CN109097742A - 一种大面积非层状结构NiSe纳米薄膜的制备方法 - Google Patents

一种大面积非层状结构NiSe纳米薄膜的制备方法 Download PDF

Info

Publication number
CN109097742A
CN109097742A CN201710467722.1A CN201710467722A CN109097742A CN 109097742 A CN109097742 A CN 109097742A CN 201710467722 A CN201710467722 A CN 201710467722A CN 109097742 A CN109097742 A CN 109097742A
Authority
CN
China
Prior art keywords
film
nise
nano thin
preparation
nise nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710467722.1A
Other languages
English (en)
Inventor
吕青锋
金钟镐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Feilite Water Treatment Technology Co Ltd
Original Assignee
Ningbo Feilite Water Treatment Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Feilite Water Treatment Technology Co Ltd filed Critical Ningbo Feilite Water Treatment Technology Co Ltd
Priority to CN201710467722.1A priority Critical patent/CN109097742A/zh
Publication of CN109097742A publication Critical patent/CN109097742A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种大面积非层状结构NiSe纳米薄膜的制备方法,其包括 NiSe纳米薄膜的制备、NiSe纳米薄膜的转移、NiSe纳米薄膜光探测器的构筑等步骤。本发明通过固相反应法生长得到的非层状结构的NiSe纳米薄膜质量好,晶粒尺寸大,晶界数量少;基于本发明高质量的NiSe纳米薄膜制备的光电探测器,获得的光电流比NiSe纳米晶薄膜提高了4个数量级;本发明制备工艺简单,成本低廉,具有较好的实用价值,而且这种方法可以被用来制备其他与传统平面工艺兼容的非层状结构材料纳米薄膜。

Description

一种大面积非层状结构NiSe纳米薄膜的制备方法
技术领域
本发明属于半导体薄膜材料领域,涉及一种通过固相反应法制备大面积非层状结构NiSe纳米薄膜的方法。
背景技术
由于具有独特的结构和性能,石墨烯和其他二维材料包括六方相氮化硼和过渡金属硫化物等,引起了广泛的关注。尤其通过化学气相沉积等方法可以在特定基底上制备出高质量、大面积的二维薄膜,这显著加快了二维材料的应用发展。受层状结构二维材料的启发,可以预见非层状结构材料的纳米薄膜与传统平面工艺相兼容,相比于他维度,更有利于其应用。而且,与纳米晶构成的薄膜相比,所制备出的具有大尺寸晶粒的非层状结构纳米薄膜拥有更优越的性能,这是因为晶界会引起电子的散射。层状结构材料在层内有较强的横向化学键,而在层之间有较弱的范德华力,这在形核和生长过程中,使得原子更容易生长成二维薄膜。而非层状结构的材料是在三个方向上都具有很强的原子键,从而使其缺乏内在各向异性生长驱动力,造成非层状结构纳米薄膜的生长很难实现。非层状结构材料的二维超薄纳米片和非层状结构纳米薄膜已经分别通过湿化学模板法和剥离的方法制备出来,但是尺寸分别仅限制在几百纳米和几微米之内。大面积非层状结构材料的纳米薄膜可以通过分子束外延法在单晶基底外延生长得到,但是成本较高。
发明内容
本发明的目的在于提供一种大面积非层状结构NiSe纳米薄膜的制备方法。本发明提供的这种大面积非层状结构NiSe纳米薄膜的生长方法工艺简单,成本低廉,具有较强的实用价值,而且可以被用来制备与传统平面工艺兼容的其他非层状结构材料纳米薄膜。
为实现上述目的,本发明采用如下的技术方案:
一种大面积非层状结构NiSe纳米薄膜的制备方法,包括以下步骤:
(1) NiSe纳米薄膜的制备:选择厚度为50 μm、纯度为99.99%的Ni箔在通有10 sccm H2和20 sccm Ar 的低压气氛中,450-550 ℃退火25-35 min,去除Ni箔表面的氧化物;退火完之后,利用电子束蒸发的方法在Ni箔表面沉积ZnSe薄膜,在整个沉积过程中,真空度保持在1×10-4-3×10-4 Pa;随后将ZnSe/Ni箔在1.5×10-4-2.5×10-4 Pa的真空度下650-750℃退 火25-35 min,得到NiSe纳米膜;
(2) NiSe纳米薄膜的转移:在50 μm厚的Ni箔表面得到的NiSe纳米薄膜上旋涂浓度为80-120 mg/ml PMMA,旋涂条件为:先在400-600 r/min的转速下匀胶甩胶5-7 s,然后在1500-2500 r/min的转速下匀胶30-50 s;旋涂完之后放置于加热台上70-90 ℃烘烤4-6min;然后将PMMA/NiSe/Ni箔放入2.0 mol/L FeCl3的溶液中刻蚀Ni箔;在Ni箔刻蚀完之后,将PMMA/NiSe膜放置于去离子水中清洗其表面残留的FeCl3刻蚀液;接着,将SiO2/Si基底捞起PMMA支撑的NiSe纳米薄膜;待完全风干后,将PMMA/NiSe/SiO2/Si放置于通有10 sccm H2和20 sccm Ar 的低压气氛中,350-450 ℃退火1-3 h除去PMMA,即得到了转移至SiO2/Si基底上的NiSe纳米薄膜;
(3) NiSe纳米薄膜光探测器的构筑:在NiSe纳米薄膜转移至SiO2/Si基底上后,利用光刻的方法构造出长度为5 μm,宽度为10 μm的沟道;通过高真空热蒸发系统沉积10/35 nmCr/Au来制作电极。
本发明的有益效果:
(1)本发明通过固相反应法生长得到的非层状结构的NiSe纳米薄膜质量好,晶粒尺寸大,晶界数量少。
(2)基于本发明高质量的NiSe纳米薄膜制备的光电探测器,获得的光电流比NiSe纳米晶薄膜提高了4个数量级。
(3) 本发明制备工艺简单,成本低廉,具有较好的实用价值,而且这种方法可以被用来制备其他与传统平面工艺兼容的非层状结构材料纳米薄膜。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅仅局限于实施例。
一种大面积非层状结构NiSe纳米薄膜的制备方法,包括以下步骤:
(1) NiSe纳米薄膜的制备:选择厚度为50 μm、纯度为99.99%的Ni箔在通有10 sccm H2和20 sccm Ar 的低压气氛中,500 ℃退火30 min,去除Ni箔表面的氧化物;退火完之后,利用电子束蒸发的方法在Ni箔表面沉积ZnSe薄膜,在整个沉积过程中,真空度保持在2×10-4Pa;随后将ZnSe/Ni箔在2×10-4 Pa的真空度下700 ℃退火30 min,得到NiSe纳米膜;
(2) NiSe纳米薄膜的转移:在50 μm厚的Ni箔表面得到的NiSe纳米薄膜上旋涂浓度为100 mg/ml PMMA,旋涂条件为:先在500 r/min的转速下匀胶甩胶6 s,然后在2000 r/min的转速下匀胶40 s;旋涂完之后放置于加热台上80 ℃烘烤5 min;然后将PMMA/NiSe/Ni箔放入2.0 mol/L FeCl3的溶液中刻蚀Ni箔;在Ni箔刻蚀完之后,将PMMA/NiSe膜放置于去离子水中清洗其表面残留的FeCl3刻蚀液;接着,将SiO2/Si基底捞起PMMA支撑的NiSe纳米薄膜;待完全风干后,将PMMA/NiSe/SiO2/Si放置于通有10 sccm H2 和20 sccm Ar 的低压气氛中,400 ℃退火2 h除去PMMA,即得到了转移至SiO2/Si基底上的NiSe纳米薄膜;
(3) NiSe纳米薄膜光探测器的构筑:在NiSe纳米薄膜转移至SiO2/Si基底上后,利用光刻的方法构造出长度为5 μm,宽度为10 μm的沟道;通过高真空热蒸发系统沉积10/35 nmCr/Au来制作电极。
气相法已经广泛应用于晶体生长中,通过气相法实现晶体的生长需要一定过饱和度。在经历一个气固转变过程之后,原子或者分子开始形核和生长。在这个非平衡动态过程中,在对应于薄膜生长的过饱和度下,气体源的供应速率远远大于晶体生长的速率,因此由动态过程决定的产物形貌一般呈现出孤立岛状结构而不是连续的纳米薄膜,这是由非层状结构产生的三维生长行为所导致的。基于对单晶非层状结构纳米薄膜的分子束外延生长的考虑,对气体源供应与晶体生长二者之间的相对速率的控制是非层状结构纳米薄膜生长的一个关键要素。以Ni箔上的NiSe为例,我们通过固相反应法的引入发明了一种界面限域外延生长非层状结构纳米薄膜的方法。在特定的温度下,通过Zn原子和Ni原子的相互扩散形成NiSe之后,NiSe在ZnSe-Ni界面处成核。在这个没有气固转变的热力学平衡过程中,NiSe生长速率被认为由扩散和反应速率所决定。这使得在弛豫时间内,NiSe与Ni基底形成共格界面((102)NiSe/(111)Ni 和 (110)NiSe/(200)Ni),即实现了NiSe在Ni箔表面的外延生长,从而产生较低能量的NiSe-Ni界面。与此同时,Zn原子和Ni原子沿ZnSe-NiSe界面扩散,NiSe反应物随后在NiSe-Ni台阶或者在NiSe成核点的上表面外延生长。从而,NiSe晶粒通过ZnSe源的消耗以及NiSe-ZnSe界面在横向和纵向向前推进的方式进一步长大。当位于NiSe成核点上方的ZnSe薄膜先于横向的ZnSe薄膜消耗完之后,NiSe晶粒的生长只能通过NiSe-ZnSe界面的横向推进得到延续,并最终通过晶粒的相互拼接形成连续的NiSe纳米薄膜。
本发明通过固相反应法生长得到的非层状结构的NiSe纳米薄膜质量好,晶粒尺寸大,晶界数量少;基于本发明高质量的NiSe纳米薄膜制备的光电探测器,获得的光电流比NiSe纳米晶薄膜提高了4个数量级;本发明制备工艺简单,成本低廉,具有较好的实用价值,而且这种方法可以被用来制备其他与传统平面工艺兼容的非层状结构材料纳米薄膜。
最后应说明的是:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案,因此,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围中。

Claims (1)

1.一种大面积非层状结构NiSe纳米薄膜的制备方法,其特征在于,包括以下步骤:(1)NiSe纳米薄膜的制备:选择厚度为50 μm、纯度为99.99%的Ni箔在通有10 sccm H2 和20sccm Ar 的低压气氛中,450-550 ℃退火25-35 min,去除Ni箔表面的氧化物;退火完 之后,利用电子束蒸发的方法在Ni箔表面沉积ZnSe薄膜,在整个沉积过程中,真空度保持在 1×10-4-3×10-4 Pa;随后将ZnSe/Ni箔在1.5×10-4-2.5×10-4 Pa的真空度下650-750 ℃退 火25-35 min,得到NiSe纳米膜;(2) NiSe纳米薄膜的转移:在50 μm厚的Ni箔表面得到的NiSe纳米薄膜上旋涂浓度为 80-120 mg/ml PMMA,旋涂条件为:先在400-600 r/min的转速下匀胶甩胶5-7 s,然后在 1500-2500 r/min的转速下。
CN201710467722.1A 2017-06-20 2017-06-20 一种大面积非层状结构NiSe纳米薄膜的制备方法 Pending CN109097742A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710467722.1A CN109097742A (zh) 2017-06-20 2017-06-20 一种大面积非层状结构NiSe纳米薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710467722.1A CN109097742A (zh) 2017-06-20 2017-06-20 一种大面积非层状结构NiSe纳米薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN109097742A true CN109097742A (zh) 2018-12-28

Family

ID=64795510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710467722.1A Pending CN109097742A (zh) 2017-06-20 2017-06-20 一种大面积非层状结构NiSe纳米薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN109097742A (zh)

Similar Documents

Publication Publication Date Title
CN103194729B (zh) 金属硫属化物薄膜的制备方法
CN107460542A (zh) 一种基于平面纳米线线形设计和引导的可拉伸晶体半导体纳米线的制备方法
CN102358938A (zh) 一种利用催化剂定域技术合成图案化单晶氧化钨纳米线阵列的新方法
US11339499B2 (en) Method for epitaxial growth of single crystalline heterogeneous 2D materials and stacked structure
CN102534533B (zh) 磁控溅射技术制备硅基锗量子点的方法
CN108374153A (zh) 一种磁控溅射生长大面积、高度有序纳米颗粒的方法
Zhao et al. Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method
WO2012120497A4 (en) Method for surfactant crystal growth of a metal-nonmetal compound
CN109440081B (zh) 一种基于化学气相沉积法制备磁性石墨烯薄膜的方法
CN103700576A (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN100545314C (zh) 用于制备高质量氧化锌薄膜的蓝宝石衬底原位处理方法
CN110364584A (zh) 基于局域表面等离激元效应的深紫外msm探测器及制备方法
CN104894640B (zh) 一种石墨烯衬底上ZnO分级纳米阵列及其制备方法及应用
Aguirre et al. Selective growth of CdTe on nano-patterned CdS via close-space sublimation
CN108950683B (zh) 一种高迁移率氮掺杂大单晶石墨烯薄膜及其制备方法
Li et al. Self-catalyzed metal organic chemical vapor deposition growth of vertical β-Ga2O3 nanowire arrays
KR100921693B1 (ko) In(As)Sb 반도체의 격자 부정합 기판상 제조방법 및이를 이용한 반도체 소자
CN106129171B (zh) 一种大面积非层状结构NiSe纳米薄膜的制备方法
CN109097742A (zh) 一种大面积非层状结构NiSe纳米薄膜的制备方法
CN104419894B (zh) 浸润性可控的一维碲微纳结构膜及其制备方法
CN103757693B (zh) 一种GaN纳米线的生长方法
Yang et al. Structural characteristics and annealing effect of ZnO epitaxial films grown by atomic layer deposition
CN107083530B (zh) 一种石墨烯量子点化学活性诱导生长红荧烯薄膜的方法
CN111261492A (zh) 一种纳米薄膜材料
US20140213044A1 (en) Method for producing periodic crystalline silicon nanostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181228