CN110556447A - 一种锑基太阳能电池用空穴传输层及其制备方法以及应用 - Google Patents

一种锑基太阳能电池用空穴传输层及其制备方法以及应用 Download PDF

Info

Publication number
CN110556447A
CN110556447A CN201910870743.7A CN201910870743A CN110556447A CN 110556447 A CN110556447 A CN 110556447A CN 201910870743 A CN201910870743 A CN 201910870743A CN 110556447 A CN110556447 A CN 110556447A
Authority
CN
China
Prior art keywords
antimony
transport layer
hole transport
solar cell
selenium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910870743.7A
Other languages
English (en)
Other versions
CN110556447B (zh
Inventor
蒋立峰
韩文豪
陈涛
朱长飞
江国顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201910870743.7A priority Critical patent/CN110556447B/zh
Publication of CN110556447A publication Critical patent/CN110556447A/zh
Application granted granted Critical
Publication of CN110556447B publication Critical patent/CN110556447B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种锑基太阳能电池用空穴传输层,为二氧化硒薄膜。本发明提供的空穴传输层原料具有获取简单,价格低廉的优势。相较于现在通用的以2,2',7,7'‑四[N,N‑二(4‑甲氧基苯基)氨基]‑9,9'‑螺二芴(Spiro‑OMeTAD)为代表的小分子空穴传输层具有水热稳定的特点。该空穴传输层制备所使用溶剂毒性低,价格低。

Description

一种锑基太阳能电池用空穴传输层及其制备方法以及应用
技术领域
本发明属于太阳能电池技术领域,具体涉及一种锑基太阳能电池用空穴传输层及其制备方法以及应用。
背景技术
随着社会经济的快速发展,人们对化石能源的需求日益增长,由此引发了两大问题:能源危机和环境污染。因此,为了发展环境友好型经济并解决能源危机问题,寻找新型的替代性能源显得尤为重要。太阳能是一种储量丰富、清洁无污染的可再生能源。而将该能源直接转化成电能的有效方式是光伏发电,即太阳能电池。
发展至今,太阳能电池种类繁多,其中锑基(硒化锑、硫化锑、硫硒化锑)薄膜太阳能电池具有理论转换效率高、成本低廉、稳定性好、无毒等优点,被看作是一类极具发展潜力的薄膜太阳能电池。而现在通用的以2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD)为代表的小分子空穴传输层由于其水、热稳定性差在一定程度上制约了锑基太阳能电池的进一步发展。因此,寻找一种具有良好水、热稳定性的空穴传输层材料成为一个较为迫切的需求。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种锑基太阳能电池用空穴传输层及其制备方法,本发明提供的锑基太阳能电池用空穴传输层具有良好的水、热稳定性。
本发明提供了一种锑基太阳能电池用空穴传输层,为二氧化硒薄膜。
本发明还提供了一种上述空穴传输层的制备方法,包括以下步骤:
在锑基太阳能电池的前置结构的吸收层表面涂覆二氧化硒溶液,干燥后,得到空穴传输层。
本发明对所述锑基太阳能电池的种类并没有特殊限制,本领域技术人员公知的锑基太阳能电池种类即可。在本发明中,所述锑基太阳能电池优选为硫化锑、硒化锑或者硫硒化锑电池。
所述前置结构为正型结构,所述前置结构包括FTO/电子传输层/锑基吸收层。
所述二氧化硒溶液包括二氧化硒、氨水和溶剂。具体的制备方法为:
将二氧化硒与一部分溶剂混合搅拌后进行过滤,得到滤液;
将滤液、氨水和剩余部分的溶剂混合,得到二氧化硒溶液。
所述二氧化硒在所述二氧化硒溶液中的浓度为0.1~0.2M;
所述氨水在所述二氧化硒溶液中的浓度为0.03~0.05M。
所述溶剂选自乙醇、甲醇和水中的一种或多种,优选为乙醇。
在涂覆二氧化硒溶液之前,对太阳能电池的吸收层表面进行清洁,本发明对所述清洁的方法并没有特殊限制,本领域技术人员公知的方法即可。
清洁完成后,在无尘环境下,将所述二氧化硒溶液涂覆于吸收层表面,其中,所述涂膜方式为旋涂,所述旋涂转速为2000~8000rpm,优选为4000~6000rpm,转时为20~60s,优选为40~50s。
然后,进行干燥。所述干燥方式选自自然干燥、真空干燥或加热干燥,优选为真空干燥或加热干燥,所述加热干燥的温度控制为70~100℃,加热时间为2~10min。
参见图1,图1为本发明提供的锑基太阳能电池用空穴传输层的制备方法的工艺流程图。
本发明还提供了一种锑基太阳能电池,包括上述空穴传输层或上述制备方法制备得到的空穴传输层。
参见图2,图2为本发明提供的锑基太阳能电池的结构示意图。
其中,所述锑基太阳能电池包括依次复合的导电玻璃基底、电子传输层、吸收层、空穴传输层以及电极。
其中,所述导电玻璃基底优选为FTO导电玻璃基底。
所述电子传输层优选为硫化镉或二氧化钛薄膜;
所述吸收层优选为硫化锑、硒化锑或者硫硒化锑薄膜;
所述空穴传输层为上述空穴传输层或上述制备方法制备得到的空穴传输层。
所述电极优选为金电极。其中,所述金电极同时也复合于所述导电玻璃基底表面。
本发明对所述锑基太阳能电池的制备方法并没有特殊限制,本领域技术人员公知的制备方法即可。
在本发明的一些具体实施方式中,所述完整正型锑基器件制备流程包括以下步骤:
1、导电玻璃基底(FTO)清洁(依次用水、异丙醇、丙酮、酒精各超声20min以上,吹干后氧离子清洗。
2、电子传输层(优选为二氧化钛或硫化镉)制备
其中,二氧化钛层的制备方法为:
取盐酸酸化、乙醇稀释后的钛酸四异丙酯旋涂(2000μL乙醇、20μL浓盐酸、140μL钛酸四异丙酯,旋涂参数2000rpm 40s),置于马弗炉550℃中退火90min;
硫化镉层的制备方法为:
65℃水浴生长18min。(生长液配置:10mL15mM硝酸镉、13mL浓氨水、6.4mL1.5M硫脲、70mL水),110℃预退火后旋涂20mg/ml的氯化镉甲醇溶液(3000r 40s),然后400℃空气中退火10min自然冷却。
3、吸收层制备,包括旋涂法、真空法或水热法。具体工艺步骤如下:
(1)旋涂法:将硫化锑、硒化锑或硫硒化锑的前驱体溶液(溶液成分视具体何种旋涂法而定)在所得电子传输层上进行旋涂,然后高温(280~400℃)退火。
(2)真空法:将硫化锑、硒化锑或硫硒化锑粉末高温蒸发沉积在上述电子传输层上并进行退火。
(3)水热法:将电子传输层没入放有原料(酒石酸锑钾、硫代硫酸钠等)的水热釜中,在烘箱120℃~150℃下反应2~5h,再将所得薄膜干燥且350℃退火。
4、空穴传输层制备
具体制备方法为上述空穴传输层的制备方法,在此不做赘述。
5、电极制备:
将上述制好的样品放入高真空蒸镀仪中,在5×10-4pa气压下蒸镀高纯金电极,经过掩模版控制单个电池的面积为0.12平方厘米。
与现有技术相比,本发明提供了一种锑基太阳能电池用空穴传输层,为二氧化硒薄膜。本发明提供的空穴传输层原料具有获取简单,价格低廉的优势。相较于现在通用的以2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD)为代表的小分子空穴传输层具有水热稳定的特点。该空穴传输层制备所使用溶剂毒性低,价格低。
附图说明
图1为本发明提供的锑基太阳能电池用空穴传输层的制备方法的工艺流程图;
图2为本发明提供的锑基太阳能电池的结构示意图;
图3为本发明实施例1制备的空穴传输层SEM图;
图4为本发明实施例1后续制成太阳能电池器件与相同吸收层制备工艺下使用Spiro-OMeTAD所制成器件稳定性的比较。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明提供的锑基太阳能电池用空穴传输层及其制备方法进行说明,本发明的保护范围不受以下实施例的限制。
实施例1:
1)配制二氧化硒溶液:称取0.111g分析纯的二氧化硒溶于1mL乙醇中,密封搅拌半小时以上并过滤(滤径为450nm)。将浓氨水(质量分数为25%~28%)使用乙醇稀释14倍备用。然后将170μL二氧化硒溶液、780μL乙醇及30μL稀释后的氨水混合均匀。
2)将硫硒化锑(大小为19.5mm*14.5mm)薄膜置于手套箱(N2)内吹净。
3)取步骤1)中准备好的溶液60μL均匀滴加在步骤2)吸收层表面并进行旋涂,旋涂转速为3000rpm,时间为40s。
4)将步骤3)所得薄膜置于真空蒸镀仪内干燥(与后续电池制备中蒸金电极时的抽真空步骤吻合)。
图3为本发明所述实例1制备的空穴传输层SEM图。
完整正型锑基器件制备流程包括以下步骤:
1、导电玻璃基底(FTO)清洁(依次用水、异丙醇、丙酮、酒精各超声20min以上,吹干后氧离子清洗。
2、电子传输层制备
硫化镉层的制备方法为:
65℃水浴生长18min。(生长液配置:10mL 15mM硝酸镉、13mL浓氨水、6.4mL1.5M硫脲、70mL水),110℃预退火后旋涂20mg/ml的氯化镉甲醇溶液(3000rpm 40s),然后400℃空气中退火10min自然冷却。
3、吸收层制备:
水热法:将电子传输层没入放有原料(酒石酸锑钾、硫代硫酸钠等)的水热釜中,在烘箱135℃下反应2.5h,再将所得薄膜干燥且350℃退火。
4、空穴传输层制备
具体制备方法为上述空穴传输层的制备方法,在此不做赘述。
5、电极制备:
将上述制好的样品放入高真空蒸镀仪中,在5×10-4pa气压下蒸镀高纯金电极,经过掩模版控制单个电池的面积为0.12平方厘米。
稳定性测试方法:
将以二氧化硒为空穴传输层(实施例1)和以spiro为空穴传输层(对比例1)的太阳能器件依次置于干燥箱、空气(室温、30%湿度)、很稳恒湿箱(40℃80%湿度)中,记录其效率变化。图4中的各个点均代表其与初始效率的比值。由图可知,以二氧化硒为空穴传输层的电池器件比以spiro为空穴传输层的电池器件在干燥、低湿度或高湿条件下都稳定的多。
实施例2:
1)配制二氧化硒溶液:称取0.111g分析纯的二氧化硒溶于1mL乙醇中,密封搅拌半小时以上并过滤(滤径为450nm)。将浓氨水(质量分数为25%-28%)使用乙醇稀释14倍备用。然后将170μL二氧化硒溶液、780μL乙醇及30μL稀释后的氨水混合均匀。
2)将硫硒化锑(大小为19.5mm×14.5mm)薄膜置于手套箱(N2)内吹净。
3)取步骤1)中准备好的溶液60μL均匀滴加在步骤2)吸收层表面并进行旋涂,旋涂转速为3000rpm,时间为40s。
4)将步骤3)所得薄膜置于手套箱内加热板加热干燥,温度为90℃,时间为8min。
实施例3:
1)配制二氧化硒溶液:称取0.111g分析纯的二氧化硒溶于1mL甲醇中,密封搅拌半小时以上并过滤(滤径为450nm)。将浓氨水(质量分数为25%-28%)使用甲醇稀释14倍备用。然后将170μL二氧化硒溶液、780μL乙醇及30μL稀释后的氨水混合均匀。
2)将硫硒化锑(大小为19.5mm×14.5mm)薄膜置于手套箱(N2)内吹净。
3)取步骤1)中准备好的溶液60μL均匀滴加在步骤2)吸收层表面并进行旋涂,旋涂转速为3000rpm,时间为40s。
4)将步骤3)所得薄膜置于真空蒸镀仪内干燥(与后续电池制备中蒸金电极时的抽真空步骤吻合)。
对比例1
按照实施例1提供的完整正型锑基器件制备流程,仅是空穴传输层制备方法有所区别,具体为:
spiro:将520mgLi-TFSI溶于1mL乙腈中,将36.6mgSpiro-OMeTAD、14.4μL的tBP以及18.8μL的Li-TFSI乙腈溶液溶解于1mL的氯苯中,接着将所配的Spiro-OMeTAD溶液旋涂在吸收层(3000rpm 30s)上,最后在100℃(空气)下进行热处理10min。
常见空穴传输层价格见表1
表1
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种锑基太阳能电池用空穴传输层,其特征在于,为二氧化硒薄膜。
2.一种如权利要求1所述的空穴传输层的制备方法,其特征在于,包括以下步骤:
在锑基太阳能电池的前置结构的吸收层表面涂覆二氧化硒溶液,干燥后,得到空穴传输层。
3.根据权利要求2所述的制备方法,其特征在于,所述二氧化硒溶液包括二氧化硒、氨水和溶剂;所述二氧化硒在所述二氧化硒溶液中的浓度为0.1~0.2M;所述氨水在所述二氧化硒溶液中的浓度为0.03~0.05M。
4.根据权利要求2所述的制备方法,其特征在于,所述溶剂选自乙醇、甲醇和水中的一种或多种。
5.根据权利要求2所述的制备方法,其特征在于,所述锑基太阳能电池为硫化锑、硒化锑或者硫硒化锑电池;所述前置结构为正型结构。
6.根据权利要求2所述的制备方法,其特征在于,所述涂膜方式为旋涂,所述旋涂转速为2000~8000rpm,转时为20~60s。
7.根据权利要求2所述的制备方法,其特征在于,所述干燥方式选自自然干燥、真空干燥或加热干燥,所述加热干燥的温度控制为70~100℃,加热时间为2~10min。
8.一种锑基太阳能电池,其特征在于,包括权利要求1所述的空穴传输层或权利要求2~7任意一项所述的制备方法制备得到的空穴传输层。
9.根据权利要求8所述的锑基太阳能电池,其特征在于,包括依次复合的导电玻璃基底、电子传输层、吸收层、空穴传输层以及电极。
10.根据权利要求8所述的电池,其特征在于,所述导电玻璃基底为FTO导电玻璃基底;
所述电子传输层为硫化镉或二氧化钛薄膜;
所述吸收层为硫化锑、硒化锑或者硫硒化锑薄膜。
CN201910870743.7A 2019-09-16 2019-09-16 一种锑基太阳能电池用空穴传输层及其制备方法以及应用 Active CN110556447B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910870743.7A CN110556447B (zh) 2019-09-16 2019-09-16 一种锑基太阳能电池用空穴传输层及其制备方法以及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910870743.7A CN110556447B (zh) 2019-09-16 2019-09-16 一种锑基太阳能电池用空穴传输层及其制备方法以及应用

Publications (2)

Publication Number Publication Date
CN110556447A true CN110556447A (zh) 2019-12-10
CN110556447B CN110556447B (zh) 2021-07-06

Family

ID=68740359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910870743.7A Active CN110556447B (zh) 2019-09-16 2019-09-16 一种锑基太阳能电池用空穴传输层及其制备方法以及应用

Country Status (1)

Country Link
CN (1) CN110556447B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349843A (zh) * 2020-11-06 2021-02-09 中国科学技术大学 一种太阳能电池的空穴传输层材料、锑基太阳能电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160226009A1 (en) * 2013-09-25 2016-08-04 Sekisui Chemical Co., Ltd. Thin film solar cell, semiconductor thin film and coating liquid for forming semiconductor
CN106898662A (zh) * 2017-03-10 2017-06-27 河北大学 一种p‑i‑n型硒化锑太阳电池
CN108447936A (zh) * 2018-04-21 2018-08-24 东北电力大学 一种锑基双结叠层太阳电池及其制备方法
CN108899377A (zh) * 2018-07-17 2018-11-27 福州大学 一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160226009A1 (en) * 2013-09-25 2016-08-04 Sekisui Chemical Co., Ltd. Thin film solar cell, semiconductor thin film and coating liquid for forming semiconductor
CN106898662A (zh) * 2017-03-10 2017-06-27 河北大学 一种p‑i‑n型硒化锑太阳电池
CN108447936A (zh) * 2018-04-21 2018-08-24 东北电力大学 一种锑基双结叠层太阳电池及其制备方法
CN108899377A (zh) * 2018-07-17 2018-11-27 福州大学 一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349843A (zh) * 2020-11-06 2021-02-09 中国科学技术大学 一种太阳能电池的空穴传输层材料、锑基太阳能电池及其制备方法
CN112349843B (zh) * 2020-11-06 2022-09-06 中国科学技术大学 一种太阳能电池的空穴传输层材料、锑基太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN110556447B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN109524548B (zh) 一种钙钛矿太阳能电池及其制备方法
CN109860403B (zh) 获得大晶粒高质量钙钛矿薄膜的后期处理方法及其应用
CN111106247B (zh) 一种有机无机杂化钙钛矿太阳能电池及其制备方法
CN109728169B (zh) 一种掺杂有功能添加剂的钙钛矿太阳电池及其制备方法
CN112436091B (zh) 一种稀土离子掺杂的新型钙钛矿太阳能电池
CN109037398A (zh) 一种铯锡碘薄膜的制备方法及基于其的光伏器件
CN108389969B (zh) 一种用于制备钙钛矿太阳能电池钙钛矿层的绿色溶剂体系及混合溶液
CN111525038B (zh) 一种掺杂有多功能添加剂的钙钛矿太阳电池及其制备方法
CN107394047A (zh) 醇溶性富勒烯衍生物在钙钛矿太阳能电池中的应用
CN113471366B (zh) 基于环己甲胺碘盐的2d/3d钙钛矿太阳能电池的制备方法
CN107154460A (zh) 一种全碳基钙钛矿太阳能电池及其制备工艺
CN111261783B (zh) 一种新型电子传输层钙钛矿太阳能电池及其制备方法
CN110828673B (zh) 一种引入硫化物添加剂制备高效钙钛矿太阳能电池的方法
CN114678472A (zh) 一种FAPbI3钙钛矿薄膜及其高效的钙钛矿太阳能电池的方法
CN109671848B (zh) CuPbSbS3新型薄膜太阳能电池及其制备方法
CN113421969B (zh) 一种hf改性二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN109545659B (zh) 一种锡锑硫薄膜的化学浴制备方法
CN110556447B (zh) 一种锑基太阳能电池用空穴传输层及其制备方法以及应用
CN107799654B (zh) 一种高效率平面钙钛矿太阳能电池及其制备方法
CN109244171A (zh) 一种宽光谱无机钙钛矿太阳能电池结构及其制备方法
CN111403606B (zh) 一种掺杂番茄红素的钙钛矿太阳能电池及其制备方法
CN113097392A (zh) 一种钙钛矿太阳能电池的晶界钝化方法
CN112349843A (zh) 一种太阳能电池的空穴传输层材料、锑基太阳能电池及其制备方法
CN115312665B (zh) 太阳能电池及其制备方法
CN108878658B (zh) 一种基于金属离子掺杂二氧化钛间隔层的光稳定钙钛矿太阳电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant