CN109095931A - 一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法 - Google Patents

一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法 Download PDF

Info

Publication number
CN109095931A
CN109095931A CN201811111043.1A CN201811111043A CN109095931A CN 109095931 A CN109095931 A CN 109095931A CN 201811111043 A CN201811111043 A CN 201811111043A CN 109095931 A CN109095931 A CN 109095931A
Authority
CN
China
Prior art keywords
rice straw
silicon nitride
fiber
nitride fiber
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811111043.1A
Other languages
English (en)
Inventor
姚礼
李守柱
李英
贾毅崇
秦彦军
李帅贞
赵朴
赵一朴
王余音
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
College Of Science And Technology Xinjiang University
Original Assignee
College Of Science And Technology Xinjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by College Of Science And Technology Xinjiang University filed Critical College Of Science And Technology Xinjiang University
Priority to CN201811111043.1A priority Critical patent/CN109095931A/zh
Publication of CN109095931A publication Critical patent/CN109095931A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62286Fibres based on nitrides
    • C04B35/62295Fibres based on nitrides based on silicon nitride
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法,该方法以农业废弃资源水稻秸秆为原料,通过碳热还原和氮化法,从而获得超细氮化硅纤维,纤维为α‑Si3N4晶体结构。所制备的氮化硅纤维直径为200‑2000nm,长度可达数厘米,且具有表面光滑、易于分离等优点,是一种理想的结构和功能陶瓷纤维。同时,本发明能够充分利用水稻秸秆中的无机硅源,与现有利用生物质能源有机成分制备气、液等能源产品技术相互补,便于工业化推广,实现水稻秸秆的充分利用。

Description

一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法
技术领域
本发明属于新型无机非金属材料制备技术领域,涉及一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法。
背景技术
水稻秸秆作为生物质能源,是一种非常有价值的可再生能源,在一些特定领域非常具有竞争力。近些年来,一些国家正在致力于通过热化学法、生物化学法将其有机成分转换为气、液等能源产品实现资源化利用。同时,水稻秸秆中还存在一些诸如二氧化硅(SiO2)之类的无机成分存在,可作为一种廉价的硅原料,但目前还没有被商业利用。研究发现水稻秸秆化学成分为纤维素(38.3%)、半纤维素(31.6%)、木素(11.8%)和灰分(18.3%),其中二氧化硅在灰分中的含量为77%[Technol.14(1980)29]。常见的粮食作物中,水稻秸秆灰分含量远高于其他作物(棉花秸秆为9.47%,小麦秸秆为6.04%,玉米秸秆为4.66%)[新型建筑材料,1996,(6):8-12],非常具有研究价值和商业价值。
近年来,回收利用工农业废弃物中天然二氧化硅代替传统的二氧化硅和碳粉原材料来制备氮化硅粉末渐渐得到了重视,比如稻壳的利用,既经济又环保。但是,目前大部分研究工作只注重氮化硅粉末的制备,并且很难将氮化硅粉末产品从残余的碳原料中分离。
本发明公开了利用水稻秸秆制备自分离的超细氮化硅纤维的方法。该方法制备的氮化硅纤维具有超高长径比、表面光滑、易于分离等优点。
发明内容
本发明目的在于,提供一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法,该方法以农业废弃资源水稻秸秆为原料,通过碳热还原、氮气直接氮化制备具有表面光滑、超高长径比、易分离的超细氮化硅纤维。该方法不仅解决了传统水稻秸秆就地焚烧的资源浪费和环境污染的问题,也为生物质资源有机成分回收利用后残留物中二氧化硅原料的的资源化利用提供了一个新的途径。
本发明所述的一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法,按下列步骤进行:
a、从田间收集水稻秸秆,切成3cm的长条后并清洗干净以去除表面杂质;
b、将清洗彻底后的水稻秸秆在80-150℃温度范围内保温1-5小时使其充分干燥;
c、将干燥后的水稻秸秆水平并列置于高温反应容器瓷方舟中,并用相同规格的瓷方舟作为收集容器,且留有氮气通气孔,然后在真空管式炉中焙烧,焙烧温度为1400-1800℃,时间为1-7小时,焙烧过程在氮气氛围中进行并以20L/h的流速持续向管式炉中通入氮气;
d、焙烧过程中,水稻秸秆通过碳热分解、氮气还原的气-固相反应转变为氮化硅纤维,在收集容器中不断沉积生长,实现产品纤维与原料自分离,即得到成分为α-Si3N4晶体结构,直径为200-2000nm,长度为0.1-10cm,且表面光滑的超细氮化硅纤维。
本发明所述的一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法,该方法与现有技术相比,其优点为:
本发明所述方法能够充分利用生物质能源-水稻秸秆中的无机二氧化硅,与现有利用生物质能源有机成分制备气、液等能源产品技术相互补,完善水稻秸秆资源化利用产业链。
本发明所述方法利用气-固相反应生产氮化硅纤维,产品易于从反应基体中分离出来,且具有超高长径比、表面光滑等优点。
附图说明
图1为本发明水稻秸秆在1400℃焙烧1小时所得氮化硅(Si3N4)纤维样品形貌图;
图2为本发明水稻秸秆在1400℃焙烧1小时反应初期无纤维沉积区的扫描电镜(SEM)形貌图;
图3为本发明水稻秸秆在1400℃焙烧1小时反应初期纤维初始生长区的扫描电镜(SEM)形貌图;
图4为水稻秸秆在1400℃焙烧1小时反应初期典型的长纤维初始生长区的扫描电镜(SEM)形貌图;
图5为水稻秸秆在1400℃焙烧1小时反应初期覆盖一层纤维的区域的扫描电镜(SEM)形貌图;
图6为本发明水稻秸秆在1400℃焙烧7小时所得氮化硅(Si3N4)纤维样品形貌反应基体的照片;
图7为本发明水稻秸秆在1400℃焙烧7小时所得氮化硅(Si3N4)纤维样品形貌气-固相反应沉积的自分离氮化硅纤维产品照片;
图8为本发明水稻秸秆在1400℃焙烧7小时所得氮化硅(Si3N4)纤维样品的X射线衍射(XRD)图;
图9为本发明水稻秸秆在1400℃焙烧7小时在收集容器瓷方舟中气-固相反应所得氮化硅(Si3N4)纤维的扫描电镜微观形貌图。
具体实施方式
下面将结合附图和实施例对本发明进行进一步的详细说明。
实施例1
a、从田间收集水稻秸秆,切成3cm的长条后用超纯水彻底清洗3次,以去除表面杂质;
b、利用电热鼓风干燥箱将清洗彻底后的水稻秸秆在温度80℃保温5小时,使其充分干燥;
c、将干燥后的水稻秸秆水平并列置于高温反应容器瓷方舟中,并用相同规格的瓷方舟作为收集容器,且留有氮气通气孔,然后在真空管式炉中焙烧,焙烧温度为1400℃,时间为1小时,焙烧过程在氮气氛围中进行并以20L/h的流速持续向管式炉中通入氮气;
d、焙烧过程中,水稻秸秆通过碳热分解、氮气还原的气-固相反应转变为白色棉花状氮化硅纤维,在收集容器中不断沉积生长,实现产品纤维与原料自分离,即得到成分为α-Si3N4晶体结构,直径为200-2000nm,长度为0.1-10cm,且表面光滑的超细氮化硅(Si3N4)纤维;
水稻秸秆在1400℃焙烧1小时后少量薄薄的白色棉花状纤维出现在反应基体的表面(图1);
水稻秸秆在1400℃焙烧1小时后的无纤维沉积区内,有一些光亮的纳米颗粒出现在水稻秸秆基体上,这是氮化硅最初的晶核成长形成的小颗粒(图2);
水稻秸秆在1400℃焙烧1小时后的纤维初始生长区内,除了纳米颗粒外,还出现一些短的纳米线,这是氮化硅小颗粒进一步生长后形成的氮化硅纳米线(图3);
水稻秸秆在1400℃焙烧1小时后的典型的长纤维初始生长区内,开始出现直径为200-400nm、长度为数十微米的长纤维,这是氮化硅纳米线进一步生长所形成的更长的纤维(图4);
水稻秸秆在1400℃焙烧1小时后的收集容器表面覆盖了大量纤维,长纤维开始在表面区域大量出现(图5);
综上,水稻秸秆在1400℃焙烧1小时后出现纤维产品,通过在秸秆反应基体不同部位的扫描电镜微观形貌图分析可知,焙烧过程中,水稻秸秆通过碳热分解、氮气还原的气-固相反应首先转变为白色氮化硅纳米颗粒,然后氮化硅纳米颗粒逐渐长大为短纤维,随着反应的进行进一步生长为氮化硅长纤维,纤维直径为200-400nm,长度为数十微米。
实施例2
a、从田间收集水稻秸秆,切成3cm的长条后用超纯水彻底清洗3次,以去除表面杂质;
b、利用电热鼓风干燥箱将清洗彻底后的水稻秸秆在温度150℃保温1小时使其充分干燥;
c、将干燥后的水稻秸秆水平并列置于高温反应容器瓷方舟中,并用相同规格的瓷方舟作为收集容器,且留有氮气通气孔,然后在真空管式炉中焙烧,焙烧温度为1400℃,保温时间为7小时,焙烧过程在氮气氛围中进行并以20L/h的流速持续向管式炉中通入氮气;
d、焙烧过程中,水稻秸秆通过碳热分解、氮气还原的气-固相反应转变为白色棉花状氮化硅纤维,在收集容器中不断沉积生长,实现产品纤维与原料自分离,即得到成分为α-Si3N4晶体结构,直径为200-2000nm,长度为0.1-10cm,且表面光滑的超细氮化硅(Si3N4)纤维;
水稻秸秆在1400℃焙烧7小时后,秸秆反应基体表面上覆盖了更多的白色纤维(图6);
水稻秸秆在1400℃焙烧7小时后,在收集容器瓷方舟中出现了大量由气-固相反应沉积的白色棉花状纤维(图7);
由水稻秸秆在1400℃焙烧所得纤维样品的X射线衍射图表明纤维为晶体结构,其相组成为α-Si3N4(图8);
收集容器瓷方舟中气-固相反应所得氮化硅纤维的扫描电镜微观形貌图显示纤维直且光滑,其直径均一,约为2000nm,长度可达数厘米(图9);
综上,水稻秸秆在氮气氛围中1400℃焙烧7小时后所得样品成分为α-Si3N4晶体结构,纤维直径为2000nm左右,长度可达数厘米,且表面光滑,随着焙烧时间的延长,水稻秸秆反应更加充分,大量白色棉花状的氮化硅纤维在通过气-固反应在收集容器瓷方舟中沉积,能够很容易从秸秆残余物中分离,具有自分离的优点。
实施例3
a、从田间收集水稻秸秆,切成3cm的长条后用超纯水彻底清洗3次,以去除表面杂质;
b、利用电热鼓风干燥箱将清洗彻底后的水稻秸秆在温度100℃保温3小时使其充分干燥;
c、将干燥后的水稻秸秆水平并列置于高温反应容器瓷方舟中,并用相同规格的瓷方舟作为收集容器,且留有氮气通气孔,然后在真空管式炉中焙烧,焙烧温度为1800℃,保温时间为1小时,焙烧过程在氮气氛围中进行并以20L/h的流速持续向管式炉中通入氮气;
d、焙烧过程中,水稻秸秆通过碳热分解、氮气还原的气-固相反应转变为氮化硅纤维,在收集容器中不断沉积生长,实现产品纤维与原料自分离,即得到成分为α-Si3N4晶体结构,直径为200-2000nm,长度为0.1-10cm,且表面光滑的超细氮化硅(Si3N4)纤维。
实施例4
a、从田间收集水稻秸秆,切成3cm的长条后用超纯水彻底清洗3次,以去除表面杂质;
b、利用电热鼓风干燥箱将清洗彻底后的水稻秸秆在温度120℃保温2小时,使其充分干燥;
c、将干燥后的水稻秸秆水平并列置于高温反应容器瓷方舟中,并用相同规格的瓷方舟作为收集容器,且留有氮气通气孔,然后在真空管式炉中焙烧,焙烧温度为1600℃,保温时间为2小时,焙烧过程在氮气氛围中进行并以20L/h的流速持续向管式炉中通入氮气;
d、焙烧过程中,水稻秸秆通过碳热分解、氮气还原的气-固相反应转变为氮化硅纤维,在收集容器中不断沉积生长,实现产品纤维与原料自分离,即得到成分为α-Si3N4晶体结构,直径为200-2000nm,长度为0.1-10cm,且表面光滑的超细氮化硅(Si3N4)纤维。

Claims (1)

1.一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法,其特征在于按下列步骤进行:
a、从田间收集水稻秸秆,切成3cm的长条后并清洗干净,以去除表面杂质;
b、将清洗彻底后的水稻秸秆在80-150℃温度范围内保温1-5小时,使其充分干燥;
c、将干燥后的水稻秸秆水平并列置于高温反应容器瓷方舟中,并用相同规格的瓷方舟作为收集容器,且留有氮气通气孔,然后在真空管式炉中焙烧,焙烧温度为1400-1800℃,时间为1-7小时,焙烧过程在氮气氛围中进行,并以20L/h的流速持续向管式炉中通入氮气;
d、焙烧过程中,水稻秸秆通过碳热分解,氮气还原的气-固相反应转变为氮化硅纤维,在收集容器中不断沉积生长,实现产品纤维与原料自分离,即得到成分为α-Si3N4晶体结构,直径为200-2000nm,长度为0.1-10cm,且表面光滑的超细氮化硅纤维。
CN201811111043.1A 2018-09-22 2018-09-22 一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法 Pending CN109095931A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811111043.1A CN109095931A (zh) 2018-09-22 2018-09-22 一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811111043.1A CN109095931A (zh) 2018-09-22 2018-09-22 一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法

Publications (1)

Publication Number Publication Date
CN109095931A true CN109095931A (zh) 2018-12-28

Family

ID=64867288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811111043.1A Pending CN109095931A (zh) 2018-09-22 2018-09-22 一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法

Country Status (1)

Country Link
CN (1) CN109095931A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964590A (zh) * 2021-02-01 2021-06-15 黑龙江省农业科学院耕作栽培研究所 一种监测大田水稻秸秆腐解率的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005597A1 (en) * 1986-03-14 1987-09-24 Commonwealth Scientific And Industrial Research Or Method of forming a ceramic product
JPS6428210A (en) * 1987-03-11 1989-01-30 Agency Ind Science Techn Production of ceramics from rice hull ash
CN1781876A (zh) * 2004-12-03 2006-06-07 秦才东 稻草预处理和预处理的稻草生产碳化硅及其复合材料的方法
CN102421706A (zh) * 2009-04-30 2012-04-18 司奥普施有限责任公司 高纯度含硅产物及制造方法
CN105315006A (zh) * 2015-12-03 2016-02-10 盐城工学院 一种梯度多孔氮化硅陶瓷的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005597A1 (en) * 1986-03-14 1987-09-24 Commonwealth Scientific And Industrial Research Or Method of forming a ceramic product
JPS6428210A (en) * 1987-03-11 1989-01-30 Agency Ind Science Techn Production of ceramics from rice hull ash
CN1781876A (zh) * 2004-12-03 2006-06-07 秦才东 稻草预处理和预处理的稻草生产碳化硅及其复合材料的方法
CN102421706A (zh) * 2009-04-30 2012-04-18 司奥普施有限责任公司 高纯度含硅产物及制造方法
CN105315006A (zh) * 2015-12-03 2016-02-10 盐城工学院 一种梯度多孔氮化硅陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VARONG PAVARAJARN ET AL.: "Synthesis of Silicon Nitride Fibers by the Carbothermal Reduction and Nitridation of Rice Husk Ash", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
方汉中译: "《用固体废料生产建筑材料》", 31 October 1986, 中国建筑工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964590A (zh) * 2021-02-01 2021-06-15 黑龙江省农业科学院耕作栽培研究所 一种监测大田水稻秸秆腐解率的方法

Similar Documents

Publication Publication Date Title
Soltani et al. Review on the physicochemical treatments of rice husk for production of advanced materials
Patil et al. Preparation of silica powder from rice husk
Amutha et al. Extraction, synthesis and characterization of nanosilica from rice husk ash
Haslinawati et al. Effect of temperature on ceramic from rice husk ash
CN100593512C (zh) 一种β-SiC纳米线的合成方法
CN1803599A (zh) 一种利用稻壳制取高纯二氧化硅工艺方法及装置
CN110467467B (zh) 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法
Nazopatul et al. Extraction and characterization of silicon dioxide from rice straw
CN108975317B (zh) 一种以蔗髓为原料的多重花瓣形态的石墨烯粉体的制备方法
CN109095931A (zh) 一种利用水稻秸秆制备自分离的超细氮化硅纤维的方法
CN102345162A (zh) 一维轴向型的纳米氧化锌/硫化锌异质结及其制备方法
CN103922744A (zh) 一种高韧性纳米黑瓷材料的制备方法
CN101550591B (zh) 单分散的c70纳米单晶材料及其制备方法
CN100445199C (zh) 氮化硅纳米线或纳米带粉体材料的制备方法
CN108126705A (zh) Fe-Mn陶瓷膜催化剂及其用于热转化废弃塑料为碳纳米材料的应用
CN101333685B (zh) 连续制备碳化硅晶须的三室连续晶须生成真空炉
Rani et al. Synthesis and characterization of amorphous nanosilica from biomass ash
CN104233454A (zh) 一种高效合成单晶六方氮化硼结构的取代反应方法
CN1170011C (zh) 一种气化氧化法制备不同形貌氧化锌晶须的工艺方法
CN1285503C (zh) 利用碳化稻壳制造碳化硅的方法
CN110643530B (zh) 一株对纤维素具有良好降解效果的泛菌
Li et al. Conversion of wood flour/SiO2/phenolic composite to porous SiC ceramic containing SiC whiskers
Neumann et al. Highly structured, biomorphous β-SiC with high specific surface area from Equisetaceae
CN102060544A (zh) 一种以硅粉作添加剂实现非晶氮化硅粉末的快速晶化方法
Yamane et al. Low-temperature synthesis of biomorphic cellular SiC ceramics from wood by using a Na flux

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181228

RJ01 Rejection of invention patent application after publication