~18h。
优选地,步骤一中,以摩尔份计,所述Ti球形粉和硼粉的投料比为1:(2~5)。
优选地,步骤二中,所述惰性保护气为氩气。
优选地,步骤二中,所述选择性激光熔融打印成型的激光强度为 150~550J/mm3
优选地,步骤二中,所述选择性激光熔融打印成型的激光扫描速率为 100~1200mm/s。
优选地,步骤二中,所述选择性激光熔融打印成型的扫描间距为 20~200μm。
优选地,步骤二中,所述选择性激光熔融打印成型的扫描层厚为 10~100μm。
综上所述,本发明提供了一种TiB2陶瓷增材的制造方法,所述制造方法为:步骤一、Ti球形粉和硼粉球磨后干燥,得Ti-B混合粉体;步骤二、在惰性保护气或真空氛围中,所述Ti-B混合粉体经选择性激光熔融打印成型,得产品。本发明提供的技术方案中,利用Ti-B混合粉体在进行选择性激光熔融打印成型的过程中,同步反应制备复杂形状的TiB2陶瓷,后续无需再进行烧结和热处理,制备步骤简单;同时,经实验测定可得,所制得的TiB2陶瓷的相对密度大于95%,硬度为30~35GPa,断裂韧性为8~12MPa·m1/2,抗弯强度为 800~1000MPa。本发明提供了一种TiB2陶瓷增材的制造方法,用于解决现有技术中,对于复杂形状的TiB2陶瓷无法实现一次成型的技术缺陷。
具体实施方式
本发明实施例提供了一种TiB2陶瓷增材的制造方法,用于解决现有技术中,对于复杂形状的TiB2陶瓷无法实现一次成型的技术缺陷。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更详细说明本发明,下面结合实施例对本发明提供的一种TiB2陶瓷增材的制造方法,进行具体地描述。
实施例1
以金属Ti球形粉和硼粉为原料,其中,金属Ti球形粉纯度为99%,粒径为20μm,硼粉纯度为99%,粒径100nm。按Ti:B的摩尔比为1:3配比经混料,以Si3N4球为球磨介质,在行星式球磨机上球磨混合4h,得到Ti-B混合粉体 1。
将Ti-B混合粉体1通过选择性激光熔融技术打印出成型,其中,激光强度为300J/mm3,激光扫描速率为100mm/s,扫描间距100μm,扫描层厚10μm。整个3D打印过程中的保护气氛为Ar,制备得到具有净尺寸、复杂形状的TiB2陶瓷产品1。
经测定,所得陶瓷产品1的相对密度为98%,硬度为32GPa,断裂韧性为12MPa·m1 /2,抗弯强度为1000MPa。
实施例2
以金属Ti球形粉和硼粉为原料,其中,金属Ti球形粉纯度为99%,粒径为30μm,硼粉纯度为99%,粒径30nm。按Ti:B的摩尔比为1:2配比经混料,以Si3N4球为球磨介质,在行星式球磨机上球磨混合4h,得到Ti-B混合粉体 2。
将Ti-B混合粉体2通过选择性激光熔融技术打印出成型,其中,激光强度为150J/mm3,激光扫描速率为1200mm/s,扫描间距200μm,扫描层厚100μm。整个3D打印过程中的保护气氛为Ar,制备得到具有净尺寸、复杂形状的TiB2陶瓷产品2。
经测定,所得陶瓷产品2的相对密度为99%,硬度为30GPa,断裂韧性为10MPa·m1 /2,抗弯强度为800MPa。
实施例3
以金属Ti球形粉和硼粉为原料,其中,金属Ti球形粉纯度为99%,粒径为10μm,硼粉纯度为99%,粒径20nm。按Ti:B的摩尔比为1:5配比经混料,以Si3N4球为球磨介质,在行星式球磨机上球磨混合10h,得到Ti-B混合粉体3。
将Ti-B混合粉体3通过选择性激光熔融技术打印出成型,其中,激光强度为550J/mm3,激光扫描速率为500mm/s,扫描间距20μm,扫描层厚30μm。整个3D打印过程中的保持真空,制备得到具有净尺寸、复杂形状的TiB2陶瓷产品3。
经测定,所得陶瓷产品3的相对密度为99%,硬度为35GPa,断裂韧性为12MPa·m1 /2,抗弯强度为950MPa。
实施例4
以金属Ti球形粉和硼粉为原料,其中,金属Ti球形粉纯度为99%,粒径为40μm,硼粉纯度为99%,粒径10nm。按Ti:B的摩尔比为1:2配比经混料,以Si3N4球为球磨介质,在行星式球磨机上球磨混合18h,得到Ti-B混合粉体 4。
将Ti-B混合粉体4通过选择性激光熔融技术打印出成型,其中,激光强度为350J/mm3,激光扫描速率为500mm/s,扫描间距80μm,扫描层厚45μm。整个3D打印过程中的保护气氛为Ar,制备得到具有净尺寸、复杂形状的TiB2陶瓷产品4。
经测定,所得陶瓷产品4的相对密度为98%,硬度为35GPa,断裂韧性为12MPa·m1 /2,抗弯强度为1000MPa。
实施例5
以金属Ti球形粉和硼粉为原料,其中,金属Ti球形粉纯度为99%,粒径为40μm,硼粉纯度为99%,粒径50nm。按Ti:B的摩尔比为1:2配比经混料,以Si3N4球为球磨介质,在行星式球磨机上球磨混合4h,得到Ti-B混合粉体 5。
将Ti-B混合粉体5通过选择性激光熔融技术打印出成型,其中,激光强度为350J/mm3,激光扫描速率为800mm/s,扫描间距150μm,扫描层厚45μm。整个3D打印过程中的保持真空,制备得到具有净尺寸、复杂形状的TiB2陶瓷产品5。
经测定,所得陶瓷产品5的相对密度为98%,硬度为35GPa,断裂韧性为12MPa·m1 /2,抗弯强度为900MPa。
陶瓷3D打印用其他方法制备时,比如光固化,都需要成型后再进行排胶烧结,所以,会有10~20%的体积收缩,陶瓷制备过程中的体积収缩主要来源于排胶和烧结。然而,本申请中,所利用的是金属3D打印的特点,在打印过程中发生反应同步制备得到,没有后续排胶和烧结步骤,因此,不存在体积收缩的问题。
从上述技术方案可以得出,本发明提供的本发明提供了一种TiB2陶瓷增材的制造方法,具有以下优点:
(1)、可直接实现TiB2陶瓷的增材制造成型,无需后续烧结或者热处理;
(2)、可实现复杂形状TiB2陶瓷的净尺寸成型;
(3)、制备过程无体积收缩,有利于提高产品的精度。
综上所述,本发明提供了一种TiB2陶瓷增材的制造方法,所述制造方法为:步骤一、Ti球形粉和硼粉球磨后干燥,得Ti-B混合粉体;步骤二、在惰性保护气或真空氛围中,所述Ti-B混合粉体经选择性激光熔融打印成型,得产品。本发明提供的技术方案中,利用Ti-B混合粉体在进行选择性激光熔融打印成型的过程中,同步反应制备复杂形状的TiB2陶瓷,后续无需再进行烧结和热处理,制备步骤简单;同时,经实验测定可得,所制得的TiB2陶瓷的相对密度大于95%,硬度为30~35GPa,断裂韧性为8~12MPa·m1/2,抗弯强度为 800~1000MPa。本发明提供了一种TiB2陶瓷增材的制造方法,用于解决现有技术中,对于复杂形状的TiB2陶瓷无法实现一次成型的技术缺陷。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种TiB2陶瓷增材的制造方法,其特征在于,所述制造方法为:
步骤一、Ti球形粉和硼粉球磨后干燥,得Ti-B混合粉体;
步骤二、在惰性保护气或真空氛围中,所述Ti-B混合粉体经选择性激光熔融打印成型,得产品。
2.根据权利要求1所述的制造方法,其特征在于,步骤一中,所述Ti球形粉的粒径为10~50μm,所述Ti球形粉的纯度大于99%。
3.根据权利要求1所述的制造方法,其特征在于,步骤一中,所述硼粉的粒径小于1μm,所述硼粉的纯度大于99%。
4.根据权利要求1所述的制造方法,其特征在于,步骤一中,所述球磨的球磨介质为Si3N4,所述球磨的时间为4~18h。
5.根据权利要求1所述的制造方法,其特征在于,步骤一中,以摩尔份计,所述Ti球形粉和硼粉的投料比为1:(2~5)。
6.根据权利要求1所述的制造方法,其特征在于,步骤二中,所述惰性保护气为氩气。
7.根据权利要求1所述的制造方法,其特征在于,步骤二中,所述选择性激光熔融打印成型的激光强度为150~550J/mm3
8.根据权利要求1所述的制造方法,其特征在于,步骤二中,所述选择性激光熔融打印成型的激光扫描速率为100~1200mm/s。
9.根据权利要求1所述的制造方法,其特征在于,步骤二中,所述选择性激光熔融打印成型的扫描间距为20~200μm。
10.根据权利要求1所述的制造方法,其特征在于,步骤二中,所述选择性激光熔融打印成型的扫描层厚为10~100μm。
CN201810631409.1A 2018-06-19 2018-06-19 一种TiB2陶瓷增材的制造方法 Pending CN109111233A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810631409.1A CN109111233A (zh) 2018-06-19 2018-06-19 一种TiB2陶瓷增材的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810631409.1A CN109111233A (zh) 2018-06-19 2018-06-19 一种TiB2陶瓷增材的制造方法

Publications (1)

Publication Number Publication Date
CN109111233A true CN109111233A (zh) 2019-01-01

Family

ID=64822392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810631409.1A Pending CN109111233A (zh) 2018-06-19 2018-06-19 一种TiB2陶瓷增材的制造方法

Country Status (1)

Country Link
CN (1) CN109111233A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185304A (zh) * 2021-05-13 2021-07-30 大连理工大学 基于热处理法调控激光增材制造熔体自生陶瓷构件的组织及性能的方法
CN113880585A (zh) * 2021-10-29 2022-01-04 武汉科技大学 具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190928A (zh) * 2014-08-18 2014-12-10 中国科学院重庆绿色智能技术研究院 一种多波长激光选区快速成形系统及方法
CN106187195A (zh) * 2016-06-29 2016-12-07 华中科技大学 采用激光选区烧结工艺制备碳化硅陶瓷件的方法
CN107973607A (zh) * 2016-10-21 2018-05-01 南京理工大学 一种无粘结剂的陶瓷浆料激光选区熔化/烧结成形方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190928A (zh) * 2014-08-18 2014-12-10 中国科学院重庆绿色智能技术研究院 一种多波长激光选区快速成形系统及方法
CN106187195A (zh) * 2016-06-29 2016-12-07 华中科技大学 采用激光选区烧结工艺制备碳化硅陶瓷件的方法
CN107973607A (zh) * 2016-10-21 2018-05-01 南京理工大学 一种无粘结剂的陶瓷浆料激光选区熔化/烧结成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张多等: "激光熔覆原位自生TiB2的工艺研究", 《应用激光》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185304A (zh) * 2021-05-13 2021-07-30 大连理工大学 基于热处理法调控激光增材制造熔体自生陶瓷构件的组织及性能的方法
CN113880585A (zh) * 2021-10-29 2022-01-04 武汉科技大学 具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法
CN113880585B (zh) * 2021-10-29 2023-10-27 武汉科技大学 具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法

Similar Documents

Publication Publication Date Title
CN108610052A (zh) 一种二硼化钛基复相陶瓷及其制备方法和应用
CN104163634A (zh) 一种用于三维打印的热塑材料及其应用方法
CN101102977B (zh) 生产陶瓷或陶瓷焊接用的共晶粉末添加剂及其制备方法
Bao et al. Low‐temperature preparation of titanium diboride fine powder via magnesiothermic reduction in molten salt
CN103537699B (zh) 一种聚晶立方氮化硼复合片的制备方法
Dong et al. Additive manufacturing of silicon nitride ceramics: A review of advances and perspectives
CN108002842B (zh) 一种复杂形状多孔氮化硅件的制备方法
CN109111233A (zh) 一种TiB2陶瓷增材的制造方法
CN107721408B (zh) 一种3D打印制备β-磷酸三钙多孔生物陶瓷的方法
CN108911757A (zh) 一种高性能硼化锆-碳化硅复相陶瓷及其制备方法和应用
CN105236963B (zh) 氧化锆陶瓷插芯毛坯生产工艺
CN105130186A (zh) 一种煤矸石微晶玻璃及其制备方法
CN101423413B (zh) 一种制备ZrB2—Al2O3复合粉体的方法
CN102173802A (zh) 一种原位(TiB2+SiC)/Ti3SiC2复相陶瓷材料及其制备方法
CN108546130A (zh) 一种超高温陶瓷及其制备方法
CN100364071C (zh) 用粉末注射成形/压力熔浸法制备电子封装材料的方法
CN106381435A (zh) 一种3d打印复合材料粉体及其制备方法
CN102167591A (zh) ZrB2基复合材料的制备方法
Fedorova et al. Study of phase decomposition in ZrW2O8
CN104446513A (zh) 一种BN-ZrO2-SiC复合材料的复合烧结助剂
CN108383528A (zh) 一种喷嘴专用碳化硼材料及其制备方法
CN104446512A (zh) 一种BN-ZrO2-SiC复合材料的复合烧结助剂
CN106396672A (zh) 陶瓷刀具的制备方法
CN108149107A (zh) SiCW增韧金属陶瓷及其制备方法
CN108463444A (zh) 提供无机聚合物陶瓷样材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190101

RJ01 Rejection of invention patent application after publication