CN109037393A - 一种基于碳电极全无机钙钛矿太阳能电池的制备方法 - Google Patents

一种基于碳电极全无机钙钛矿太阳能电池的制备方法 Download PDF

Info

Publication number
CN109037393A
CN109037393A CN201810613322.1A CN201810613322A CN109037393A CN 109037393 A CN109037393 A CN 109037393A CN 201810613322 A CN201810613322 A CN 201810613322A CN 109037393 A CN109037393 A CN 109037393A
Authority
CN
China
Prior art keywords
solar battery
carbon electrode
perovskite solar
preparation
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810613322.1A
Other languages
English (en)
Other versions
CN109037393B (zh
Inventor
吴素娟
周阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201810613322.1A priority Critical patent/CN109037393B/zh
Publication of CN109037393A publication Critical patent/CN109037393A/zh
Application granted granted Critical
Publication of CN109037393B publication Critical patent/CN109037393B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种基于碳电极全无机钙钛矿太阳能电池的制备方法。该方法包括以下步骤:(1)在导电玻璃上旋涂制备电子传导层;(2)在步骤(1)所制得的样品上以2000~4000r/min旋涂0.8~1M CsPbI2Br的甲基亚砜前驱液后,热处理后得到CsPbI2Br膜;(3)在CsPbI2Br膜上,以2000~4000r/min旋涂制备无机空穴传导层;(4)采用刮涂法在步骤(3)所制得的样品上刮涂一层碳电极,热处理后即得到全无机钙钛矿太阳能电池。相比于现有技术,本发明所述的方法可在空气中制备高效的全无机钙钛矿太阳能电池,且工艺流程简单、制造成本低廉,不需要依赖任何大型设备。

Description

一种基于碳电极全无机钙钛矿太阳能电池的制备方法
技术领域
本发明属于太阳能电池领域,特别涉及一种采用刮涂法制备廉价的碳电极全无机钙钛矿太阳能电池的方法(简称钙钛矿电池)的方法。
背景技术
近年来,钙钛矿太阳能电池由于具有较高的光电转换效率而倍受关注。当前,报道钙钛矿电池实验最高转换效率已经超过22.1%(Yang W S,Park B W,Jung E H,etal.Science,2017,356(6345):1376-1379.)。但是由于CH3NH3PbX3(卤素)钙钛矿层和有机空穴层在空气中的稳定性差,且材料成本昂贵,此外惰性气体手套箱组以及高真空蒸镀设备不利于大规模生产。而如果能直接取代有机成分,在钙钛矿层,空穴层乃至电极上全部采用无机材料,不仅可以降低电池的制造成本,而且提高了电池的稳定性。
有研究发现铯能够替代有机阳离子,显著地提高钙钛矿的热稳定性(C.Liu,W.Li,C.Zhang,Y.Ma,J.Fan,Y.Mai,J.Am.Chem.Soc.,140(2018)3825-3828.)。也有课题组通过Br-部分取代CsPbI3分子中的I-,发现可以有效提升器件的开路电压和效率(C.Y.Chen,H.Y.Lin,K.M.Chiang,W.L.Tsai,Y.C.Huang,C.S.Tsao,H.W.Lin,Adv.Mater,29(2017).)此外,为了简化流程和降低制备成本,碳电极也已被广泛的应用在钙钛矿太阳能电池领域(Y.Yang,H.Chen,X.Zheng,X.Meng,T.Zhang,C.Hu,Y.Bai,S.Xiao,S.Yang.Nano Energy,42(2017)322-333.)
目前,在SnO2上制备平面结构碳电极全无机CsPbI2Br钙钛矿太阳能电池且用Co3O4作为其空穴层还未见报道。
发明内容
本发明为解决现有技术中存在的不足,提供了一种通过低温溶液法制备SnO2致密层,并在空气中制备全无机CsPbI2Br钙钛矿层,最后采用刮涂法制备碳电极,采用Co3O4作为其空穴层,从而制备低廉高效率的全无机钙钛矿太阳能电池的方法。
本发明是通过以下技术方案实现的:
一种基于碳电极全无机钙钛矿太阳能电池的制备方法,其特征在于,包括以下步骤:
(1)在导电玻璃上旋涂制备电子传导层;
(2)在步骤(1)所制得的样品上以2000~4000r/min旋涂0.8~1M CsPbI2Br的甲基亚砜前驱液后,热处理后得到CsPbI2Br膜;
(3)在CsPbI2Br膜上,以2000~4000r/min旋涂制备无机空穴传导层;
(4)采用刮涂法在步骤(3)所制得的样品上刮涂一层碳电极,热处理后即得到全无机钙钛矿太阳能电池。
进一步地,所述电子传导层是SnO2、ZnO、TiO2、Fe2O3电子层中的一种。
进一步地,步骤(1)所述电子传导层是SnO2致密层,通过以下步骤制得:将清洁的ITO导电玻璃用紫外灯照5-10min后,以2500~4500r/min旋涂3~12wt%SnO2纳米颗粒水分散液,之后再150~180℃下热处理30~50min,得到SnO2致密层。
进一步地,步骤(2)所述CsPbI2Br前驱液为在甲基亚砜溶液中加入质量比为0.5:1:0.5:1的CsBr、CsI、PbBr2、PbI2四种物质混合配置而成。
优选地,步骤(2)中的热处理温度为260-280℃,热处理时间为10~30min。
进一步地,步骤(3)所述无机空穴传导层是Co3O4,NiOx、MoOx、VOx,CuSCN空穴传导层中的一种。
进一步地,步骤(3)所述无机空穴传导层是Co3O4空穴传导层,其制备方法是:在CsPbI2Br膜上,以2000~4000r/min旋涂0.1~1mg/ml Co3O4纳米颗粒氯苯分散液,对该旋涂步骤重复1~3次后,热处理得到Co3O4空穴传导层,所述Co3O4纳米颗粒氯苯分散液由氯苯溶液中加入质量分数比为0.01~0.1%的Co3O4纳米颗粒和0.005~0.008%的聚乙二醇超声分散1~2h配置而成。
优选地,步骤(3)中的热处理温度是100-120℃,热处理时间为5~10min。
优选地,步骤(4)中的热处理温度是100-120℃,热处理时间为20~30min。
相比于现有技术,本发明提供的廉价碳电极全无机钙钛矿太阳能电池的方法,具有以下优点和有益效果:
(1)该方法属于溶液法,操作简单,容易控制,且整个平面结构的钙钛矿电池乃至电极都是在空气中制备,不依赖昂贵的手套箱组和高真空蒸镀设备。
(2)该方法在钙钛矿层,空穴层乃至电极上全部采用无机材料,不仅可以降低电池的制造成本,且提高了电池的稳定性。
本发明还提供一种根据上述制备方法制得的高效率无机钙钛矿太阳能电池。
相比于现有技术,本发明所述的方法可在空气中制备高效的全无机钙钛矿太阳能电池,其工艺流程简单、制造成本低廉,且电池的光电转换效率高。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但发明的实施方式不限于此。
实施例1
本实施例中,一种基于碳电极全无机钙钛矿太阳能电池的制备方法,包括以下步骤:
(1)在8ml的去离子水中加入2ml 15wt%SnO2纳米颗粒水分散液,稀释配置成3wt%SnO2纳米颗粒水分散液;
(2)将清洁的ITO导电玻璃用紫外灯照5min后,以4000r/min的转速旋涂3wt%SnO2纳米颗粒水分散液,之后在150℃下热处理30min得到SnO2致密层;
(3)在步骤(2)所制备的SnO2致密层上以2500r/min的转速旋涂0.8M的质量比为0.5:1:0.5:1的CsBr、CsI、PbBr2、PbI2等四种物质混合所形成的CsPbI2Br甲基亚砜前驱液,然后在260℃下热处理10min得到CsPbI2Br钙钛矿层;
(4)在步骤(3)所制备上CsPbI2Br钙钛矿层,以2000r/min的转速旋涂0.1mg/mlCo3O4纳米颗粒氯苯分散液,所述Co3O4纳米颗粒氯苯分散液为在氯苯溶液中加入质量分数比为0.01%的Co3O4纳米颗粒和0.005%的聚乙二醇超声分散1h配置而成;
(5)将步骤(4)重复3次后,在100℃下热处理所制得的薄膜5min,得到Co3O4薄膜;
(6)采用刮涂法在步骤(5)所制备的Co3O4薄膜上,刮涂一层碳电极,在120℃下热处理20min,即得全无机钙钛矿太阳能电池。
在室温环境下(湿度为30~40%),在光强为100mW/cm2条件下,分析测试所制得的电池,电池的有效面积为0.08cm2。测试结果显示,采用本实施例所述方法制得的电池光电转换效率为11.08%。
实施例2
本实施例中,一种基于碳电极全无机钙钛矿太阳能电池的制备方法,包括以下步骤:
(1)在4ml的去离子水中加入6ml 15wt%SnO2纳米颗粒水分散液,稀释配置成9wt%SnO2纳米颗粒水分散液;
(2)将清洁的ITO导电玻璃用紫外灯照10min后,以3500r/min的转速旋涂9wt%SnO2纳米颗粒水分散液,之后在160℃下热处理40min得到SnO2致密层;
(3)在步骤(2)所制备的SnO2致密层上以2500r/min的转速旋涂0.9M的质量比为0.5:1:0.5:1的CsBr、CsI、PbBr2、PbI2等四种物质混合所形成的CsPbI2Br甲基亚砜前驱液,然后在270℃下热处理20min得到CsPbI2Br钙钛矿层;
(4)在步骤(3)所制备上CsPbI2Br钙钛矿层,以4000r/min的转速旋涂0.5mg/mlCo3O4纳米颗粒氯苯分散液,所述Co3O4纳米颗粒氯苯分散液为在氯苯溶液中加入质量分数比为0.05%的Co3O4纳米颗粒和0.0065%的聚乙二醇超声分散1h配置而成;
(5)将步骤(4)重复2次后,在110℃下热处理所制得的薄膜10min,得到Co3O4薄膜;
(6)采用刮涂法在步骤(5)所制备的Co3O4薄膜上,刮涂一层碳电极,在110℃下热处理25min,即得全无机钙钛矿太阳能电池。
在室温环境下(湿度为30~40%),在光强为100mW/cm2条件下,分析测试所制得的电池,电池的有效面积为0.08cm2。测试结果显示采用本实施例所述方法制得的电池光电转换效率为9.86%。
实施例3
本实施例中,一种基于碳电极全无机钙钛矿太阳能电池的制备方法,包括以下步骤:
(1)在2ml的去离子水中加入8ml 15wt%SnO2纳米颗粒水分散液,稀释配置成12wt%SnO2纳米颗粒水分散液;
(2)将清洁的ITO导电玻璃用紫外灯照10min后,以4500r/min的转速旋涂12wt%SnO2纳米颗粒水分散液,之后在180℃下热处理50min得到SnO2致密层;
(3)在步骤(2)所制备的SnO2致密层上以4000r/min的转速旋涂1M的质量比为0.5:1:0.5:1的CsBr、CsI、PbBr2、PbI2等四种物质混合所形成的CsPbI2Br甲基亚砜前驱液,然后在280℃下热处理30min得到CsPbI2Br钙钛矿层;
(4)在步骤(3)所制备上CsPbI2Br钙钛矿层,以3000r/min的转速旋涂1mg/ml Co3O4纳米颗粒氯苯分散液,所述Co3O4纳米颗粒氯苯分散液为在氯苯溶液中加入质量分数比为0.1%的Co3O4纳米颗粒和0.008%的聚乙二醇超声分散2h配置而成;
(5)将步骤(4)重复1次后,在100℃下热处理所制得的薄膜10min,得到Co3O4薄膜;
(6)采用刮涂法在步骤(5)所制备的Co3O4薄膜上,刮涂一层碳电极,在100℃下热处理30min,即得全无机钙钛矿太阳能电池。
在室温环境下(湿度为30~40%),在光强为100mW/cm2条件下,分析测试所制得的电池,电池的有效面积为0.08cm2。测试结果显示采用本实施例所述方法制得的电池光电转换效率为7.13%。
上述3个实施例,均以SnO2为电子传导层,Co3O4为无机空穴传导层,其中实施例1为最佳实施例。
需要说明的是,本发明所述的一种基于碳电极全无机钙钛矿太阳能电池的制备方法中,热处理的温度对制得的电池性能参数影响较小,其中,步骤(2)中热处理温度在150~180℃范围内效果较佳;步骤(3)中的热处理温度在260~280℃范围内效果较佳。此外,步骤(5)和步骤(6)中的热退火温度控制在100~120℃范围内即可。
上述3个实施例的热处理温度均选择最优的参数,仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,本领域技术人员根据本发明内容选用较佳的其他参数亦可达到本发明的目的。
实施例4(TiO2为电子传导层,CuSCN为无机空穴传导层)
本实施例中,一种基于碳电极全无机钙钛矿太阳能电池的制备方法,包括以下步骤:
(1)TiO2致密层的制备:先在冰水混合物中加入四氯化钛溶液(加入前TiCl4与水的体积比为1.5-4%),配置TiO2胶体,清洁的掺杂F的氧化锡(FTO)导电玻璃用紫外灯照10-20分钟后,放入70℃的上述溶液中50分钟,取出分别用去离子水和乙醇冲洗后,在200℃热处理30-60分钟,即得到TiO2致密层;
(2)在步骤(1)所制备的TiO2致密层上以4000r/min的转速旋涂1M的质量比为0.5:1:0.5:1的CsBr、CsI、PbBr2、PbI2等四种物质混合所形成的CsPbI2Br甲基亚砜前驱液,然后在260℃下热处理30min得到CsPbI2Br钙钛矿层;
(3)在步骤(2)所制备上CsPbI2Br钙钛矿层上,旋涂制备CuSCN空穴传导层;
(4)采用刮涂法在步骤(3)所制备的CuSCN空穴传导层上,刮涂一层碳电极,在100℃下热处理30min,即得全无机钙钛矿太阳能电池。
在室温环境下(湿度为30~40%),在光强为100mW/cm2条件下,分析测试所制得的电池,电池的有效面积为0.08cm2。测试结果显示采用本实施例所述方法制得的电池光电转换效率为7.8%。
实施例5(TiO2为电子传导层,Co3O4为无机空穴传导层)
本实施例中,一种基于碳电极全无机钙钛矿太阳能电池的制备方法,包括以下步骤:
(1)TiO2致密层的制备:先在冰水混合物中加入四氯化钛溶液(加入前TiCl4与水的体积比为1.5-4%),配置TiO2胶体,清洁的掺杂F的氧化锡(FTO)导电玻璃用紫外灯照10-20分钟后,放入70℃的上述溶液中50分钟,取出分别用去离子水和乙醇冲洗后,在200℃热处理30-60分钟,即得到TiO2致密层;
(2)在步骤(1)所制备的TiO2致密层上以2500r/min的转速旋涂0.8M的质量比为0.5:1:0.5:1的CsBr、CsI、PbBr2、PbI2等四种物质混合所形成的CsPbI2Br甲基亚砜前驱液,然后在260℃下热处理10min得到CsPbI2Br钙钛矿层;
(3)在步骤(2)所制备上CsPbI2Br钙钛矿层,以2000r/min的转速旋涂0.1mg/mlCo3O4纳米颗粒氯苯分散液,所述Co3O4纳米颗粒氯苯分散液为在氯苯溶液中加入质量分数比为0.01%的Co3O4纳米颗粒和0.005%的聚乙二醇超声分散1h配置而成;
(4)将步骤(3)重复3次后,在100℃下热处理所制得的薄膜5min,得到Co3O4薄膜;
(5)采用刮涂法在步骤(4)所制备的Co3O4薄膜上,刮涂一层碳电极,在120℃下热处理20min,即得全无机钙钛矿太阳能电池。
在室温环境下(湿度为30~40%),在光强为100mW/cm2条件下,分析测试所制得的电池,电池的有效面积为0.08cm2。测试结果显示,采用本实施例所述方法制得的电池光电转换效率为10.2%。
实施例6(SnO2为电子传导层,NiOx为无机空穴传导层)
本实施例中,一种基于碳电极全无机钙钛矿太阳能电池的制备方法,包括以下步骤:
(1)在8ml的去离子水中加入2ml 15wt%SnO2纳米颗粒水分散液,稀释配置成3wt%SnO2纳米颗粒水分散液;
(2)将清洁的ITO导电玻璃用紫外灯照5min后,以4000r/min的转速旋涂3wt%SnO2纳米颗粒水分散液,之后在150℃下热处理30min得到SnO2致密层;
(3)在步骤(2)所制备的SnO2致密层上以2500r/min的转速旋涂0.8M的质量比为0.5:1:0.5:1的CsBr、CsI、PbBr2、PbI2等四种物质混合所形成的CsPbI2Br甲基亚砜前驱液,然后在260℃下热处理10min得到CsPbI2Br钙钛矿层;
(4)在步骤(3)所制备上CsPbI2Br钙钛矿层上,旋涂制备NiOx空穴传导层;
(5)采用刮涂法在步骤(4)所制备的NiOx空穴传导层上,刮涂一层碳电极,在120℃下热处理20min,即得全无机钙钛矿太阳能电池。
在室温环境下(湿度为30~40%),在光强为100mW/cm2条件下,分析测试所制得的电池,电池的有效面积为0.08cm2。测试结果显示,采用本实施例所述方法制得的电池光电转换效率为9.6%。
以上实施例并未穷举所有电子传导层和空穴传导层为例进行说明,实际上:SnO2、ZnO、TiO2、Fe2O3等作为电子传导层都可以适用,空穴传导层可以是Co3O4,NiOx、MoOx、VOx,CuSCN等,都适用于本全无机钙钛矿太阳能电池体系。
以上所述,仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,故凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做任何的简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种基于碳电极全无机钙钛矿太阳能电池的制备方法,其特征在于,包括以下步骤:
(1)在导电玻璃上旋涂制备电子传导层;
(2)在步骤(1)所制得的样品上以2000~4000r/min旋涂0.8~1M CsPbI2Br的甲基亚砜前驱液后,热处理后得到CsPbI2Br膜;
(3)在CsPbI2Br膜上,以2000~4000r/min旋涂制备无机空穴传导层;
(4)采用刮涂法在步骤(3)所制得的样品上刮涂一层碳电极,热处理后即得到全无机钙钛矿太阳能电池。
2.根据权利要求1所述的基于碳电极全无机钙钛矿太阳能电池的制备方法,其特征在于:步骤(1)所述电子传导层是SnO2、ZnO、TiO2、Fe2O3电子层中的一种。
3.根据权利要求2所述的基于碳电极全无机钙钛矿太阳能电池的制备方法,其特征在于:步骤(1)所述电子传导层是SnO2致密层,通过以下步骤制得:将清洁的ITO导电玻璃用紫外灯照5-10min后,以2500~4500r/min旋涂3~12wt%SnO2纳米颗粒水分散液,之后再150~180℃下热处理30~50min,得到SnO2致密层。
4.根据权利要求1所述的基于碳电极全无机钙钛矿太阳能电池的制备方法,其特征在于:步骤(2)所述CsPbI2Br前驱液为在甲基亚砜溶液中加入质量比为0.5:1:0.5:1的CsBr、CsI、PbBr2、PbI2四种物质混合配置而成。
5.根据权利要求1所述的基于碳电极全无机钙钛矿太阳能电池的制备方法,其特征在于:步骤(2)中的热处理温度为260-280℃,热处理时间为10~30min。
6.根据权利要求1所述的基于碳电极全无机钙钛矿太阳能电池的制备方法,其特征在于:步骤(3)所述无机空穴传导层是Co3O4,NiOx、MoOx、VOx,CuSCN空穴传导层中的一种。
7.根据权利要求6所述的基于碳电极全无机钙钛矿太阳能电池的制备方法,其特征在于:步骤(3)所述无机空穴传导层是Co3O4空穴传导层,其制备方法是:在CsPbI2Br膜上,以2000~4000r/min旋涂0.1~1mg/ml Co3O4纳米颗粒氯苯分散液,对该旋涂步骤重复1~3次后,热处理得到Co3O4空穴传导层,所述Co3O4纳米颗粒氯苯分散液由氯苯溶液中加入质量分数比为0.01~0.1%的Co3O4纳米颗粒和0.005~0.008%的聚乙二醇超声分散1~2h配置而成。
8.根据权利要求7所述的基于碳电极全无机钙钛矿太阳能电池的制备方法,其特征在于:步骤(3)中的热处理温度是100-120℃,热处理时间为5~10min。
9.根据权利要求1所述的基于碳电极全无机钙钛矿太阳能电池的制备方法,其特征在于:步骤(4)中的热处理温度是100-120℃,热处理时间为20~30min。
10.一种基于碳电极的全无机高效率钙钛矿太阳能电池,其特征在于:通过权利要求1~9任一项所述的方法制备而成。
CN201810613322.1A 2018-06-14 2018-06-14 一种基于碳电极全无机钙钛矿太阳能电池的制备方法 Active CN109037393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810613322.1A CN109037393B (zh) 2018-06-14 2018-06-14 一种基于碳电极全无机钙钛矿太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810613322.1A CN109037393B (zh) 2018-06-14 2018-06-14 一种基于碳电极全无机钙钛矿太阳能电池的制备方法

Publications (2)

Publication Number Publication Date
CN109037393A true CN109037393A (zh) 2018-12-18
CN109037393B CN109037393B (zh) 2020-05-26

Family

ID=64609699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810613322.1A Active CN109037393B (zh) 2018-06-14 2018-06-14 一种基于碳电极全无机钙钛矿太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN109037393B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416333A (zh) * 2019-07-11 2019-11-05 华中科技大学 一种紫外光电探测器及其制备方法
CN111540808A (zh) * 2020-04-03 2020-08-14 华南师范大学 一种苯烷基胺衍生物制备高效率碳电极无机钙钛矿太阳能电池的方法
CN111540807A (zh) * 2020-04-03 2020-08-14 华南师范大学 一种具有高开路电压的全无机钙钛矿太阳能电池及其制备方法
CN112614942A (zh) * 2021-01-08 2021-04-06 河南大学 一种peg修饰的碳电极、其制备方法及利用其制得的钙钛矿电池
CN113675342A (zh) * 2021-08-02 2021-11-19 云南农业大学 一种高性能p-i-n型碳基钙钛矿太阳能电池
CN114583011A (zh) * 2022-03-02 2022-06-03 江西沃格光电股份有限公司 一种基于全无机材料的钙钛矿太阳能电池的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465994A (zh) * 2014-12-09 2015-03-25 厦门惟华光能有限公司 一种基于全涂布工艺的钙钛矿太阳能电池的制备方法
US20150129034A1 (en) * 2012-05-18 2015-05-14 Isis Innovation Limited Optoelectronic device comprising perovskites
CN107369764A (zh) * 2017-06-29 2017-11-21 北京科技大学 一种掺杂三水合醋酸铅的钙钛矿太阳能电池及制备方法
CN107611191A (zh) * 2017-08-24 2018-01-19 宁波大学 一种无机钙钛矿太阳能电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150129034A1 (en) * 2012-05-18 2015-05-14 Isis Innovation Limited Optoelectronic device comprising perovskites
EP3010054A1 (en) * 2012-05-18 2016-04-20 Isis Innovation Limited Optoelectronic device
CN104465994A (zh) * 2014-12-09 2015-03-25 厦门惟华光能有限公司 一种基于全涂布工艺的钙钛矿太阳能电池的制备方法
CN107369764A (zh) * 2017-06-29 2017-11-21 北京科技大学 一种掺杂三水合醋酸铅的钙钛矿太阳能电池及制备方法
CN107611191A (zh) * 2017-08-24 2018-01-19 宁波大学 一种无机钙钛矿太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMNA BASHIR等: "Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells", 《NANOSCALE》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416333A (zh) * 2019-07-11 2019-11-05 华中科技大学 一种紫外光电探测器及其制备方法
CN111540808A (zh) * 2020-04-03 2020-08-14 华南师范大学 一种苯烷基胺衍生物制备高效率碳电极无机钙钛矿太阳能电池的方法
CN111540807A (zh) * 2020-04-03 2020-08-14 华南师范大学 一种具有高开路电压的全无机钙钛矿太阳能电池及其制备方法
CN111540807B (zh) * 2020-04-03 2021-10-15 华南师范大学 一种具有高开路电压的全无机钙钛矿太阳能电池及其制备方法
CN112614942A (zh) * 2021-01-08 2021-04-06 河南大学 一种peg修饰的碳电极、其制备方法及利用其制得的钙钛矿电池
CN113675342A (zh) * 2021-08-02 2021-11-19 云南农业大学 一种高性能p-i-n型碳基钙钛矿太阳能电池
CN114583011A (zh) * 2022-03-02 2022-06-03 江西沃格光电股份有限公司 一种基于全无机材料的钙钛矿太阳能电池的制作方法

Also Published As

Publication number Publication date
CN109037393B (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
CN109037393A (zh) 一种基于碳电极全无机钙钛矿太阳能电池的制备方法
CN104134711B (zh) 一种钙钛矿太阳能电池的制备方法
CN104091888B (zh) 一种钙钛矿型太阳能电池及其制备方法
CN105702864B (zh) 一种高质量钙钛矿薄膜、太阳能电池及其制备方法
CN105609643B (zh) 一种钙钛矿型太阳能电池及制备方法
CN105047826B (zh) 一种在钙钛矿层中掺入硫化镉的钙钛矿太阳能电池及其制备方法
CN105226191A (zh) 柔性钙钛矿太阳能电池及其制备工艺
CN106025075B (zh) 一种潮湿空气中制备高效率钙钛矿太阳能电池的方法
CN109755394B (zh) 一种应用风刀涂布制备钙钛矿太阳能电池的方法
CN109873082A (zh) 一种基于界面改性剂的钙钛矿太阳电池及其制备方法
CN106601916B (zh) 基于异质结阴极缓冲层的有机太阳能电池及其制备方法
CN105280819A (zh) 一种平面异质结钙钛矿太阳能电池及其制备方法
CN101866753B (zh) 染料敏化太阳能电池光阳极表面的处理方法
CN101567268B (zh) 一种三元双层二氧化钛膜的制备方法
CN108281552A (zh) 一种具有能带梯度的钙钛矿太阳能电池及其制备方法
CN101409158B (zh) 染料敏化太阳电池分级微纳结构ZnO电极材料及电极的制备方法
CN106910826A (zh) 新型介孔结构钙钛矿太阳能电池及其制备方法
CN108899377A (zh) 一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法
CN105355724B (zh) 一种钙钛矿薄膜的热处理方法及其基于该技术制备太阳能电池的方法
CN102013329A (zh) 一种提高染料敏化太阳能电池光能转化率的方法
CN108807686A (zh) 光伏电池及其制备方法
CN108123045A (zh) 一种无铅钙钛矿太阳能电池及其制备方法
CN112490368A (zh) 一种优化电荷收集能力的电极、电池及制备方法
CN110379874A (zh) 一种太阳能薄膜电池及其制备方法
CN109802045A (zh) NaTaO3和PCBM作为双电子传输层制备钙钛矿太阳能电池的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant