CN106129171B - 一种大面积非层状结构NiSe纳米薄膜的制备方法 - Google Patents

一种大面积非层状结构NiSe纳米薄膜的制备方法 Download PDF

Info

Publication number
CN106129171B
CN106129171B CN201610476569.4A CN201610476569A CN106129171B CN 106129171 B CN106129171 B CN 106129171B CN 201610476569 A CN201610476569 A CN 201610476569A CN 106129171 B CN106129171 B CN 106129171B
Authority
CN
China
Prior art keywords
film
nise
nano thin
foil
pmma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610476569.4A
Other languages
English (en)
Other versions
CN106129171A (zh
Inventor
王敏
蔡曹元
马杨
黄帆
贾飞翔
许智豪
吴从军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610476569.4A priority Critical patent/CN106129171B/zh
Publication of CN106129171A publication Critical patent/CN106129171A/zh
Application granted granted Critical
Publication of CN106129171B publication Critical patent/CN106129171B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种大面积非层状结构NiSe纳米薄膜的制备方法,其包括NiSe纳米薄膜的制备、NiSe纳米薄膜的转移、NiSe纳米薄膜光探测器的构筑等步骤。本发明通过固相反应法生长得到的非层状结构的NiSe纳米薄膜质量好,晶粒尺寸大,晶界数量少;基于本发明高质量的NiSe纳米薄膜制备的光电探测器,获得的光电流比NiSe纳米晶薄膜提高了4个数量级;本发明制备工艺简单,成本低廉,具有较好的实用价值,而且这种方法可以被用来制备其他与传统平面工艺兼容的非层状结构材料纳米薄膜。

Description

一种大面积非层状结构NiSe纳米薄膜的制备方法
技术领域
本发明属于半导体薄膜材料领域,涉及一种通过固相反应法制备大面积非层状结构NiSe纳米薄膜的方法。
背景技术
由于具有独特的结构和性能,石墨烯和其他二维材料包括六方相氮化硼和过渡金属硫化物等,引起了广泛的关注。尤其通过化学气相沉积等方法可以在特定基底上制备出高质量、大面积的二维薄膜,这显著加快了二维材料的应用发展。受层状结构二维材料的启发,可以预见非层状结构材料的纳米薄膜与传统平面工艺相兼容,相比于他维度,更有利于其应用。而且,与纳米晶构成的薄膜相比,所制备出的具有大尺寸晶粒的非层状结构纳米薄膜拥有更优越的性能,这是因为晶界会引起电子的散射。层状结构材料在层内有较强的横向化学键,而在层之间有较弱的范德华力,这在形核和生长过程中,使得原子更容易生长成二维薄膜。而非层状结构的材料是在三个方向上都具有很强的原子键,从而使其缺乏内在各向异性生长驱动力,造成非层状结构纳米薄膜的生长很难实现。非层状结构材料的二维超薄纳米片和非层状结构纳米薄膜已经分别通过湿化学模板法和剥离的方法制备出来,但是尺寸分别仅限制在几百纳米和几微米之内。大面积非层状结构材料的纳米薄膜可以通过分子束外延法在单晶基底外延生长得到,但是成本较高。
发明内容
本发明的目的在于提供一种大面积非层状结构NiSe纳米薄膜的制备方法。本发明提供的这种大面积非层状结构NiSe纳米薄膜的生长方法工艺简单,成本低廉,具有较强的实用价值,而且可以被用来制备与传统平面工艺兼容的其他非层状结构材料纳米薄膜。
为实现上述目的,本发明采用如下的技术方案:
一种大面积非层状结构NiSe纳米薄膜的制备方法,包括以下步骤:
(1) NiSe纳米薄膜的制备:选择厚度为50 μm、纯度为99.99%的Ni箔在通有10sccm H2 和20 sccm Ar 的低压气氛中,450-550 ℃退火25-35 min,去除Ni箔表面的氧化物;退火完之后,利用电子束蒸发的方法在Ni箔表面沉积ZnSe薄膜,在整个沉积过程中,真空度保持在1×10-4-3×10-4 Pa;随后将ZnSe/Ni箔在1.5×10-4-2.5×10-4 Pa的真空度下650-750 ℃退火25-35 min,得到NiSe纳米膜;
(2) NiSe纳米薄膜的转移:在50 μm厚的Ni箔表面得到的NiSe纳米薄膜上旋涂浓度为80-120 mg/ml PMMA,旋涂条件为:先在400-600 r/min的转速下匀胶甩胶5-7 s,然后在1500-2500 r/min的转速下匀胶30-50 s;旋涂完之后放置于加热台上70-90 ℃烘烤4-6min;然后将PMMA/NiSe/Ni箔放入2.0 mol/L FeCl3的溶液中刻蚀Ni箔;在Ni箔刻蚀完之后,将PMMA/NiSe膜放置于去离子水中清洗其表面残留的FeCl3刻蚀液;接着,将SiO2/Si基底捞起PMMA支撑的NiSe纳米薄膜;待完全风干后,将PMMA/NiSe/SiO2/Si放置于通有10 sccm H2和20 sccm Ar 的低压气氛中,350-450 ℃退火1-3 h除去PMMA,即得到了转移至SiO2/Si基底上的NiSe纳米薄膜;
(3) NiSe纳米薄膜光探测器的构筑:在NiSe纳米薄膜转移至SiO2/Si基底上后,利用光刻的方法构造出长度为5 μm,宽度为10 μm的沟道;通过高真空热蒸发系统沉积10/35nm Cr/Au来制作电极。
本发明的有益效果:
(1)本发明通过固相反应法生长得到的非层状结构的NiSe纳米薄膜质量好,晶粒尺寸大,晶界数量少。
(2)基于本发明高质量的NiSe纳米薄膜制备的光电探测器,获得的光电流比NiSe纳米晶薄膜提高了4个数量级。
(3) 本发明制备工艺简单,成本低廉,具有较好的实用价值,而且这种方法可以被用来制备其他与传统平面工艺兼容的非层状结构材料纳米薄膜。
具体实施方式
一种大面积非层状结构NiSe纳米薄膜的制备方法,包括以下步骤:
(1) NiSe纳米薄膜的制备:选择厚度为50 μm、纯度为99.99%的Ni箔在通有10sccm H2 和20 sccm Ar 的低压气氛中,500 ℃退火30 min,去除Ni箔表面的氧化物;退火完之后,利用电子束蒸发的方法在Ni箔表面沉积ZnSe薄膜,在整个沉积过程中,真空度保持在2×10-4 Pa;随后将ZnSe/Ni箔在2×10-4 Pa的真空度下700 ℃退火30 min,得到NiSe纳米膜;
(2) NiSe纳米薄膜的转移:在50 μm厚的Ni箔表面得到的NiSe纳米薄膜上旋涂浓度为100 mg/ml PMMA,旋涂条件为:先在500 r/min的转速下匀胶甩胶6 s,然后在2000 r/min的转速下匀胶40 s;旋涂完之后放置于加热台上80 ℃烘烤5 min;然后将PMMA/NiSe/Ni箔放入2.0 mol/L FeCl3的溶液中刻蚀Ni箔;在Ni箔刻蚀完之后,将PMMA/NiSe膜放置于去离子水中清洗其表面残留的FeCl3刻蚀液;接着,将SiO2/Si基底捞起PMMA支撑的NiSe纳米薄膜;待完全风干后,将PMMA/NiSe/SiO2/Si放置于通有10 sccm H2 和20 sccm Ar 的低压气氛中,400 ℃退火2 h除去PMMA,即得到了转移至SiO2/Si基底上的NiSe纳米薄膜;
(3) NiSe纳米薄膜光探测器的构筑:在NiSe纳米薄膜转移至SiO2/Si基底上后,利用光刻的方法构造出长度为5 μm,宽度为10 μm的沟道;通过高真空热蒸发系统沉积10/35nm Cr/Au来制作电极。
气相法已经广泛应用于晶体生长中,通过气相法实现晶体的生长需要一定过饱和度。在经历一个气固转变过程之后,原子或者分子开始形核和生长。在这个非平衡动态过程中,在对应于薄膜生长的过饱和度下,气体源的供应速率远远大于晶体生长的速率,因此由动态过程决定的产物形貌一般呈现出孤立岛状结构而不是连续的纳米薄膜,这是由非层状结构产生的三维生长行为所导致的。基于对单晶非层状结构纳米薄膜的分子束外延生长的考虑,对气体源供应与晶体生长二者之间的相对速率的控制是非层状结构纳米薄膜生长的一个关键要素。以Ni箔上的NiSe为例,我们通过固相反应法的引入发明了一种界面限域外延生长非层状结构纳米薄膜的方法。在特定的温度下,通过Zn原子和Ni原子的相互扩散形成NiSe之后,NiSe在ZnSe-Ni界面处成核。在这个没有气固转变的热力学平衡过程中,NiSe生长速率被认为由扩散和反应速率所决定。这使得在弛豫时间内,NiSe与Ni基底形成共格界面((102)NiSe/(111)Ni 和 (110)NiSe/(200)Ni),即实现了NiSe在Ni箔表面的外延生长,从而产生较低能量的NiSe-Ni界面。与此同时,Zn原子和Ni原子沿ZnSe-NiSe界面扩散,NiSe反应物随后在NiSe-Ni台阶或者在NiSe成核点的上表面外延生长。从而,NiSe晶粒通过ZnSe源的消耗以及NiSe-ZnSe界面在横向和纵向向前推进的方式进一步长大。当位于NiSe成核点上方的ZnSe薄膜先于横向的ZnSe薄膜消耗完之后,NiSe晶粒的生长只能通过NiSe-ZnSe界面的横向推进得到延续,并最终通过晶粒的相互拼接形成连续的NiSe纳米薄膜。
本发明通过固相反应法生长得到的非层状结构的NiSe纳米薄膜质量好,晶粒尺寸大,晶界数量少;基于本发明高质量的NiSe纳米薄膜制备的光电探测器,获得的光电流比NiSe纳米晶薄膜提高了4个数量级;本发明制备工艺简单,成本低廉,具有较好的实用价值,而且这种方法可以被用来制备其他与传统平面工艺兼容的非层状结构材料纳米薄膜。

Claims (1)

1.一种大面积非层状结构NiSe纳米薄膜的制备方法,其特征在于,包括以下步骤:
(1) NiSe纳米薄膜的制备:选择厚度为50 μm、纯度为99.99%的Ni箔在通有10 sccm H2和20 sccm Ar 的低压气氛中,450-550 ℃退火25-35 min,去除Ni箔表面的氧化物;退火完之后,利用电子束蒸发的方法在Ni箔表面沉积ZnSe薄膜,在整个沉积过程中,真空度保持在1×10-4-3×10-4 Pa;随后将ZnSe/Ni箔在1.5×10-4-2.5×10-4 Pa的真空度下650-750 ℃退火25-35 min,得到NiSe纳米薄膜;
(2) NiSe纳米薄膜的转移:在所述的50 μm厚的Ni箔表面上得到的所述的NiSe纳米薄膜上旋涂浓度为80-120 mg/ml PMMA,旋涂条件为:先在400-600 r/min的转速下匀胶甩胶5-7 s,然后在1500-2500 r/min的转速下匀胶30-50 s;旋涂完之后放置于加热台上70-90℃烘烤4-6 min;然后将PMMA/NiSe/Ni箔放入2.0 mol/L FeCl3的溶液中刻蚀Ni箔;在Ni箔刻蚀完之后,将PMMA/NiSe膜放置于去离子水中清洗其表面残留的FeCl3刻蚀液;接着,将SiO2/Si基底捞起PMMA支撑的NiSe纳米薄膜;待完全风干后,将PMMA/NiSe/SiO2/Si放置于通有10 sccm H2 和20 sccm Ar 的低压气氛中,350-450 ℃退火1-3 h除去PMMA,即得到了转移至SiO2/Si基底上的NiSe纳米薄膜;
(3) NiSe纳米薄膜光探测器的构筑:在NiSe纳米薄膜转移至SiO2/Si基底上后,利用光刻的方法构造出长度为5 μm,宽度为10 μm的沟道;通过高真空热蒸发系统沉积10/35 nmCr/Au来制作电极。
CN201610476569.4A 2016-06-27 2016-06-27 一种大面积非层状结构NiSe纳米薄膜的制备方法 Expired - Fee Related CN106129171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610476569.4A CN106129171B (zh) 2016-06-27 2016-06-27 一种大面积非层状结构NiSe纳米薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610476569.4A CN106129171B (zh) 2016-06-27 2016-06-27 一种大面积非层状结构NiSe纳米薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN106129171A CN106129171A (zh) 2016-11-16
CN106129171B true CN106129171B (zh) 2018-12-18

Family

ID=57265625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610476569.4A Expired - Fee Related CN106129171B (zh) 2016-06-27 2016-06-27 一种大面积非层状结构NiSe纳米薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106129171B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913203A (zh) * 2006-08-03 2007-02-14 复旦大学 以二硒化镍薄膜为阴极材料的薄膜锂电池及其制备方法
CN105000551A (zh) * 2015-07-08 2015-10-28 合肥工业大学 一种大面积石墨烯的无缝转移的方法
CN105463566A (zh) * 2015-11-25 2016-04-06 中国科学技术大学 一种外延生长MoSe2–XnSem异质纳米结构的液相方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859858B (zh) * 2010-05-07 2013-03-27 中国科学院苏州纳米技术与纳米仿生研究所 基于石墨烯的透明导电电极及其制法与应用
KR101563231B1 (ko) * 2014-12-19 2015-10-26 성균관대학교산학협력단 나노시트-무기물 적층 다공성 나노구조체 및 이의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913203A (zh) * 2006-08-03 2007-02-14 复旦大学 以二硒化镍薄膜为阴极材料的薄膜锂电池及其制备方法
CN105000551A (zh) * 2015-07-08 2015-10-28 合肥工业大学 一种大面积石墨烯的无缝转移的方法
CN105463566A (zh) * 2015-11-25 2016-04-06 中国科学技术大学 一种外延生长MoSe2–XnSem异质纳米结构的液相方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一锅溶剂热合成一维NiSe、Ni3S2和NiSe-Ni3S2合金化合物纳米棒阵列及其性质;于霞;《中国优秀硕士学位论文全文数据库》;20150228(第2期);15-19页 *

Also Published As

Publication number Publication date
CN106129171A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN104726845B (zh) h-BN上石墨烯纳米带的制备方法
CN103194729B (zh) 金属硫属化物薄膜的制备方法
CN105386124B (zh) 石墨烯单晶及其快速生长方法
CN103117210B (zh) 一种纳米孔复制结合溅射沉积自组装有序Ge/Si量子点阵列的新方法
CN108374153A (zh) 一种磁控溅射生长大面积、高度有序纳米颗粒的方法
Zhao et al. Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method
CN103700576A (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN100545314C (zh) 用于制备高质量氧化锌薄膜的蓝宝石衬底原位处理方法
CN108950683B (zh) 一种高迁移率氮掺杂大单晶石墨烯薄膜及其制备方法
CN106158582A (zh) 近邻阴影效应辅助阵列法制备层转移薄晶硅工艺
Zhang et al. Application of porous silicon microcavity to enhance photoluminescence of ZnO/PS nanocomposites in UV light emission
CN106129171B (zh) 一种大面积非层状结构NiSe纳米薄膜的制备方法
Ladanov et al. Effects of the physical properties of atomic layer deposition grown seeding layers on the preparation of ZnO nanowires
KR100921693B1 (ko) In(As)Sb 반도체의 격자 부정합 기판상 제조방법 및이를 이용한 반도체 소자
CN102953048B (zh) 一种纳米掺杂结构及其制备方法
CN105088342B (zh) 一种Ge量子点的制备方法及其应用
CN109097742A (zh) 一种大面积非层状结构NiSe纳米薄膜的制备方法
CN111261492A (zh) 一种纳米薄膜材料
CN106185897A (zh) 一种在多种基底上可控制备石墨烯纳米带的方法
CN104419894B (zh) 浸润性可控的一维碲微纳结构膜及其制备方法
CN107083530B (zh) 一种石墨烯量子点化学活性诱导生长红荧烯薄膜的方法
CN103700578A (zh) 一种锗硅纳米线叠层结构的制作方法
Yang et al. Structural characteristics and annealing effect of ZnO epitaxial films grown by atomic layer deposition
US20140213044A1 (en) Method for producing periodic crystalline silicon nanostructures
CN114975078A (zh) 一种不同层数WS2-WSe2横向异质结及其制备和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181218

Termination date: 20210627

CF01 Termination of patent right due to non-payment of annual fee