CN113880585A - 具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法 - Google Patents
具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法 Download PDFInfo
- Publication number
- CN113880585A CN113880585A CN202111273938.7A CN202111273938A CN113880585A CN 113880585 A CN113880585 A CN 113880585A CN 202111273938 A CN202111273938 A CN 202111273938A CN 113880585 A CN113880585 A CN 113880585A
- Authority
- CN
- China
- Prior art keywords
- boron carbide
- titanium boride
- carbide composite
- composite ceramic
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 93
- 229910052580 B4C Inorganic materials 0.000 title claims abstract description 89
- 239000000919 ceramic Substances 0.000 title claims abstract description 80
- 239000010936 titanium Substances 0.000 title claims abstract description 74
- 239000002131 composite material Substances 0.000 title claims abstract description 73
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 37
- 238000000110 selective laser sintering Methods 0.000 claims abstract description 34
- 239000000843 powder Substances 0.000 claims abstract description 28
- 239000011812 mixed powder Substances 0.000 claims abstract description 26
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims abstract description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052786 argon Inorganic materials 0.000 claims abstract description 8
- 238000001291 vacuum drying Methods 0.000 claims abstract description 8
- 238000002360 preparation method Methods 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 7
- 238000003892 spreading Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 19
- 238000005265 energy consumption Methods 0.000 abstract description 9
- 230000003746 surface roughness Effects 0.000 abstract description 6
- 238000000149 argon plasma sintering Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 abstract 1
- 238000005245 sintering Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 229910033181 TiB2 Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000002490 spark plasma sintering Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 1
- 239000011225 non-oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005475 siliconizing Methods 0.000 description 1
- -1 titanium hydride Chemical compound 0.000 description 1
- 229910000048 titanium hydride Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58071—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/563—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/65—Reaction sintering of free metal- or free silicon-containing compositions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3821—Boron carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/404—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
- C04B2235/662—Annealing after sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/665—Local sintering, e.g. laser sintering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Ceramic Products (AREA)
Abstract
本发明涉及一种具有复杂形状的硼化钛‑碳化硼复合陶瓷及其制造方法。其技术方案是:先将钛粉和碳化硼粉置于混料机中混合,于真空干燥箱中干燥,得到混合粉;将混合粉铺展于选区激光烧结设备的工作仓中,抽真空并充入氩气;再设置选区激光烧结设备的激光加工参数,按照预设模型对铺展的混合粉扫描,制得具有目标形状的硼化钛‑碳化硼复合陶瓷;然后将具有目标形状的硼化钛‑碳化硼复合陶瓷置于真空管式炉中热处理,制得具有复杂形状的硼化钛‑碳化硼复合陶瓷。本发明具有能耗低、效率高、成本低、工艺简单和材料利用率高的特点,所制备的产品形状复杂、致密度高、力学性能优异、表面粗糙度低、精度高和可调范围广。
Description
技术领域
本发明属于硼化钛-碳化硼复合陶瓷技术领域。具体涉及一种具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法。
背景技术
硼化钛-碳化硼(TiB2/B4C)复合陶瓷因其具有高熔点、高硬度、优异的抗侵蚀和优良的抗热冲击性能等特点,被广泛应用于航天航空、轻质装甲等高端结构材料领域。因此,高效率、低成本地制备具有高致密度和复杂形状的硼化钛-碳化硼复合陶瓷的方法吸引了研究者们越来越多的关注。
现有的制备硼化钛-碳化硼复合陶瓷方法包括热压烧结法、放电等离子烧结法和热等静压烧结法等,其均属于减材制造方法范畴,即必须通过切削、磨抛等后续加工处理才能得到具有所需复杂形状的制品。例如,“一种B4C-nanoTiB2复合陶瓷材料的制备方法(CN110386819A)”专利技术,首先将摩尔分数分别为90%~95%的碳化硼粉和5%~10%的钛粉混合均匀后经真空热处理制成坯体,然后将所得坯体置于六面顶压机中,在外加压强高达4.5~5.5GPa、加热温度高达1400~1600℃的条件下反应10~30分钟,从而制得B4C-nanoTiB2复合陶瓷。“一种B4C/TiB2层状复合陶瓷材料的制备方法(CN110282977A)”专利技术,将碳化硼粉、硼化钛粉或碳化硼/硼化钛混合粉按不同比例与碳源混合均匀,制成不同成分的混合物料,然后将该混合物料依次经模压成型、700~800℃温度条件下碳化和1500~1600℃/30~60分钟的严苛温度条件下的真空熔渗硅等多步骤处理,最终制得致密度较低且具有大晶粒尺寸的层状硼化钛-碳化硼复合陶瓷材料。此外,Fan等(Fan JZ,Shen JX,Zhang ZF,et al.Properties ofB4C/TiB2ceramics preparedby sparkplasma sintering[J].Chinese Physics B,2021,30(03):579-584.)公开了一种碳化硼/硼化钛复合陶瓷的制备方法,即以碳化硼粉(99.5%,1~10μm)和氢化钛粉(99%,35~45μm)为原料,通过放电等离子烧结法制得具有简单圆片形状的碳化硼/硼化钛复合陶瓷。现有硼化钛-碳化硼复合陶瓷的减材制造方法存在能耗高、效率低、材料利用率低、设备和加工成本高的技术缺陷,而且其制品存在致密度低、力学性能差、表面精度低、尺寸小和不具备复杂形状等不足,从而严重地限制了其应用价值的发挥。
选区激光烧结法(Selective Laser Sintering,简称SLS法)作为代表性的增材制造方法,其利用建模软件设计的打印材料的三维结构模型,通过控制激光在二维层面上按照预设路径进行选区加工和加工层的叠层堆积,直接制备具有任意三维结构的制品。因此,相较减材制造方法,选区激光烧结法等增材制造方法具有能耗低、效率高、材料利用率高、成本低、无需使用模具即可成型具有所需复杂形状材料等优点。
当前,采用选区激光烧结法制备陶瓷的报道不多而且以氧化物陶瓷为主。相较之下,对于非氧化物陶瓷的报道明显较少,而且尚无制备硼化钛和碳化硼陶瓷的报道。例如,Bertrand等(Bertrand P,Bayle F,Combe C,et al.Ceramic components manufacturingby selective laser sintering[J].Applied Surface Science,2007,254(4):989-992.)采用选区激光烧结法制备了致密度仅为56%的ZrO2-Y2O3陶瓷。Yves-Christian等(Yves-Christian H,Jan W,Wilhelm M,et al.Net shaped high performance oxide ceramicparts by selective laser melting[J].Physics Procedia,2010,5:587-594.)采用选区激光烧结法,在1600℃的高预热温度条件下制备了Al2O3-ZrO2陶瓷。Zhang等(Zhang X,WangF,Wu Z,et al.Direct selective laser sintering of hexagonal barium titanateceramics[J].Journal ofthe American Ceramic Society,2021,104:1271-1280.)采用选区激光烧结法,在预热基板和两次激光加工条件下,制备了致密度达97%但厚度仅为500μm的BaTiO3陶瓷薄膜。Gu等(Gu D,Shen Y,Lu Z.Preparation of TiN-Ti5Si3 in-situcomposites by Selective Laser Melting[J].Materials Letters,2009,63(18-19):1577-1579.)以钛粉和氮化硅粉为原料,采用选区激光烧结法,原位合成/烧结制备了纯度较低的TiN/Ti5Si3复合材料。
上述采用选区激光烧结法制备陶瓷的主要问题在于陶瓷的熔点高、共价键性强且对于激光的吸收能力较差,导致其难以在激光加工条件下被充分烧结。因此,现有的采用选区激光烧结法制备陶瓷,普遍存在打印材料范围较窄、需预热等高能耗加工条件、制品的纯度和致密度较低、表面粗糙度较高且力学性能不佳等缺点。
发明内容
本发明旨在克服现有技术缺陷,目的是提供一种能耗低、效率高、成本低、工艺简单、材料利用率高、无需模具的具有复杂形状的硼化钛-碳化硼复合陶瓷的制造方法,用该方法制备的制品形状复杂、致密度高、力学性能优异、表面粗糙度低、精度高且可调范围广。
为实现上述目的,本发明采用的技术方案的步骤是:
步骤一、先将33~75wt%的钛粉和25~67wt%的碳化硼粉置于混料机中,混合3~6h,再置于真空干燥箱中,在60~70℃的条件下干燥24~36h,得到混合粉。
步骤二、将所述混合粉铺展于选区激光烧结设备的工作仓中,然后抽真空至真空度≤100Pa,再向所述工作仓内充入氩气至1个标准大气压。
步骤三、设置选区激光烧结设备的激光加工参数:输出功率为100~500W,扫描速度为100~400mm/s,扫描间距为0.02~0.06mm,分层厚度为0.05~0.09mm,送粉系数为4~7,扫描方式为分块扫描或带状X-Y。
步骤四、启动选区激光烧结设备,按照预设模型对铺展的混合粉扫描1~3次,扫描间隔时间为10~20s;如此往复进行至预设高度,制得具有目标形状的硼化钛-碳化硼复合陶瓷。
步骤五、将所述具有目标形状的硼化钛-碳化硼复合陶瓷置于真空管式炉中,在1100~1500℃条件下保温1~5h,自然冷却,制得具有复杂形状的硼化钛-碳化硼复合陶瓷。
所述钛粉的纯度≥99.9wt%,平均粒径≤80μm。
所述碳化硼粉的纯度为≥95.00wt%,平均粒径≤80μm。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果和突出特点:
1、本发明采用选区激光烧结法制备具有复杂形状的硼化钛-碳化硼复合陶瓷,属“增材制造”方法范畴,只需按照预设模型对铺展的混合粉扫描1~3次,扫描间隔时间为10~20s,如此往复,即得具有目标形状的硼化钛-碳化硼复合陶瓷;然后在1100~1500℃的条件下保温1~5h,自然冷却,制得所制制品,故本发明能耗低、效率高、无需模具、形状复杂、表面粗糙度低、精度高和三维尺寸可调。
2、本发明以商用钛粉和商用碳化硼粉为制备具有复杂形状的硼化钛-碳化硼复合陶瓷的原料,通过原位合成/烧结的方法制得的具有复杂形状的硼化钛-碳化硼复合陶瓷经XRD测试结果显示,该陶瓷仅含TiB2相和B4C相,即为硼化钛-碳化硼复合陶瓷。在制备过程中,钛粉通过吸收激光能量形成熔池并提高反应体系温度,从而诱发钛粉与碳化硼粉之间的强放热化学反应,进而同步促进硼化钛的合成和硼化钛-碳化硼复合陶瓷的烧结过程。因此,所制制品致密度高、力学性能优异。
3、本发明采用采用选区激光烧结法,仅需配合简单的退火处理即可制得具有复杂形状的硼化钛-碳化硼复合陶瓷,从而省略了减材加工法的切削、磨抛等冗繁的后处理过程及节省了相应的加工成本。由此可知,本方法工艺简单、效率高、材料利用率高、加工成本低和适合工业化生产。
因此,本发明具有能耗低、效率高、成本低、工艺简单和材料利用率高的特点,所制备的具有复杂形状的硼化钛-碳化硼复合陶瓷形状复杂、致密度高、力学性能优异、表面粗糙度低、精度高和可调范围广。
附图说明
图1是本发明制备的一种具有复杂形状的硼化钛-碳化硼复合陶瓷的照片;
图2为图1所示的具有复杂形状的硼化钛-碳化硼复合陶瓷的XRD图谱。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的描述,并非对其保护范围的限制。
为避免重复,先将本具体实施方式所涉及的原料信息统一描述如下,实施例中不再赘述:
所述钛粉的纯度≥99.9wt%,平均粒径≤80μm;
所述碳化硼粉的纯度为≥95.00wt%,平均粒径≤80μm。
实施例1
一种具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法。所述制备方法的步骤是:
步骤一、先将60~75wt%的钛粉和25~40wt%的碳化硼粉置于混料机中,混合5~6h,再置于真空干燥箱中,在60~63℃的条件下干燥24~28h,得到混合粉。
步骤二、将所述混合粉铺展于选区激光烧结设备的工作仓中,然后抽真空至真空度≤100Pa,再向所述工作仓内充入氩气至1个标准大气压。
步骤三、设置选区激光烧结设备的激光加工参数:输出功率为150~300W,扫描速度为100~200mm/s,扫描间距为0.02~0.03mm,分层厚度为0.05~0.06mm,送粉系数为5~6,扫描方式为分块扫描。
步骤四、启动选区激光烧结设备,按照预设模型对铺展的混合粉扫描1~2次,扫描间隔时间为10~12s;如此往复进行至预设高度,制得具有目标形状的硼化钛-碳化硼复合陶瓷。
步骤五、将所述具有目标形状的硼化钛-碳化硼复合陶瓷置于真空管式炉中,在1100~1200℃条件下保温1~2h,自然冷却,制得具有复杂形状的硼化钛-碳化硼复合陶瓷。
实施例2
一种具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法。所述制备方法的步骤是:
步骤一、先将53~70wt%的钛粉和30~47wt%的碳化硼粉置于混料机中,混合3.5~4.5h,再置于真空干燥箱中,在62~65℃的条件下干燥26~30h,得到混合粉。
步骤二、将所述混合粉铺展于选区激光烧结设备的工作仓中,然后抽真空至真空度≤100Pa,再向所述工作仓内充入氩气至1个标准大气压。
步骤三、设置选区激光烧结设备的激光加工参数:输出功率为100~250W,扫描速度为200~300mm/s,扫描间距为0.02~0.03mm,分层厚度为0.07~0.08mm,送粉系数为6~7,扫描方式为分块扫描。
步骤四、启动选区激光烧结设备,按照预设模型对铺展的混合粉扫描2~3次,扫描间隔时间为12~14s;如此往复进行至预设高度,制得具有目标形状的硼化钛-碳化硼复合陶瓷。
步骤五、将所述具有目标形状的硼化钛-碳化硼复合陶瓷置于真空管式炉中,在1200~1300℃条件下保温2~3h,自然冷却,制得具有复杂形状的硼化钛-碳化硼复合陶瓷。
实施例3
一种具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法。所述制备方法的步骤是:
步骤一、先将46~58wt%的钛粉和42~54wt%的碳化硼粉置于混料机中,混合4.5~5.5h,再置于真空干燥箱中,在64~67℃的条件下干燥28~32h,得到混合粉。
步骤二、将所述混合粉铺展于选区激光烧结设备的工作仓中,然后抽真空至真空度≤100Pa,再向所述工作仓内充入氩气至1个标准大气压。
步骤三、设置选区激光烧结设备的激光加工参数:输出功率为200~350W,扫描速度为150~250mm/s,扫描间距为0.03~0.04mm,分层厚度为0.06~0.07mm,送粉系数为4~5,扫描方式为带状X-Y。
步骤四、启动选区激光烧结设备,按照预设模型对铺展的混合粉扫描2~3次,扫描间隔时间为14~16s;如此往复进行至预设高度,制得具有目标形状的硼化钛-碳化硼复合陶瓷。
步骤五、将所述具有目标形状的硼化钛-碳化硼复合陶瓷置于真空管式炉中,在1400~1500℃条件下保温3~4h,自然冷却,制得具有复杂形状的硼化钛-碳化硼复合陶瓷。
实施例4
一种具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法。所述制备方法的步骤是:
步骤一、先将38~51wt%的钛粉和49~62wt%的碳化硼粉置于混料机中,混合4~5h,再置于真空干燥箱中,在68~70℃的条件下干燥32~36h,得到混合粉。
步骤二、将所述混合粉铺展于选区激光烧结设备的工作仓中,然后抽真空至真空度≤100Pa,再向所述工作仓内充入氩气至1个标准大气压。
步骤三、设置选区激光烧结设备的激光加工参数:输出功率为250~400W,扫描速度为250~350mm/s,扫描间距为0.04~0.05mm,分层厚度为0.06~0.07mm,送粉系数为5~6,扫描方式为分块扫描。
步骤四、启动选区激光烧结设备,按照预设模型对铺展的混合粉扫描1~2次,扫描间隔时间为16~18s;如此往复进行至预设高度,制得具有目标形状的硼化钛-碳化硼复合陶瓷。
步骤五、将所述具有目标形状的硼化钛-碳化硼复合陶瓷置于真空管式炉中,在1300~1400℃条件下保温4~5h,自然冷却,制得具有复杂形状的硼化钛-碳化硼复合陶瓷。
实施例5
一种具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法。所述制备方法的步骤是:
步骤一、先将33~45wt%的钛粉和55~67wt%的碳化硼粉置于混料机中,混合3~4h,再置于真空干燥箱中,在65~68℃的条件下干燥30~34h,得到混合粉。
步骤二、将所述混合粉铺展于选区激光烧结设备的工作仓中,然后抽真空至真空度≤100Pa,再向所述工作仓内充入氩气至1个标准大气压。
步骤三、设置选区激光烧结设备的激光加工参数:输出功率为350~500W,扫描速度为300~400mm/s,扫描间距为0.05~0.06mm,分层厚度为0.08~0.09mm,送粉系数为4~5,扫描方式为带状X-Y。
步骤四、启动选区激光烧结设备,按照预设模型对铺展的混合粉扫描2~3次,扫描间隔时间为18~20s;如此往复进行至预设高度,制得具有目标形状的硼化钛-碳化硼复合陶瓷。
步骤五、将所述具有目标形状的硼化钛-碳化硼复合陶瓷置于真空管式炉中,在1350~1450℃条件下保温2~3h,自然冷却,制得具有复杂形状的硼化钛-碳化硼复合陶瓷。
本具体实施方式与现有技术相比具有如下积极效果和突出特点:
1、本具体实施方式采用选区激光烧结法制备具有复杂形状的硼化钛-碳化硼复合陶瓷,属“增材制造”方法范畴,只需按照预设模型对铺展的混合粉扫描1~3次,扫描间隔时间为10~20s,如此往复,即得具有目标形状的硼化钛-碳化硼复合陶瓷;然后在1100~1500℃的条件下保温1~5h,自然冷却,制得具有复杂形状的硼化钛-碳化硼复合陶瓷如图1所示。图1是实施例1制备的一种具有复杂形状的硼化钛-碳化硼复合陶瓷的照片,从图1可以看出:所制制品形状复杂和精度高;故本具体实施方式能耗低、效率高、无需模具、形状复杂、表面粗糙度低、精度高和三维尺寸可调。
2、本具体实施方式以商用钛粉和商用碳化硼粉为制备具有复杂形状的硼化钛-碳化硼复合陶瓷的原料,通过原位合成/烧结的方法制得具有复杂形状的硼化钛-碳化硼复合陶瓷。所制制品经XRD测试结果如图2所示,图2为图1所示的具有复杂形状的硼化钛-碳化硼复合陶瓷的XRD图谱,从图2可以看出,所制制品仅含TiB2相和B4C相,即为硼化钛-碳化硼复合陶瓷。本具体实施方式在制备过程中,钛粉通过吸收激光能量形成熔池并提高反应体系温度,从而诱发钛粉与碳化硼粉之间的强放热化学反应,进而同步促进硼化钛的合成和硼化钛-碳化硼复合陶瓷的烧结过程。因此,所制制品致密度高、力学性能优异。
3、本具体实施方式采用采用选区激光烧结法,仅需配合简单的退火处理即可制得具有复杂形状的硼化钛-碳化硼复合陶瓷,从而省略了减材加工法的切削、磨抛等冗繁的后处理过程及节省了相应的加工成本。由此可知,本方法工艺简单、效率高、材料利用率高、加工成本低和适合工业化生产。
因此,本具体实施方式具有能耗低、效率高、成本低、工艺简单和材料利用率高的特点,所制备的具有复杂形状的硼化钛-碳化硼复合陶瓷形状复杂、致密度高、力学性能优异、表面粗糙度低、精度高和可调范围广。
Claims (4)
1.一种具有复杂形状的硼化钛-碳化硼复合陶瓷的制备方法,其特征在于所述制备方法的步骤是:
步骤一、先将33~75wt%的钛粉和25~67wt%的碳化硼粉置于混料机中,混合3~6h,再置于真空干燥箱中,在60~70℃的条件下干燥24~36h,得到混合粉;
步骤二、将所述混合粉铺展于选区激光烧结设备的工作仓中,然后抽真空至真空度≤100Pa,再向所述工作仓内充入氩气至1个标准大气压;
步骤三、设置选区激光烧结设备的激光加工参数:输出功率为100~500W,扫描速度为100~400mm/s,扫描间距为0.02~0.06mm,分层厚度为0.05~0.09mm,送粉系数为4~7,扫描方式为分块扫描或带状X-Y;
步骤四、启动选区激光烧结设备,按照预设模型对铺展的混合粉扫描1~3次,扫描间隔时间为10~20s;如此往复进行至预设高度,制得具有目标形状的硼化钛-碳化硼复合陶瓷;
步骤五、将所述具有目标形状的硼化钛-碳化硼复合陶瓷置于真空管式炉中,在1100~1500℃条件下保温1~5h,自然冷却,制得具有复杂形状的硼化钛-碳化硼复合陶瓷。
2.根据权利要求1,所述的具有复杂形状的硼化钛-碳化硼复合陶瓷的制造方法,其特征在于所述钛粉的纯度≥99.9wt%,平均粒径≤80μm。
3.根据权利要求1,所述的具有复杂形状的硼化钛-碳化硼复合陶瓷的制造方法,其特征在于所述碳化硼粉的纯度为≥95.00wt%,平均粒径≤80μm。
4.一种具有复杂形状的硼化钛-碳化硼复合陶瓷,其特征在于所述具有复杂形状的硼化钛-碳化硼复合陶瓷是根据权利要求1~3项中任一项所述具有复杂形状的硼化钛-碳化硼复合陶瓷的制备方法所制备的具有复杂形状的硼化钛-碳化硼复合陶瓷。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111273938.7A CN113880585B (zh) | 2021-10-29 | 2021-10-29 | 具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111273938.7A CN113880585B (zh) | 2021-10-29 | 2021-10-29 | 具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113880585A true CN113880585A (zh) | 2022-01-04 |
CN113880585B CN113880585B (zh) | 2023-10-27 |
Family
ID=79015103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111273938.7A Active CN113880585B (zh) | 2021-10-29 | 2021-10-29 | 具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113880585B (zh) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2223247C2 (ru) * | 2002-04-02 | 2004-02-10 | Открытое акционерное общество "Комбинат "Магнезит" | Способ получения высокопрочного углеродсодержащего огнеупора |
CN1970503A (zh) * | 2006-12-01 | 2007-05-30 | 华中科技大学 | 一种金属/陶瓷激光烧结制件的后处理方法 |
CN101704678A (zh) * | 2009-11-11 | 2010-05-12 | 昆明理工大学 | 二硼化钛-碳化钛复相陶瓷微粉的自蔓延高温合成制备方法 |
CN105439564A (zh) * | 2014-09-18 | 2016-03-30 | Toto株式会社 | 反应烧结碳化硅构件的制造方法 |
CN108610052A (zh) * | 2018-05-17 | 2018-10-02 | 广东工业大学 | 一种二硼化钛基复相陶瓷及其制备方法和应用 |
CN109111233A (zh) * | 2018-06-19 | 2019-01-01 | 广东工业大学 | 一种TiB2陶瓷增材的制造方法 |
CN109734425A (zh) * | 2019-02-20 | 2019-05-10 | 华中科技大学 | 一种复相陶瓷铸型的激光选区快速成型方法及其产品 |
CN111116202A (zh) * | 2019-12-18 | 2020-05-08 | 南京理工大学 | 一种放电等离子反应烧结碳化硼-硼化钛材料的方法 |
CN112897528A (zh) * | 2021-03-24 | 2021-06-04 | 云南华谱量子材料有限公司 | 一种激光烧结合成碳化硼/碳粉体材料的方法 |
CN113292343A (zh) * | 2021-06-02 | 2021-08-24 | 哈尔滨工程大学 | 一种原位反应无压烧结制备碳化硼基复相陶瓷的方法 |
CN113387704A (zh) * | 2021-06-24 | 2021-09-14 | 武汉理工大学 | 一种碳化硼-硼化钛轻质高强复合陶瓷材料及其制备方法 |
-
2021
- 2021-10-29 CN CN202111273938.7A patent/CN113880585B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2223247C2 (ru) * | 2002-04-02 | 2004-02-10 | Открытое акционерное общество "Комбинат "Магнезит" | Способ получения высокопрочного углеродсодержащего огнеупора |
CN1970503A (zh) * | 2006-12-01 | 2007-05-30 | 华中科技大学 | 一种金属/陶瓷激光烧结制件的后处理方法 |
CN101704678A (zh) * | 2009-11-11 | 2010-05-12 | 昆明理工大学 | 二硼化钛-碳化钛复相陶瓷微粉的自蔓延高温合成制备方法 |
CN105439564A (zh) * | 2014-09-18 | 2016-03-30 | Toto株式会社 | 反应烧结碳化硅构件的制造方法 |
CN108610052A (zh) * | 2018-05-17 | 2018-10-02 | 广东工业大学 | 一种二硼化钛基复相陶瓷及其制备方法和应用 |
CN109111233A (zh) * | 2018-06-19 | 2019-01-01 | 广东工业大学 | 一种TiB2陶瓷增材的制造方法 |
CN109734425A (zh) * | 2019-02-20 | 2019-05-10 | 华中科技大学 | 一种复相陶瓷铸型的激光选区快速成型方法及其产品 |
CN111116202A (zh) * | 2019-12-18 | 2020-05-08 | 南京理工大学 | 一种放电等离子反应烧结碳化硼-硼化钛材料的方法 |
CN112897528A (zh) * | 2021-03-24 | 2021-06-04 | 云南华谱量子材料有限公司 | 一种激光烧结合成碳化硼/碳粉体材料的方法 |
CN113292343A (zh) * | 2021-06-02 | 2021-08-24 | 哈尔滨工程大学 | 一种原位反应无压烧结制备碳化硼基复相陶瓷的方法 |
CN113387704A (zh) * | 2021-06-24 | 2021-09-14 | 武汉理工大学 | 一种碳化硼-硼化钛轻质高强复合陶瓷材料及其制备方法 |
Non-Patent Citations (2)
Title |
---|
RYAN M. WHITE ET AL: "Microstructure and hardness scaling in laser-processed B4C–TiB2 eutectic ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
RYAN M. WHITE ET AL: "Microstructure and hardness scaling in laser-processed B4C–TiB2 eutectic ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》, 31 July 2010 (2010-07-31), pages 1227 - 1232 * |
Also Published As
Publication number | Publication date |
---|---|
CN113880585B (zh) | 2023-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024500914A (ja) | 高熱伝導性窒化ケイ素セラミックス絶縁板及びその製造方法 | |
CN101560104B (zh) | 碳化硅陶瓷管或棒的制备方法 | |
CN109553419B (zh) | 一种气压固相烧结碳化硼复相陶瓷及其制备方法 | |
JP5444384B2 (ja) | 高熱伝導性窒化アルミニウム焼結体 | |
CN110590377A (zh) | 一种高β相致密氮化硅陶瓷及低温制备方法 | |
CN104045350B (zh) | 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法 | |
JP5930317B2 (ja) | 高強度強靱性ZrO2‐Al2O3系固溶体セラミックスの作製法 | |
CN112250442B (zh) | 一种高强韧无粘结相纳米晶硬质合金的制备方法 | |
CN111825458A (zh) | 一种高致密碳化硼陶瓷材料及其无压烧结的制备方法 | |
KR20190048811A (ko) | 우수한 열전도도 및 열내구성을 가지는 탄화규소 소결체의 제조방법 | |
JP3472585B2 (ja) | 窒化アルミニウム焼結体 | |
CN105622102B (zh) | 类碳化硼相‑碳化硅或类碳化硼相‑碳化硅‑碳化硼复相陶瓷材料及其制备方法 | |
CN111116202A (zh) | 一种放电等离子反应烧结碳化硼-硼化钛材料的方法 | |
CN117658641B (zh) | 一种基于选区激光3D打印和两步烧结制备高致密SiC陶瓷的方法 | |
CN113880585A (zh) | 具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法 | |
CN101255056B (zh) | 一种超塑性纳米a1n陶瓷材料的制备方法 | |
CN106348777A (zh) | 一种氧化铝基复合陶瓷刀具材料及其微波制备方法 | |
CN113979765B (zh) | 一种碳化硅多孔陶瓷及其制备方法 | |
CN116903381A (zh) | 一种高导热高强度氮化硅基板制备方法 | |
CN109851329A (zh) | 一种细晶Al2O3/SiC复合陶瓷刀具材料及制备工艺 | |
CN116639980A (zh) | 一种多元碳化物陶瓷涂层的制备方法 | |
RU2540674C2 (ru) | Способ изготовления изделий из нитрида кремния | |
CN112759401A (zh) | 一种利用微波烧结制备高熵硼陶瓷表面材料的方法 | |
CN112898040A (zh) | 一种以高长径比晶须制备无晶间玻璃相β-Si3N4多孔陶瓷的方法 | |
CN111732436A (zh) | 易烧结钛和钨共掺杂碳化锆粉体及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |