CN109066756B - 一种改善系统暂态稳定的vsc-hvdc线性自抗扰控制方法 - Google Patents

一种改善系统暂态稳定的vsc-hvdc线性自抗扰控制方法 Download PDF

Info

Publication number
CN109066756B
CN109066756B CN201810860955.2A CN201810860955A CN109066756B CN 109066756 B CN109066756 B CN 109066756B CN 201810860955 A CN201810860955 A CN 201810860955A CN 109066756 B CN109066756 B CN 109066756B
Authority
CN
China
Prior art keywords
vsc
hvdc
controllable
synchronous generator
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810860955.2A
Other languages
English (en)
Other versions
CN109066756A (zh
Inventor
黄振琳
管霖
黄济宇
陈肖灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810860955.2A priority Critical patent/CN109066756B/zh
Publication of CN109066756A publication Critical patent/CN109066756A/zh
Application granted granted Critical
Publication of CN109066756B publication Critical patent/CN109066756B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种改善系统暂态稳定的VSC‑HVDC线性自抗扰控制方法,包括以下步骤:步骤1,根据VSC‑HVDC对同步发电机组的可控能力划分出VSC‑HVDC对应的可控机群,并将每个可控机群聚合为一台等效可控机组;将VSC‑HVDC和其相应的等效可控机组建立成一个等效可控系统;步骤2,根据等效可控系统的状态方程,基于线性自抗扰理论设计出一个三阶的线性扩张状态观测器及线性状态反馈控制律,并增加控制输出约束逻辑及附加直流电压越限控制;步骤3,为防止电力系统正常运行时同步发电机组的小幅波动引起控制误动,控制策略中增设一个带有时滞的死区判断框图,作为控制器的启动条件。所述控制方法基于线性自抗扰控制,无需系统的详细模型,对系统不同的运行方式具有很强的鲁棒性。

Description

一种改善系统暂态稳定的VSC-HVDC线性自抗扰控制方法
技术领域
本发明涉及电力系统暂态稳定控制领域,具体涉及一种改善系统暂态稳定的VSC-HVDC线性自抗扰控制方法。
背景技术
相比基于电网换相的常规直流输电技术(简写为LCC-HVDC),基于电压源型换流器的柔性直流输电技术(简写为VSC-HVDC)具有无可比拟的优势,如可独立控制有功和无功功率传输等,应用VSC-HVDC输电技术具有显著的优越性。近年来VSC-HVDC输电技术发展十分迅速,我国在建的柔性直流输电工程的最大容量达到1000MW,最高电压等级达到±320kV,将来有可能取代常规直流成为直流输电的主流技术。
大容量直流接入电网,将对电网结构和稳定运行特性产生影响。利用VSC-HVDC快速的动态响应特性并且能独立控制有功功率和无功功率的特点,可以通过附加控制辅助交流系统达到安全稳定运行。传统的直流附加控制器基于线性控制理论,但暂态干扰下系统偏离稳态运行点,线性控制器局限性凸显,学者们尝试将非线性控制引入电力系统稳定控制。非线性反馈线性化最优控制是一种有效的尝试,然而该方法依赖于系统的准确建模。基于滑模鲁棒控制器的有功功率调制方案,通过快速调节电压源型换流器(voltage sourceconverter,简写为VSC)的传输功率,加强交流系统受到扰动后的稳定性。但滑模控制存在抖振问题,不利情况下会严重影响控制效果。基于Lyapunov能量函数设计稳定控制器,通过快速调节电压源换流器的注入功率改善系统的功角稳定性。但基于能量函数设计的控制策略以转速差为输入信号,所得控制律与同步发电机组的转速差成正比,在转速差为零时对应的功角差在该振荡周期为极值,但附加控制量为零,这种控制策略不能充分发挥控制器的调节能力。
发明内容
本发明的目的是针对现有技术的不足,提供了一种改善系统暂态稳定的VSC-HVDC线性自抗扰控制方法,该方法基于线性自抗扰控制(简写为LADRC)理论,以线性化实现形式设计控制器结构,是一种弱依赖于系统模型的控制方法,能够实时观测系统扰动并在控制输入中实行前馈补偿,无需系统的详细模型,对系统不同的运行方式具有很强的鲁棒性。
本发明的目的可以通过如下技术方案实现:
一种改善系统暂态稳定的VSC-HVDC线性自抗扰控制方法,所述方法包括如下步骤:
步骤1,根据VSC-HVDC对同步发电机组的可控能力划分出VSC-HVDC对应的可控机群,并将每个可控机群聚合为一台等效可控机组;将VSC-HVDC和其相应的等效可控机组建立成一个等效可控系统;所述可控能力由加速度作用因子c决定,所述可控机群为受VSC-HVDC调制效果明显的同步发电机组的集合;
步骤2,根据等效可控系统的状态方程,基于线性自抗扰(简写为LADRC)理论设计出一个三阶的线性扩张状态观测器(简写为LESO)及线性状态反馈控制律(简写为LSF),并增加控制输出约束逻辑及附加直流电压越限控制;
步骤3,为防止电力系统正常运行时同步发电机组的小幅波动引起控制误动,控制策略中增设一个带有时滞的死区判断框图,作为控制器的启动条件。
本发明与现有技术相比,具有如下优点和有益效果:
本发明提供的改善系统暂态稳定的VSC-HVDC线性自抗扰控制方法,在暂态故障发生后,控制器同时针对相关同步发电机组的转速差和不平衡有功功率进行调制,能有效维持系统稳定,表现出优越的控制效果;得益于自抗扰控制能够实时观测扰动并进行补偿的优势,附加控制器无需同步发电机组和直流系统的详细模型,仅需测量及反馈少数电气距离较近的同步发电机组的转速信息,可降低控制器的通讯和计算负担,有利于工程应用;同时,控制器能够很好地适用系统运行方式的变化,具有较强的鲁棒性。
附图说明
图1为本发明实施例改善系统暂态稳定的VSC-HVDC线性自抗扰控制方法的实现流程框图。
图2为本发明实施例送端外环有功功率控制框图。
图3为本发明实施例带有时滞的死区判定流程图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例:
本实施例提供了一种改善系统暂态稳定的VSC-HVDC线性自抗扰控制方法,基于LADRC,设计了一种改善系统暂态稳定的VSC-HVDC线性自抗扰控制器,驱动不同运行方式下的电力系统在故障后尽快稳定于新平衡点。所述方法的流程图如图1所示,包括以下步骤:
步骤1,根据VSC-HVDC对同步发电机组的可控能力划分出VSC-HVDC对应的可控机群,并将每个可控机群聚合为一台等效可控机组;将VSC-HVDC和其相应的等效可控机组建立成一个等效可控系统;所述可控能力由加速度作用因子c决定,所述可控机群为受VSC-HVDC调制效果明显的同步发电机组的集合;
步骤2,根据等效可控系统的状态方程,基于线性自抗扰(简写为LADRC)理论设计出一个三阶的线性扩张状态观测器(简写为LESO)及线性状态反馈控制律(简写为LSF),并增加控制输出约束逻辑及附加直流电压越限控制;
步骤3,为防止电力系统正常运行时同步发电机组的小幅波动引起控制误动,控制策略中增设一个带有时滞的死区判断框图,作为控制器的启动条件。
具体地,所述步骤1中等效可控机组的聚合方式具体如下:
步骤11,在电力系统稳态情况时,基于VSC-HVDC的有功功率变化对同步发电机组电磁功率变化的影响及各机组的惯性时间常数,得到加速度作用因子c,分别在c>0和c<0区域,得到加速度作用因子的标幺值
Figure BDA0001749649610000034
并根据实际需求选取阈值cTH,选择
Figure BDA0001749649610000035
的模(或称绝对值)大于cTH的同步发电机组作为该VSC-HVDC的可控同步发电机组,上述所有可控同步发电机组构成该VSC-HVDC的可控机群,所述加速度作用因子c解析上反映了同步发电机组的转子角加速度受VSC-HVDC功率变化的影响;
步骤12,该VSC-HVDC包括至少1台可控同步发电机组,以同步发电机组i的加速度作用因子标幺值
Figure BDA0001749649610000036
为参数计算同步发电机组i的等效可控权重系数wi,并以wi为参数对可控机群内所有可控同步发电机组的功角和转速进行加权聚合,得到VSC-HVDC的等效可控机组,以及以等效可控机组功角和转速为状态变量的VSC-HVDC等效可控系统状态方程。
所述步骤11中加速度作用因子c的表达式如式(1)所示:
Figure BDA0001749649610000031
其中ci为同步发电机组i的加速度作用因子;Mi为同步发电机组i的惯性时间常数;Pi(t)为t秒时同步发电机组i的输出电磁功率;Pdc(t)为t秒时VSC-HVDC的输送有功功率;ε为一个幅值较小的正实数;此处ε∈(0.01,0.2)。
所述加速度作用因子标幺值,是面向系统中与VSC-HVDC相关的所有同步发电机组,由于ci在ci>0和ci<0区域内的最大模值不一定相同,因此应在ci>0和ci<0区域分别对ci进行标幺化,如式(2)所示,然后筛选
Figure BDA0001749649610000032
的模
Figure BDA0001749649610000033
大于阈值cTH的同步发电机组组成VSC-HVDC的可控机群:
Figure BDA0001749649610000041
其中阈值cTH是实数,且取值范围是0<cTH<1。
所述步骤12中,按式(3)计算可控机群中各同步发电机组的等效可控权重系数wi
Figure BDA0001749649610000042
对可控机群内所有可控同步发电机组的功角和转速进行加权聚合通过式(4)实现:
Figure BDA0001749649610000043
式中δi为同步发电机组i的功角;ωi为同步发电机组i的转速;wi为由式(3)得到的同步发电机组i的等效可控权重系数;δeq为等效可控机组的功角;ωeq为等效可控机组的转速;
以δeq和ωeq为状态变量的VSC-HVDC等效可控系统状态方程如式(5)所示:
Figure BDA0001749649610000044
式中,udc是VSC-HVDC附加控制量;Pdc为VSC-HVDC输送有功功率;Pmi为同步发电机组原动机功率;PGiG为VSC-HVDC直流电磁功率中与其他同步发电机组运行状态相关的分量,该值能够由交直流系统网络方程推导得到;Pdcref为VSC-HVDC输送有功功率参考值;Td为VSC-HVDC有功功率调节时间常数,用于模拟VSC-HVDC输送有功功率参考值改变到VSC-HVDC输送有功功率变化之间的延时,Mi为同步发电机组i的惯性时间常数,n为同步发电机组的个数。
本实施例将选择VSC-HVDC等效可控机群内的AF较大的同步发电机组作为信息反馈机群,按AF加权聚合为等效可控机组,并与VSC-HVDC建立成等效可控系统(简写为ECS)。该变换同时兼顾VSC-HVDC对不同同步发电机组的可控能力,同时还可以准确反映各同步发电机组的暂态信息。
具体地,步骤2中基于线性自抗扰理论的直流附加稳定控制设计具体步骤如下:
步骤21,根据式(5)所述的交直流系统状态方程,定义新状态变量,得到交直流系统新状态方程,使等效可控系统的转速差作为新状态方程的输出变量,使直流附加有功功率控制量作为新状态方程的输入变量。根据新状态方程定义扩张状态量,从而设计一个三阶的线性扩张状态观测器(简写为LESO)及线性状态反馈控制律(简写为LSF);
步骤22,设计控制器输出约束逻辑,以表征换流器等直流运行设备对VSC-HVDC功率调节能力的限制;同时,设计直流电压越限控制,使控制策略在直流运行电压高于额定值一定水平时限制控制器输出信号幅值。
具体地,所述步骤21的新状态方程中,需先定义如式(6)的新状态变量:
[z1z2]T=[y dy/dt]T (6)
把等效可控机组的转速ωeq作为式(6)所示新状态方程的输出变量,表示为:
z1=y=ωeq (7)
求y对f和g的李导数,得:
Figure BDA0001749649610000051
其中wi为同步发电机组i的等效可控权重系数;
获得以z1为输出,以udc为输入的交直流系统新状态方程如式(9):
Figure BDA0001749649610000052
式中,z1为等效可控机组的转速差,z2为等效可控机组转速差导数,由式(5)知z2与等效可控系统的功率不平衡量相关;
Figure BDA0001749649610000053
为未知函数;LgLfy为未知的新状态方程输入系数;udc是VSC-HVDC附加控制量,为新状态方程输入量。
线性自抗扰控制(linear active disturbance rejection control,LADRC)是由线性环节实现的自抗扰控制,其通过将影响被控输出的总扰动扩张成一个新的状态变量,然后利用线性扩张状态观测器(linear extended state observer,LESO)对系统状态变量和总扰动进行观测,根据观测的总扰动和系统状态变量设计线性状态反馈控制律。
本实施例将LADRC引入等效可控系统的线性状态反馈控制律设计中,实时观测系统扰动并在控制输入中实行前馈补偿。
具体地,所述步骤21中线性扩张状态观测器(简写为LESO)及线性状态反馈控制律(简写为LSF)设计如下:
定义如式(10)所示的扩张状态量:
Figure BDA0001749649610000061
式中,b0为可调参数,此处b0∈(0,10);ψ代表等效可控系统的总和扰动,该总和扰动包括VSC-HVDC有功功率调节时间常数Td数值不确定引起的扰动和等效可控系统中各可控机组不平衡有功功率微分项引起的扰动。
将ψ代入式(9)得:
Figure BDA0001749649610000062
式中,ζ为扩张状态量的导数,其数值有界;
针对式(9)的2阶系统设计3阶LESO如下:
Figure BDA0001749649610000063
式中,e1为系统状态变量在LESO中观测值与实际值的差值;
Figure BDA0001749649610000064
为系统状态变量[z1z2ψ]T的观测值;k1、k2、k3为LESO反馈系数,通过带宽法能够确定反馈系数数值,设置观测器带宽为ω0,ω0∈(20,100),则LESO反馈系数与带宽关系如式(13)所示:
s3+k1s2+k2s+k3=(s+ω0)3 (13)
式中s为频域变量。
根据LESO得到的观测量,设计线性状态反馈控制律(linear state feedback,LSF)如下:
Figure BDA0001749649610000065
式中,udc为LSF输出信号,即本专利所设计的一种改善系统暂态稳定的VSC-HVDC线性自抗扰控制策略的控制输出信号,v为虚拟控制律,l1和l2为LSF反馈系数,利用带宽法确定LSF反馈系数数值,设置带宽为ωcc∈(5,50)),LSF反馈系数与带宽ωc关系如式(15)所示:
s2+l1s+l2=(s+ωc)2 (15)
式中s为频域变量。
进一步,送端外环有功功率控制框图如图2所示,所述步骤22中控制输出约束逻辑如式(16)所示:
udcmin≤udc≤udcmax (16)
式中,udcmin和udcmax分别为控制输出信号下限值和上限值,其取值由实际直流系统运行参数确定。
考虑到VSC-HVDC传输有功功率受换流器等直流运行设备最大电流约束,所述步骤22中控制输出约束逻辑对所设计的VSC-HVDC线性自抗扰控制输出信号udc进行约束,使VSC-HVDC线性自抗扰控制在不影响直流输电系统正常运行的前提下进行。
进一步地,所述步骤22中直流电压越限控制在VSC-HVDC送出功率受阻时,削弱VSC-HVDC线性自抗扰控制的输出信号,同时削弱VSC-HVDC传输有功功率定值,限制VSC-HVDC实际传输功率。直流电压越限控制中,设置Udc为直流电压测量值,Udcmax为直流电压上限值,在Udc超过Udcmax时,直流电压越限控制被触发,以Udc与Udcmax的差值为输入,通过PI控制器输出Δudc,并将Δudc叠加到VSC-HVDC线性自抗扰控制的输出信号udc上,直流电压越限控制中涉及的PI控制率如式(17)所示。所述步骤22中直流电压越限控制可降低VSC-HVDC送出功率受阻对直流电压稳定的不利影响。
e(t)=Udc-Udcmax
Δudc(t)=K[e(t)+∫e(t)dt] (17)
式中,e(t)为Udc与Udcmax(Udcmax∈(1.1,1.2))的差值,K为PI控制器参数,Δudc为PI控制器输出信号。
步骤3所述为防止电力系统正常运行时同步发电机组的小幅波动引起控制误动,控制策略中增设一个带有时滞的死区判断框图,作为控制器的启动条件,具体实现方式为:
电力系统正常运行情况下同步发电机组转速也会产生小幅波动,这可能引起控制器误动。本实施例的死区判断流程如图3所示,该方法可抑制控制器在死区附近频繁启停引起颤抖的不良现象。具体地,步骤3中针对线性扩张状态观测器(简写为LESO)的启动判断逻辑如下:定义控制器启动判断指标为
Figure BDA0001749649610000071
其中λ1、λ2为权重系数。定义ξ为启动阈值,th为设定时延,ts为满足Ω≤ξ的持续时间。当控制器启动判断指标Ω大于启动阈值ξ时,控制器被触发启动;当判断指标Ω低于启动阈值ξ的持续时间ts大于设定时延th时,控制器退出运行。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明专利构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (4)

1.一种改善系统暂态稳定的VSC-HVDC线性自抗扰控制方法,其特征在于,所述方法包括如下步骤:
步骤1,根据VSC-HVDC对同步发电机组的可控能力划分出VSC-HVDC对应的可控机群,并将每个可控机群聚合为一台等效可控机组;将VSC-HVDC和其相应的等效可控机组建立成一个等效可控系统;所述可控能力由加速度作用因子c决定,所述可控机群为受VSC-HVDC调制效果明显的同步发电机组的集合;
所述步骤1中等效可控机组的聚合方式具体如下:
步骤11,在电力系统稳态情况时,基于VSC-HVDC的有功功率变化对同步发电机组电磁功率变化的影响及各机组的惯性时间常数,得到加速度作用因子c,分别在c>0和c<0区域,得到加速度作用因子的标幺值
Figure FDA0003241606390000014
并根据实际需求选取阈值cTH,选择
Figure FDA0003241606390000015
的模大于cTH的同步发电机组作为该VSC-HVDC的可控同步发电机组,上述所有可控同步发电机组构成该VSC-HVDC的可控机群,所述加速度作用因子c解析上反映了同步发电机组的转子角加速度受VSC-HVDC功率变化的影响;
步骤12,该VSC-HVDC包括至少1台可控同步发电机组,以同步发电机组i的加速度作用因子标幺值
Figure FDA0003241606390000016
为参数计算同步发电机组i的等效可控权重系数wi,并以wi为参数对可控机群内所有可控同步发电机组的功角和转速进行加权聚合,得到VSC-HVDC的等效可控机组,以及以等效可控机组功角和转速为状态变量的VSC-HVDC等效可控系统状态方程;
所述步骤11中加速度作用因子c的表达式如式(1)所示:
Figure FDA0003241606390000011
其中ci为同步发电机组i的加速度作用因子;Mi为同步发电机组i的惯性时间常数;Pi(t)为t秒时同步发电机组i的输出电磁功率;Pdc(t)为t秒时VSC-HVDC的输送有功功率;ε为一个幅值较小的正实数;
所述加速度作用因子标幺值,是面向系统中与VSC-HVDC相关的所有同步发电机组,由于ci在ci>0和ci<0区域内的最大模值不一定相同,因此应在ci>0和ci<0区域分别对ci进行标幺化,如式(2)所示,然后筛选
Figure FDA0003241606390000012
的模
Figure FDA0003241606390000013
大于阈值cTH的同步发电机组组成VSC-HVDC的可控机群:
Figure FDA0003241606390000021
其中阈值cTH是实数,且取值范围是0<cTH<1;
所述步骤12中,按式(3)计算可控机群中同步发电机组i的等效可控权重系数wi
Figure FDA0003241606390000022
对可控机群内所有可控同步发电机组的功角和转速进行加权聚合通过式(4)实现:
Figure FDA0003241606390000023
式中δi为同步发电机组i的功角;ωi为同步发电机组i的转速;wi为由式(3)得到的同步发电机组i的等效可控权重系数;δeq为等效可控机组的功角;ωeq为等效可控机组的转速;
以δeq和ωeq为状态变量的VSC-HVDC等效可控系统状态方程如式(5)所示:
Figure FDA0003241606390000024
式中,udc是VSC-HVDC附加控制量;Pdc为VSC-HVDC输送有功功率;Pmi为同步发电机组原动机功率;PGiG为VSC-HVDC直流电磁功率中与其他同步发电机组运行状态相关的分量,该值能够由交直流系统网络方程推导得到;Pdcref为VSC-HVDC输送有功功率参考值;Td为VSC-HVDC有功功率调节时间常数,用于模拟VSC-HVDC输送有功功率参考值改变到VSC-HVDC输送有功功率变化之间的延时,Mi为同步发电机组i的惯性时间常数,n为同步发电机组的个数;
步骤2,根据等效可控系统的状态方程,基于线性自抗扰理论设计出一个三阶的线性扩张状态观测器及线性状态反馈控制律,并增加控制输出约束逻辑及附加直流电压越限控制;
所述步骤2的具体过程如下:
步骤21,根据等效可控系统的状态方程,定义新状态变量,得到等效可控系统新状态方程,使等效可控机组的转速差作为新状态方程的输出变量,直流附加有功功率控制量作为新状态方程的输入变量;根据新状态方程定义扩张状态量,从而设计一个三阶的线性扩张状态观测器及线性状态反馈控制律;
步骤22,设计控制输出约束逻辑,以表征直流运行设备对VSC-HVDC有功功率调节能力的限制;同时,设计直流电压越限控制,使控制策略在直流运行电压高于额定值一定水平时限制控制器输出信号幅值;
所述步骤22中设计直流电压越限控制具体过程如下:所述直流电压越限控制在VSC-HVDC送出功率受阻时,削弱VSC-HVDC线性自抗扰控制的输出信号,同时削弱VSC-HVDC传输有功功率定值,限制VSC-HVDC实际传输功率;直流电压越限控制中,设置Udc为直流电压测量值,Udcmax为直流电压上限值,在Udc超过Udcmax时,直流电压越限控制被触发,以Udc与Udcmax的差值为输入,通过PI控制器输出Δudc,并将Δudc叠加到VSC-HVDC线性自抗扰控制的输出信号udc上,直流电压越限控制中涉及的PI控制率如式(17)所示:
Figure FDA0003241606390000031
其中,e(t)为Udc与Udcmax的差值,K为PI控制器参数,Δudc为PI控制器输出信号,Udcmax∈(1.1,1.2);
所述步骤22中控制输出约束逻辑如式(16)所示:
udcmin≤udc≤udcmax (16)
式中,udcmin和udcmax分别为控制输出信号下限值和上限值,其取值由实际直流系统运行参数确定;
考虑到VSC-HVDC传输有功功率受直流运行设备最大电流约束,所述步骤22中控制输出约束逻辑对所设计的VSC-HVDC线性自抗扰控制输出信号udc进行约束,使VSC-HVDC线性自抗扰控制在不影响直流输电系统正常运行的前提下进行;
步骤3,为防止电力系统正常运行时同步发电机组的小幅波动引起控制误动,控制策略中增设一个带有时滞的死区判断框图,作为控制器的启动条件。
2.根据权利要求1所述的一种改善系统暂态稳定的VSC-HVDC线性自抗扰控制方法,其特征在于,所述步骤21的新状态方程中,需先定义如式(6)的新状态变量:
[z1 z2]T=[y dy/dt]T (6)
把等效可控机组的转速ωeq作为式(6)所示新状态方程的输出变量,表示为:
z1=y=ωeq (7)
求y对f和g的李导数,得:
Figure FDA0003241606390000041
其中wi为同步发电机组i的等效可控权重系数;
获得以z1为输出,以udc为输入的交直流系统新状态方程如式(9):
Figure FDA0003241606390000042
式中,z1为等效可控机组的转速差,z2为等效可控机组转速差导数,由式(5)知z2与等效可控系统的功率不平衡量相关;
Figure FDA0003241606390000043
为未知函数;LgLfy为未知的新状态方程输入系数;udc是VSC-HVDC附加控制量,为新状态方程输入量。
3.根据权利要求2所述的一种改善系统暂态稳定的VSC-HVDC线性自抗扰控制方法,其特征在于,所述步骤21中线性扩张状态观测器及线性状态反馈控制律设计如下:
定义如式(10)所示的扩张状态量:
Figure FDA0003241606390000044
式中,b0为可调参数;将ψ代入式(9)得:
Figure FDA0003241606390000045
式中,ζ为扩张状态量的导数,其数值有界;
针对式(9)的二阶系统设计三阶线性扩张状态观测器如下:
Figure FDA0003241606390000046
式中,e1为系统状态变量在三阶线性扩张状态观测器中观测值与实际值的差值;
Figure FDA0003241606390000051
为系统状态变量[z1 z2 ψ]T的观测值;k1、k2、k3为三阶线性扩张状态观测器反馈系数,通过带宽法能够确定反馈系数数值,设置三阶线性扩张状态观测器带宽为ω0,则三阶线性扩张状态观测器反馈系数与带宽关系如式(13)所示:
s3+k1s2+k2s+k3=(s+ω0)3 (13)
式中s为频域变量;
根据三阶线性扩张状态观测器得到的观测量,设计线性状态反馈控制律如下:
Figure FDA0003241606390000052
式中,udc为线性状态反馈控制律的输出信号,v为线性状态反馈控制律的虚拟控制律,l1和l2为线性状态反馈控制律的反馈系数,利用带宽法确定线性状态反馈控制律的反馈系数数值,设置带宽为ωc,线性状态反馈控制律的反馈系数与带宽ωc关系如式(15)所示:
s2+l1s+l2=(s+ωc)2 (15)
式中s为频域变量。
4.根据权利要求1所述的一种改善系统暂态稳定的VSC-HVDC线性自抗扰控制方 法,其特征在于,步骤3中针对线性扩张状态观测器的启动判断逻辑如下:定义控制器启动判断指标为
Figure FDA0003241606390000053
其中λ1、λ2为权重系数;定义ξ为启动阈值,th为设定时延,ts为满足Ω≤ξ的持续时间;当控制器启动判断指标Ω大于启动阈值ξ时,控制器被触发启动;当判断指标Ω低于启动阈值ξ的持续时间ts大于设定时延th时,控制器退出运行。
CN201810860955.2A 2018-08-01 2018-08-01 一种改善系统暂态稳定的vsc-hvdc线性自抗扰控制方法 Active CN109066756B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810860955.2A CN109066756B (zh) 2018-08-01 2018-08-01 一种改善系统暂态稳定的vsc-hvdc线性自抗扰控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810860955.2A CN109066756B (zh) 2018-08-01 2018-08-01 一种改善系统暂态稳定的vsc-hvdc线性自抗扰控制方法

Publications (2)

Publication Number Publication Date
CN109066756A CN109066756A (zh) 2018-12-21
CN109066756B true CN109066756B (zh) 2022-01-18

Family

ID=64832329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810860955.2A Active CN109066756B (zh) 2018-08-01 2018-08-01 一种改善系统暂态稳定的vsc-hvdc线性自抗扰控制方法

Country Status (1)

Country Link
CN (1) CN109066756B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654017B (zh) * 2020-06-18 2023-06-20 天津理工大学 一种直流配电网三相ac-dc变流器控制方法
CN112415988B (zh) * 2021-01-22 2021-04-02 北京航空航天大学 一种自抗扰控制系统稳定性的分析方法及分析装置
CN113156814B (zh) * 2021-02-26 2022-11-01 清华大学 一种自抗扰控制方法、装置、控制系统及存储介质
CN113488986B (zh) * 2021-08-20 2022-12-23 重庆大学 基于不确定与扰动估计的vsc鲁棒下垂控制方法
CN113791536A (zh) * 2021-11-15 2021-12-14 滨州学院 二阶时滞自抗扰控制系统、方法及相关装置
CN114421494A (zh) * 2022-01-11 2022-04-29 上海交通大学 一种增强型柔性直流输电系统高频振荡抑制方法及其系统
CN115663876B (zh) * 2022-10-25 2023-05-16 国网经济技术研究院有限公司 混合级联特高压直流系统主回路参数设计方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969210A (zh) * 2010-10-22 2011-02-09 天津理工大学 一种基于自抗扰控制技术的光伏发电系统的并网控制方法
CN103050967A (zh) * 2013-01-06 2013-04-17 华北电力大学(保定) 一种柔性直流输电系统自抗扰控制方法
CN105024392A (zh) * 2014-04-29 2015-11-04 国网山西省电力公司电力科学研究院 一种柔性直流输电系统的控制方法
CN105406502A (zh) * 2015-12-24 2016-03-16 安徽华电工程咨询设计有限公司 基于自抗扰控制的轻型直流输电系统控制器设计方法
WO2017190291A1 (en) * 2016-05-04 2017-11-09 Abb Schweiz Ag Power conversion circuit, power system and method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801178B (zh) * 2012-07-20 2014-12-10 南方电网科学研究院有限责任公司 一种频域分析中直流输电的附加控制方法
CN103368170B (zh) * 2013-06-26 2016-08-24 许继电气股份有限公司 一种多端柔性直流输电系统的换流器及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969210A (zh) * 2010-10-22 2011-02-09 天津理工大学 一种基于自抗扰控制技术的光伏发电系统的并网控制方法
CN103050967A (zh) * 2013-01-06 2013-04-17 华北电力大学(保定) 一种柔性直流输电系统自抗扰控制方法
CN105024392A (zh) * 2014-04-29 2015-11-04 国网山西省电力公司电力科学研究院 一种柔性直流输电系统的控制方法
CN105406502A (zh) * 2015-12-24 2016-03-16 安徽华电工程咨询设计有限公司 基于自抗扰控制的轻型直流输电系统控制器设计方法
WO2017190291A1 (en) * 2016-05-04 2017-11-09 Abb Schweiz Ag Power conversion circuit, power system and method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《改善系统暂态稳定性的变速风电机组线性自抗扰控制器》;沈鹏等;《高电压技术》;20160930;第42卷(第9期);第2808-2815页 *

Also Published As

Publication number Publication date
CN109066756A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN109066756B (zh) 一种改善系统暂态稳定的vsc-hvdc线性自抗扰控制方法
CN111277001B (zh) 基于虚拟同步发电机参数自适应控制的风机并网控制方法
CN108631331B (zh) 一种双馈风电场次同步振荡抑制方法及装置
CN109861279A (zh) 一种适用于虚拟同步发电机的转动惯量自适应控制方法
CN107800343B (zh) 异步电机自抗扰控制器的设计方法
CN110112769A (zh) 虚拟同步机输出反馈自适应控制方法
Surjan et al. Power system stabilizer controller design for SMIB stability study
CN108599236B (zh) 双馈风电场次同步振荡svg抑制方法及装置
CN107104447B (zh) 基于二阶广义虚拟惯性的虚拟同步发电机控制方法
CN110661273A (zh) 一种抑制低频振荡和次同步振荡的阻尼控制方法及系统
CN112467784A (zh) 一种混合微网换流器自适应虚拟同步机控制方法
CN105790270A (zh) 通过双馈风机转子侧变流器抑制次同步谐振的方法及装置
CN109256803A (zh) 虚拟同步机孤岛运行小信号建模及参数灵敏度计算方法
CN109617488B (zh) 一种考虑励磁电路的虚拟同步机的建模方法
CN109599889B (zh) 基于模糊自抗扰的不平衡电压下的穿越控制方法、系统
CN109193760B (zh) 一种基于虚拟同步机的并网光伏逆变器自抗扰控制方法
CN109193797A (zh) 一种基于同步发电机和虚拟同步发电机并联微网的惯性匹配方法及控制系统
CN107579529A (zh) 一种基于并网变换器锁相环优化的同步机次同步抑制方法
CN110768239A (zh) 一种基于p-u下垂特性的虚拟直流电机控制方法
KR20240050378A (ko) 전력 그리드 주파수 검출 방법, 장치, 전력 그리드 주파수 조정 방법, 및 장치
CN108988387A (zh) 基于转子电流移相平均的双馈风电机组次同步谐振抑制方法
CN114172189B (zh) 一种不平衡电网下虚拟同步发电机的控制方法
CN116054187A (zh) 一种风电经柔直并网产生的次同步振荡抑制方法
Wang et al. Low frequency oscillation analysis of VSG grid-connected system
CN110768272B (zh) 一种statcom与发电机励磁系统协调控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant