CN108899377A - 一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法 - Google Patents

一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法 Download PDF

Info

Publication number
CN108899377A
CN108899377A CN201810785959.9A CN201810785959A CN108899377A CN 108899377 A CN108899377 A CN 108899377A CN 201810785959 A CN201810785959 A CN 201810785959A CN 108899377 A CN108899377 A CN 108899377A
Authority
CN
China
Prior art keywords
thin
film
solar cells
film solar
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810785959.9A
Other languages
English (en)
Inventor
郑巧
程树英
王冲冲
马国臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201810785959.9A priority Critical patent/CN108899377A/zh
Publication of CN108899377A publication Critical patent/CN108899377A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种以Ti掺杂Sb2S3作为光吸收层的薄膜太阳能电池及其制备方法,该薄膜太阳能电池结构由下到上依次由氧化物透明导电衬底、电子传输层、无机光吸收层、空穴传输层和金属电极构成,其中所述无机光吸收层为Ti掺杂的Sb2S3薄膜。本发明采用旋涂方法制备Ti掺杂的Sb2S3薄膜,使Sb2S3薄膜表面形貌有了很大改善,增强了其光吸收率,以其作为薄膜太阳能电池的光吸收层,可使电池的电流密度和填充因子明显提高,从而提升电池转换效率。

Description

一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法
技术领域
本发明属于材料技术领域,具体涉及一种以旋涂方法制备的Ti-Sb2S3作为光吸收层的薄膜太阳能电池及其制备方法。
背景技术
有机/无机杂化太阳能电池是由染料敏化太阳能电池演变过来的,杂化太阳电池克服了有机染料电池液态电极易泄漏和有机光敏材料不稳定、易分解的问题,其发展潜力备受关注。Sb2S3薄膜太阳能电池是有机无机杂化太阳能电池的一个典型代表。对Sb2S3薄膜太阳能电池来说,一种合适的Sb2S3制备方法是取得高转换效率的关键。
和其他制备方法相比,采用旋涂法制备Sb2S3薄膜不仅成本低,过程简单,而且制得的Sb2S3薄膜纯度高。然而,目前通过旋涂法制备的Sb2S3薄膜太阳能电池的性能不太令人满意,这主要是由于现有旋涂法制备的Sb2S3薄膜致密性差,退火后的薄膜仍存在空洞,限制了Sb2S3薄膜太阳能电池的效率。为了改进电池性能,提高电池效率,本发明通过对Sb2S3薄膜进行Ti掺杂,以改善薄膜的特性,提高器件的性能。
发明内容
针对旋涂法制备的Sb2S3薄膜太阳能电池的现状,本发明提供了一种以Ti掺杂Sb2S3制备的薄膜太阳能电池及其制备方法,掺杂后的Sb2S3薄膜在形貌和光吸收方面有了很大的改进,使制备的电池性能也有了很大的提高。
为实现上述目的,本发明采用如下技术方案:
一种以Ti掺杂Sb2S3制备的薄膜太阳能电池,其由下到上依次由氧化物透明导电衬底、电子传输层、无机光吸收层、空穴传输层和金属电极构成;
其中,所述氧化物透明导电衬底为FTO导电玻璃、ITO导电玻璃或AZO导电玻璃中的任意一种;
所述电子传输层为TiO2薄膜;
所述无机光吸收层为Ti掺杂的Sb2S3薄膜;
所述空穴传输层为P3HT(聚3-己基噻吩)薄膜;
所述金属电极为Al电极或Ag电极。
所述薄膜太阳能电池的制备方法包括以下步骤:
(1)将氧化物透明导电衬底洗净并烘干;
(2)采用溶胶凝胶法,在透明导电衬底上均匀旋涂TiO2前躯体溶液,然后将其于马弗炉中550℃高温煅烧60min,获得电子传输层;
(3)配制Ti和Sb的摩尔比为4%-8%的前驱体溶液,然后用匀胶机将前驱体溶液旋涂在电子传输层上,再将其加热至140℃,反应10min以生成Ti-Sb2S3,接着在惰性气体环境下,经300-350℃退火处理15-20min使Ti-Sb2S3薄膜结晶,得无机光吸收层;
(4)在无机光吸收层表面旋涂P3HT的氯苯溶液,得空穴传输层;
(5)在空穴传输层表面蒸镀金属电极,即得所述薄膜太阳能电池。
本发明的显著优点在于:本发明通过Ti掺杂获得致密的Sb2S3薄膜,再以其为光吸收层制备薄膜太阳能电池,可使电池的电流密度和填充因子明显提高,从而提升电池转换效率。本发明通过简单、低成本的工艺手段,有效地提升了电池的光电性能。
附图说明
图1为所制备薄膜太阳能电池的结构示意图,其中1-金属电极,2-空穴传输层,3-无机光吸收层,4-电子传输层,5-氧化物透明导电衬底;
图2为Ti掺杂比例(Ti和Sb的摩尔比)为0%(a)、4%(b)、6%(c)、8%(d)时所得Sb2S3薄膜的表面形貌图。
图3为Ti的掺杂比例(Ti和Sb的摩尔比)为0时所得Sb2S3薄膜制备的薄膜太阳能电池的J-V曲线。
图4为Ti的掺杂比例(Ti和Sb的摩尔比)为4%时所得Sb2S3薄膜制备的薄膜太阳能电池的J-V曲线。
图5为Ti的掺杂比例(Ti和Sb的摩尔比)为6%时所得Sb2S3薄膜制备的薄膜太阳能电池的J-V曲线。
图6为Ti的掺杂比例(Ti和Sb的摩尔比)为8%时所得Sb2S3薄膜制备的薄膜太阳能电池的J-V曲线。
具体实施方式
一种以Ti掺杂Sb2S3制备的薄膜太阳能电池,其制备步骤如下:
1. 衬底处理:采用FTO导电玻璃、ITO导电玻璃或AZO导电玻璃作为基片,在试验前先对基片进行清洗,其具体是将形状大小合适的导电玻璃片先用清洁剂清洗干净,然后依次用自来水冲洗,去离子水冲洗,用抛光粉进行抛光处理,接着将其放在超声波清洗器中,依次用去离子水、乙醇、丙酮各超声清洗15min,最后烤箱烘干,即得到表面洁净的导电玻璃衬底;
2. 电子传输层的制备:量取35mL无水乙醇,滴入烧杯内,然后将胶头滴管量取1mL的二乙醇胺加入到乙醇中;将烧杯放置于水浴锅内,40℃下搅拌30min,然后向烧杯中滴加4.5mL酞酸丁酯,继续搅拌40min,静置48h,得TiO2前驱体溶液,待用;将洁净的导电玻璃衬底放置于匀胶台上,用机械泵抽气吸片,然后取所制备的TiO2前躯体溶液滴于导电玻璃衬底上进行旋涂,再将旋涂好的导电玻璃衬底放置于马弗炉中,550℃煅烧60min,得电子传输层;
3. 无机光吸收层的制备:取1.37 g SbCl3固体和0.82 g硫脲,在5 mL N-N二甲基甲酰胺中溶解,制成溶液,按Ti的掺杂比例(Ti和Sb的摩尔比)向其中滴入一定剂量的TiCl4,并搅拌30min,获得含Ti元素的前驱体溶液;然后将含Ti元素的前驱体溶液滴到涂有电子传输层的导电玻璃衬底上,3000 r/min旋涂1min,接着将旋涂好的导电玻璃衬底放置在热台上140℃加热10min,再在惰性气体氛围中300 ℃退火10min,得由Ti-Sb2S3薄膜形成的无机光吸收层;
4. 空穴传输层的制备:用电子天平称P3HT 15mg,滴入1.0 mL的氯苯,然后放在有温度控制的磁力搅拌器上,30℃搅拌24h;再将其采用匀胶机旋涂在无机光吸收层上,前转转速600 r/min,时间为9s,后转转速1500 r/min,时间为30s,制得空穴传输层;
5. 金属电极的制备:在真空镀膜机中,在涂有空穴传输层的导电玻璃衬底上蒸镀一层Al电极,即制得薄膜太阳能电池。
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例一:
(1)清洗FTO玻璃片:先将玻璃玻片放入盛有清洁剂的溶液中浸泡10分钟,反复擦洗后清水冲干净;接着用抛光粉进行抛光处理;然后分别放入装有去离子水、乙醇和丙酮的器皿中分别超声15min;最后放入烘箱中100℃烘干;
(2)电子传输层的制备:将TiO2前躯体溶液旋涂于FTO玻璃基底上,前转转速750 r/min,时间为12s,后转转速4000 r/min,时间为30s,将旋涂好的TiO2薄膜在马弗炉中550℃煅烧60min;
(3)无机光吸收层的制备:将按掺杂比例(Ti和Sb的摩尔比)为0配制的Sb2S3前躯体溶液旋涂于导电玻璃基底上,前转转速750 r/min,时间为12s,后转转速3000 r/min,时间为60s,将旋涂好的Sb2S3薄膜在热台上140℃加热10min,然后在Ar气环境下340℃退火处理15min;
(4)空穴传输层的制备:在制备好的涂有无机光吸收层的导电玻璃衬底上旋涂P3HT的氯苯溶液,制得空穴传输层;
(5)金属电极的制备:在P3HT上蒸发金属铝。
实施例二:
(1)清洗FTO玻璃片:同实施例一;
(2)电子传输层的制备:同实施例一;
(3)无机光吸收层的制备:将按掺杂比例(Ti和Sb的摩尔比)为4%配制的Sb2S3前躯体溶液旋涂于导电玻璃基底上,前转转速750 r/min,时间为12s,后转转速3000 r/min,时间为60s,将旋涂好的Sb2S3薄膜在热台上140℃加热10min,然后在Ar气环境下340℃退火处理15min;
(4)空穴传输层的制备:同实施例一;
(5)电极的制备:同实施例一。
实施例三:
(1)清洗FTO玻璃片:同实施例一;
(2)电子传输层的制备:同实施例一;
(3)无机光吸收层的制备:将按掺杂比例(Ti和Sb的摩尔比)为6%配制的Sb2S3前躯体溶液旋涂于导电玻璃基底上,前转转速750 r/min,时间为12s,后转转速3000 r/min,时间为60s,将旋涂好的Sb2S3薄膜在热台上140℃加热10min,然后在Ar气环境下340℃退火处理15min;
(4)空穴传输层的制备:同实施例一;
(5)电极的制备:同实施例一。
实施例四:
(1)清洗FTO玻璃片:同实施例一;
(2)电子传输层的制备:同实施例一;
(3)无机光吸收层的制备:将按掺杂比例(Ti和Sb的摩尔比)为8%配制的Sb2S3前躯体溶液旋涂于导电玻璃基底上,前转转速750 r/min,时间为12s,后转转速3000 r/min,时间为60s,将旋涂好的Sb2S3薄膜在热台上140℃加热10min,然后在Ar气环境下340℃退火处理15min;
(4)空穴传输层的制备:同实施例一;
(5)电极的制备:同实施例一。
图2为实施例1-4所得Sb2S3薄膜的表面形貌图。由图中可见,未掺杂Ti的Sb2S3薄膜表面存在孔洞,致密性差,而掺杂Ti后制备的Sb2S3薄膜表面平整致密。
为了评价以Ti-Sb2S3薄膜作为光吸收层的薄膜太阳能电池的光伏特性,利用Keithley 4200测试仪对实施例1-4所得薄膜太阳能电池进行J-V曲线的测试,结果分别见图3-6及表1。
表1 电池性能
由以上测试数据可见,以Ti掺杂Sb2S3薄膜为光吸收层制备的薄膜太阳能电池的短路电流、填充因子和能量转换效率都有很好的表现。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (9)

1.一种Ti掺杂Sb2S3的薄膜太阳能电池,该薄膜太阳能电池由下到上依次由氧化物透明导电衬底、电子传输层、无机光吸收层、空穴传输层和金属电极构成,其特征在于:所述无机光吸收层为Ti掺杂的Sb2S3薄膜。
2.根据权利要求1所述的薄膜太阳能电池,其特征在于:所述氧化物透明导电衬底为FTO导电玻璃、ITO导电玻璃或AZO导电玻璃中的任意一种。
3.根据权利要求1所述的薄膜太阳能电池,其特征在于:所述电子传输层为TiO2薄膜。
4.根据权利要求1所述的薄膜太阳能电池,其特征在于:所述空穴传输层为P3HT薄膜。
5.根据权利要求1所述的薄膜太阳能电池,其特征在于:所述金属电极为Al电极或Ag电极。
6.一种如权利要求1所述以Ti掺杂Sb2S3制备薄膜太阳能电池的方法,其特征在于:包括以下步骤:
(1)将氧化物透明导电衬底洗净并烘干;
(2)采用溶胶凝胶法,在透明导电衬底上均匀旋涂TiO2前躯体溶液,然后将其于马弗炉中高温煅烧,获得电子传输层;
(3)用匀胶机将含Ti元素的Sb2S3前驱体溶液旋涂在电子传输层上,然后加热使其反应生成Ti-Sb2S3,再在惰性气体环境下,经退火处理使Ti-Sb2S3薄膜结晶,得无机光吸收层;
(4)在无机光吸收层表面旋涂P3HT的氯苯溶液,得空穴传输层;
(5)在空穴传输层表面蒸镀金属电极,即得所述薄膜太阳能电池。
7.根据权利要求6所述的制备方法,其特征在于:步骤(2)中所述高温煅烧的温度为550℃,时间为50min。
8.根据权利要求6所述的制备方法,其特征在于:步骤(3)中所述前驱体溶液中Ti和Sb的摩尔比为4%-8%。
9.根据权利要求6所述的制备方法,其特征在于:步骤(3)中所述加热的温度为140℃,反应时间为10min;所述退火的温度为300-350℃,时间为15-20min。
CN201810785959.9A 2018-07-17 2018-07-17 一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法 Pending CN108899377A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810785959.9A CN108899377A (zh) 2018-07-17 2018-07-17 一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810785959.9A CN108899377A (zh) 2018-07-17 2018-07-17 一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN108899377A true CN108899377A (zh) 2018-11-27

Family

ID=64350777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810785959.9A Pending CN108899377A (zh) 2018-07-17 2018-07-17 一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN108899377A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379874A (zh) * 2019-07-25 2019-10-25 中国科学技术大学 一种太阳能薄膜电池及其制备方法
CN110556447A (zh) * 2019-09-16 2019-12-10 中国科学技术大学 一种锑基太阳能电池用空穴传输层及其制备方法以及应用
CN112968067A (zh) * 2021-02-25 2021-06-15 电子科技大学 一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302057A (zh) * 2017-07-13 2017-10-27 福州大学 基于三硫化二锑致密薄膜的平面结构杂化太阳能电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302057A (zh) * 2017-07-13 2017-10-27 福州大学 基于三硫化二锑致密薄膜的平面结构杂化太阳能电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEIGO ITO: "《Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency》", 《HYDROGEN ENERGY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379874A (zh) * 2019-07-25 2019-10-25 中国科学技术大学 一种太阳能薄膜电池及其制备方法
CN110379874B (zh) * 2019-07-25 2022-02-11 中国科学技术大学 一种太阳能薄膜电池及其制备方法
CN110556447A (zh) * 2019-09-16 2019-12-10 中国科学技术大学 一种锑基太阳能电池用空穴传输层及其制备方法以及应用
CN110556447B (zh) * 2019-09-16 2021-07-06 中国科学技术大学 一种锑基太阳能电池用空穴传输层及其制备方法以及应用
CN112968067A (zh) * 2021-02-25 2021-06-15 电子科技大学 一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
CN109524548B (zh) 一种钙钛矿太阳能电池及其制备方法
CN105789444B (zh) 一种基于真空蒸发镀膜法的钙钛矿太阳能电池及其制备方法
CN105047826B (zh) 一种在钙钛矿层中掺入硫化镉的钙钛矿太阳能电池及其制备方法
CN109888108B (zh) 一种生物大分子修饰的钙钛矿太阳能电池及其制备方法
CN108807694B (zh) 一种超低温稳定的平板钙钛矿太阳能电池及其制备方法
CN105552236A (zh) 一种钙钛矿太阳电池及其制备方法
CN109216557A (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
CN108899377A (zh) 一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法
CN107302057A (zh) 基于三硫化二锑致密薄膜的平面结构杂化太阳能电池
CN108321299B (zh) 一种低维无铅钙钛矿薄膜及其无铅钙钛矿太阳能电池制备方法
CN110518123A (zh) 以复合材料为电子传输层的钙钛矿太阳能电池及制备方法
CN113193124B (zh) 一种三乙胺盐酸盐修饰的钙钛矿太阳能电池及其制备方法
CN107154460A (zh) 一种全碳基钙钛矿太阳能电池及其制备工艺
CN108574050A (zh) 一种Perovskite-MoS2体异质结的钙钛矿太阳能电池的制备方法
CN106601916B (zh) 基于异质结阴极缓冲层的有机太阳能电池及其制备方法
CN108922971A (zh) 一种快速提升基于有机空穴传输层钙钛矿太阳能电池性能的工艺
CN111668377A (zh) 一种以Mo-二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN109768167A (zh) 无电流迟滞的钙钛矿太阳电池及其制备方法
CN114497390A (zh) 一种钙钛矿太阳能电池及其制备方法
CN111710786A (zh) 一种柔性电子传输层成膜工艺
CN114914362A (zh) 一种高效稳定钛矿太阳能电池的制备方法
CN108011044A (zh) 大面积柔性钙钛矿太阳能电池及其制备方法
CN107123741A (zh) 一种酞菁染料敏化的CsPbBr3光伏电池及其制造方法
CN113991022A (zh) 一种铅锡基钙钛矿异质结的太阳能电池及其制备方法
CN106409935A (zh) 一种MoO3/MoS2/LiF柔性异质结太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181127

RJ01 Rejection of invention patent application after publication