CN109030496A - 一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法 - Google Patents
一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法 Download PDFInfo
- Publication number
- CN109030496A CN109030496A CN201810681882.0A CN201810681882A CN109030496A CN 109030496 A CN109030496 A CN 109030496A CN 201810681882 A CN201810681882 A CN 201810681882A CN 109030496 A CN109030496 A CN 109030496A
- Authority
- CN
- China
- Prior art keywords
- vector
- crystal
- dislocation
- crystal orientation
- bai shi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
- G01N2021/8829—Shadow projection or structured background, e.g. for deflectometry
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明公开了一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法,其内容包括:计算位错柏氏矢量b和晶体晶向t的夹角θ;根据夹角θ计算出位错柏氏矢量b在晶向t上的分矢量bt;将计算出的矢量bt代入公式bp=b‑bt中,可得出柏氏矢量b沿着晶体晶向t的投影矢量bp。本发明利用立方晶系晶体的特殊晶体学特征计算出位错柏氏矢量和任意晶向的夹角,进而可以计算得出位错沿此晶向的投影矢量,可用于立方晶体不同晶带轴上高分辨图像的位错矢量分析。该方法具有操作过程简单易行,可快速准确的计算出位错沿任意电子束方向(晶体晶向)的投影矢量;精确度高,可以方便的区分不同位错柏氏矢量;易于编程实现,可作为透射电子显微镜精确分析的辅助工具。
Description
技术领域
本发明涉及一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法。
背景技术
位错是晶体材料中的重要缺陷,对材料的力学性能有十分重要的影响。研究表明位错的产生和运动能够促进材料的塑性变形;位错与第二相颗粒之间的相互作用,位错之间发生相互反应以及位错缠结都能够提高材料强度。在对纳米晶材料中:位错的类型对材料的性能同样具有重要影响,能够产生不全位错的纳米晶材料具有高强度、高塑性;而以全位错变形的纳米晶材料,一般塑性较差。因此,确定材料中含有的位错类型以及位错组态是材料科学研究的首要任务。
材料中的位错可通过多种技术进行检测:扫描电子显微镜,X射线晶体衍射仪,透射电子显微镜。扫描电镜可通过两种方式表征位错:采用观察样品表面的位错腐蚀坑来表征材料中的位错;直接观察位错的扫描电镜电子通道衬度技术(electron channelingcontrast in scanning electron microscopy)。X射线晶体衍射仪是通过衍射测量材料中的应变量,再由应变量计算出位错密度。透射电镜是检测材料中位错的重要手段:可通过透射电镜明场像和暗场像直接观察到位错;还可以通过样品的倾转和位错的消光来测量出位错的伯氏矢量;还可以获取材料的高分辨透射图像,直接观察位错的原子图像。扫描电镜技术和X射线晶体衍射技术常用于宏观统计位错,透射电镜技术常用于微观观察和分析材料中的位错。
随着透射电子显微镜制造技术的不断进步,透射电镜的分辨率得到不断提高,可以获取清晰的原子级晶体缺陷(位错,层错,孪晶),特别是球差校正电镜的产生,使得透射电镜分辨率达到了亚唉级通过透射电镜高分辨图片可以进行一系列位错分析,如:位错类型分析,位错伯氏矢量分析,位错之间的位错反应,微观应力分析(几何相位分析)。由于透射电镜的高分辨成像原理的限制,在使用高分辨原子图像分析位错时,所观察到的位错图像是晶体中位错沿着电子束方向的投影像,因此高分辨图像上标出的位错伯氏矢量也是晶体中位错伯氏矢量沿着电子束方向的投影矢量,超高分辨率的透射电镜使得研究人员能够从多个晶体晶向上获取清晰晶体位错高分辨图像,更好的理解和分析材料中的位错,因此在分析高分辨位错图像时需要计算不同位错沿着不同晶体晶向的投影矢量。
发明内容
本发明的目的在于提供一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法,有助于分析立方晶体位错在不同晶向上的高分辨原子图像。
为了解决上述存在的技术问题,本发明是通过以下技术方案实现的:
一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法,该方法的实现有赖于下述技术方案:
首先,定义晶体中位错的柏氏矢量b为[UbVbWb],晶体晶向t为[UtVtWt],bt为位错b在晶向t上的分矢量,bp为位错沿着晶体晶向t的投影矢量;
计算晶体中位错的柏氏矢量b沿着晶体晶向t的投影矢量bp的方法步骤如下:
(1)计算位错柏氏矢量b和晶体晶向t的夹角θ;根据立方晶体特征柏氏矢量b和晶体晶向t的夹角θ可由以下公式计算:
(2)计算位错的柏氏矢量b在晶向t上的分矢量bt;根据夹角θ数值来计算位错的柏氏矢量b在晶体晶向t的分矢量bt;
当0°<θ<90°时,根据矢量b,矢量bt和矢量bp构成直角三角形的几何特征可得:
由于bt∥t且矢量方向相同,因此可定义bt为
可得出n值,进而得出矢量bt;
当θ=90°时,矢量b⊥矢量t,因此矢量bt为0;
当90°<θ<180°时,根据矢量b,矢量bt和矢量bp构成直角三角形的几何特征可得:
由于bt∥t且矢量方向相反,因此可定义bt为
可得出n值,进而得出矢量bt;
当θ=0°时,位错的柏氏矢量b∥晶体晶向t,bt=b;
当θ=180°时,位错的柏氏矢量b∥晶体晶向t,bt=-b;
(3)计算位错的柏氏矢量b沿着晶体晶向t的投影矢量bp;根据矢量b,矢量bt和矢量bp构成直角三角形的几何特征:
bt+bp=b
可得:bp=b-bt,将第二步计算的矢量bt带入可计算得出位错的、沿着晶体晶向t的投影矢量bp;
基于上述技术方案,所述一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法具体步骤如下:
第一步,计算位错柏氏矢量b和晶体晶向t的夹角θ;
第二步,根据夹角θ计算出位错柏氏矢量b在晶向t上的分矢量bt;
第三步,将第二步计算出的矢量bt代入公式bp=b-bt中,可得出柏氏矢量b沿着晶体晶向t的投影矢量bp。
本发明利用立方晶系晶体的特殊晶体学特征计算出位错柏氏矢量和任意晶向的夹角,进而可以计算得出位错沿此晶向的投影矢量,可用于立方晶体不同晶带轴上高分辨图像的位错矢量分析。
由于采用以上技术方案,本发明提供的一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法,与现有技术相比具有这样的增益效果:
1、可计算出位错柏氏矢量沿着任意电子束方向(晶体晶向)的投影矢量,不限于[110]晶带轴方向。
2、操作过程简单易行,可快速准确的计算出位错沿任意电子束方向(晶体晶向)的投影矢量。
3、精确度高,可以方便的区分不同位错柏氏矢量;易于编程实现,可作为透射电子显微镜精确分析的辅助工具。
附图说明
图1为本发明方法所示位错柏氏矢量和晶体晶向夹角为锐角时的矢量示意图;
图2为本发明方法所示位错柏氏矢量和晶体晶向夹角为钝角时的矢量示意图。
具体实施实例
下面结合附图与具体实施方式对本发明作进一步详细描述:
本发明的一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法,该方法的实现有赖于下述技术方案:
首先,定义晶体中位错的柏氏矢量b为[UbVbWb],晶体晶向t为[UtVtWt],bt为位错b在晶向t上的分矢量,bp为位错沿着晶体晶向t的投影矢量。
计算晶体中位错的柏氏矢量b沿着晶体晶向t的投影矢量bp的方法通过以下技术方案实现:
(1)计算位错柏氏矢量b和晶体晶向t的夹角θ。根据立方晶体特征柏氏矢量b和晶体晶向t的夹角θ可由以下公式计算:
(2)计算位错的柏氏矢量b在晶向t上的分矢量bt。根据夹角θ数值来计算位错的柏氏矢量b在晶体晶向t的分矢量bt。
当0°<θ<90°时,根据矢量b,矢量bt和矢量bp构成直角三角形的几何特征可得:
由于bt∥t且矢量方向相同,因此可定义bt为
可得出n值,进而得出矢量bt。
当θ=90°时,矢量b⊥矢量t,因此矢量bt为0。
当90°<θ<180°时,根据矢量b,矢量bt和矢量bp构成直角三角形的几何特征可得:
由于bt∥t且矢量方向相反,因此可定义bt为
可得出n值,进而得出矢量bt。
当θ=0°时,位错的柏氏矢量b∥晶体晶向t,bt=b;
当θ=180°时,位错的柏氏矢量b∥晶体晶向t,bt=-b;
(3)计算位错的柏氏矢量b沿着晶体晶向t的投影矢量bp。根据矢量b,矢量bt和矢量bp构成直角三角形的几何特征:
bt+bp=b
可得:bp=b-bt,将第二步计算的矢量bt带入可计算得出位错的、沿着晶体晶向t的投影矢量bp。
以上技术方案作为基础,所述一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法具体步骤如下:
第一步,计算位错柏氏矢量b和晶体晶向t的夹角θ;
第二步,根据夹角θ计算出位错柏氏矢量b在晶向t上的分矢量bt;
第三步,将第二步计算出的矢量bt代入公式bp=b-bt中,可得出柏氏矢量b沿着晶体晶向t的投影矢量bp。
实施例1
计算面心立方铝中全位错沿着晶向上的投影矢量。
第一步,计算位错柏氏矢量和晶向的夹角:
第二步,根据夹角θ计算出位错柏氏矢量在晶向上的分矢量bt。根据第一步计算的θ角可得90°<θ<180°,位错柏氏矢量b,矢量bt和矢量bp构成直角三角形图2所示,因此可定义bt为
代入θ角,
得出n=4,bt为
第三步,将第二步计算出的矢量bt代入公式bp=b-bt中,可得出柏氏矢量b沿着晶体晶向t的投影矢量bp:
实施例2
计算面心立方铝中全位错沿着晶向上的投影矢量。
第一步,计算位错柏氏矢量和晶向的夹角:
第二步,根据夹角θ计算出位错柏氏矢量在晶向上的分矢量bt。根据第一步计算的θ角可得90°<θ<180°,位错柏氏矢量b,矢量bt和矢量bp构成直角三角形图2所示,因此可定义bt为
代入θ角,
得出n=4,bt为
第三步,将第二步计算出的矢量bt代入公式bp=b-bt中,可得出柏氏矢量b沿着晶体晶向t的投影矢量bp:
实施例3
计算面心立方铝中不全位错沿着晶向上的投影矢量。
第一步,计算位错柏氏矢量和晶向的夹角:
第二步,根据夹角θ计算出位错柏氏矢量在晶向上的分矢量bt。根据第一步计算的θ角可得θ=90°,可得bt为0。
第三步,将第二步计算出的矢量bt代入公式bp=b-bt中,可得出柏氏矢量b沿着晶体晶向t的投影矢量bp:
实施例4
计算面心立方铝中不全位错沿着晶向上的投影矢量。
第一步,计算位错柏氏矢量和晶向的夹角:
第二步,根据夹角θ计算出位错柏氏矢量在晶向上的分矢量bt。根据第一步计算的θ角可得90°<θ<180°,位错柏氏矢量b,矢量bt和矢量bp构成直角三角形图2所示,因此可定义bt为
代入θ角,
得出n=12,bt为
第三步,将第二步计算出的矢量bt代入公式bp=b-bt中,可得出柏氏矢量b沿着晶体晶向t的投影矢量bp:
实施例5
计算面心立方铝中全位错沿着[100]晶向上的投影矢量。
第一步,计算位错柏氏矢量和晶向[100]的夹角:
第二步,根据夹角θ计算出位错柏氏矢量在晶向[100]上的分矢量bt。根据第一步计算的θ角可得0°<θ<90°,位错柏氏矢量b,矢量bt和矢量bp构成直角三角形图1所示,因此可定义bt为
代入θ角,
得出n=2,bt为
第三步,将第二步计算出的矢量bt代入公式bp=b-bt中,可得出柏氏矢量b沿着晶体晶向t的投影矢量bp:
实施例6
计算面心立方铝中全位错沿着[112]晶向上的投影矢量。
第一步,计算位错柏氏矢量和晶向[112]的夹角:
第二步,根据夹角θ计算出位错柏氏矢量在晶向[112]上的分矢量bt。根据第一步计算的θ角可得0°<θ<90°,位错柏氏矢量b,矢量bt和矢量bp构成直角三角形图1所示,因此可定义bt为
代入θ角,
得出n=6,bt为
第三步,将第二步计算出的矢量bt代入公式bp=b-bt中,可得出柏氏矢量b沿着晶体晶向t的投影矢量bp:
Claims (1)
1.一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法,该方法的实现有赖于下述技术方案:
首先,定义晶体中位错的柏氏矢量b为[UbVbWb],晶体晶向t为[UtVtWt],bt为位错b在晶向t上的分矢量,bp为位错沿着晶体晶向t的投影矢量;
计算晶体中位错的柏氏矢量b沿着晶体晶向t的投影矢量bp的方法步骤如下:
(1)计算位错柏氏矢量b和晶体晶向t的夹角θ;根据立方晶体特征柏氏矢量b和晶体晶向t的夹角θ可由以下公式计算:
(2)计算位错的柏氏矢量b在晶向t上的分矢量bt;根据夹角θ数值来计算位错的柏氏矢量b在晶体晶向t的分矢量bt;
当0°<θ<90°时,根据矢量b,矢量bt和矢量bp构成直角三角形的几何特征可得:
由于bt∥t且矢量方向相同,因此可定义bt为
可得出n值,进而得出矢量bt;
当θ=90°时,矢量b⊥矢量t,因此矢量bt为0;
当90°<θ<180°时,根据矢量b,矢量bt和矢量bp构成直角三角形的几何特征可得:
由于bt∥t且矢量方向相反,因此可定义bt为
可得出n值,进而得出矢量bt;
当θ=0°时,位错的柏氏矢量b∥晶体晶向t,bt=b;
当θ=180°时,位错的柏氏矢量b∥晶体晶向t,bt=-b;
(3)计算位错的柏氏矢量b沿着晶体晶向t的投影矢量bp;根据矢量b,矢量bt和矢量bp构成直角三角形的几何特征:
bt+bp=b
可得:bp=b-bt,将第二步计算的矢量bt带入可计算得出位错的、沿着晶体晶向t的投影矢量bp;
基于上述技术方案,所述一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法具体步骤如下:
第一步,计算位错柏氏矢量b和晶体晶向t的夹角θ;
第二步,根据夹角θ计算出位错柏氏矢量b在晶向t上的分矢量bt;
第三步,将第二步计算出的矢量bt代入公式bp=b-bt中,可得出柏氏矢量b沿着晶体晶向t的投影矢量bp。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810681882.0A CN109030496A (zh) | 2018-06-27 | 2018-06-27 | 一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810681882.0A CN109030496A (zh) | 2018-06-27 | 2018-06-27 | 一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109030496A true CN109030496A (zh) | 2018-12-18 |
Family
ID=65520565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810681882.0A Pending CN109030496A (zh) | 2018-06-27 | 2018-06-27 | 一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109030496A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113506366A (zh) * | 2021-08-06 | 2021-10-15 | 重庆大学 | 一种位错特征的三维图示化表示方法 |
CN115272568A (zh) * | 2022-07-12 | 2022-11-01 | 重庆大学 | 一种位错界面特征三维可视化方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104726803A (zh) * | 2015-02-16 | 2015-06-24 | 燕山大学 | 一种制备晶内含纳米尺寸析出相的纳米晶金属材料的方法 |
CN104928605A (zh) * | 2015-07-20 | 2015-09-23 | 中南大学 | 一种预测镍基合金高温流变应力和动态再结晶行为的方法 |
CN105296778A (zh) * | 2015-11-30 | 2016-02-03 | 燕山大学 | 一种固结粉末制备块体纳米晶金属结构材料的方法 |
CN105388211A (zh) * | 2015-10-23 | 2016-03-09 | 辽宁科技大学 | 一种金属材料可动非螺形位错密度的测量方法 |
CN105903483A (zh) * | 2016-04-20 | 2016-08-31 | 燕山大学 | 二硫化钼-镍磷析氢复合材料的制备方法 |
CN106802306A (zh) * | 2017-03-13 | 2017-06-06 | 燕山大学 | 在透射电子显微镜下快速精确测量小角晶界取向差的方法 |
CN107271461A (zh) * | 2017-05-05 | 2017-10-20 | 燕山大学 | 一种在透射电子显微镜下获取环形暗场图像的方法 |
-
2018
- 2018-06-27 CN CN201810681882.0A patent/CN109030496A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104726803A (zh) * | 2015-02-16 | 2015-06-24 | 燕山大学 | 一种制备晶内含纳米尺寸析出相的纳米晶金属材料的方法 |
CN104928605A (zh) * | 2015-07-20 | 2015-09-23 | 中南大学 | 一种预测镍基合金高温流变应力和动态再结晶行为的方法 |
CN105388211A (zh) * | 2015-10-23 | 2016-03-09 | 辽宁科技大学 | 一种金属材料可动非螺形位错密度的测量方法 |
CN105296778A (zh) * | 2015-11-30 | 2016-02-03 | 燕山大学 | 一种固结粉末制备块体纳米晶金属结构材料的方法 |
CN105903483A (zh) * | 2016-04-20 | 2016-08-31 | 燕山大学 | 二硫化钼-镍磷析氢复合材料的制备方法 |
CN106802306A (zh) * | 2017-03-13 | 2017-06-06 | 燕山大学 | 在透射电子显微镜下快速精确测量小角晶界取向差的方法 |
CN107271461A (zh) * | 2017-05-05 | 2017-10-20 | 燕山大学 | 一种在透射电子显微镜下获取环形暗场图像的方法 |
Non-Patent Citations (2)
Title |
---|
杨文茂 等: "《空间解析几何》", 31 December 2001 * |
樊映川 等: "《高等数学讲义 上册》", 31 July 1964 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113506366A (zh) * | 2021-08-06 | 2021-10-15 | 重庆大学 | 一种位错特征的三维图示化表示方法 |
CN113506366B (zh) * | 2021-08-06 | 2024-03-26 | 重庆大学 | 一种位错特征的三维可视化方法 |
CN115272568A (zh) * | 2022-07-12 | 2022-11-01 | 重庆大学 | 一种位错界面特征三维可视化方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Béché et al. | Improved precision in strain measurement using nanobeam electron diffraction | |
Zhang et al. | Collecting 3D electron diffraction data by the rotation method | |
EP2818852B1 (en) | Methods and devices for high throughput crystal structure analysis by electron diffraction | |
Hitchcock | Soft X-ray spectromicroscopy and ptychography | |
Shibata et al. | Atomic-scale imaging of individual dopant atoms in a buried interface | |
Luo | A practical guide to transmission electron microscopy: Fundamentals | |
Guyon et al. | Sub-micron resolution selected area electron channeling patterns | |
Gauquelin et al. | Determining oxygen relaxations at an interface: A comparative study between transmission electron microscopy techniques | |
US11270867B2 (en) | Method for improving transmission Kikuchi diffraction pattern | |
Abeykoon et al. | Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function studies | |
CN109030496A (zh) | 一种立方晶系中位错柏氏矢量沿任意晶向投影矢量的计算方法 | |
Zuo et al. | Data-driven electron microscopy: Electron diffraction imaging of materials structural properties | |
Oveisi et al. | Tilt-less 3-D electron imaging and reconstruction of complex curvilinear structures | |
Jiruše et al. | Integrating focused ion beam–scanning electron microscope with confocal Raman microscope into a single instrument | |
US7291849B1 (en) | Calibration standard for transmission electron microscopy | |
JP2003249186A (ja) | 走査透過型電子顕微鏡に依る観察方法及び観察装置 | |
Leclere et al. | KB scanning of X-ray beam for Laue microdiffraction on accelero-phobic samples: Application to in situ mechanically loaded nanowires | |
EP2966668A1 (en) | Method of calibrating a scanning transmission charged-particle microscope | |
Sinha et al. | Electron diffraction characterization of nanocrystalline materials using a Rietveld-based approach. Part I. Methodology | |
WO2009157358A1 (ja) | 電子分光器を有する透過型電子顕微鏡装置,試料ホルダ,試料台及びスペクトル像の取得方法 | |
JP2008256560A (ja) | 薄膜試料、及びその作製方法 | |
CN115265444A (zh) | 一种透射电镜测量薄膜样品厚度的方法 | |
Voigt-Martin | Use of transmission electron microscopy to obtain quantitative information about polymers | |
CN109738470B (zh) | 元素分辨且高空间分辨的界面自旋构型二维定量磁成像方法 | |
Hayashida et al. | Accurate measurement of relative tilt and azimuth angles in electron tomography: A comparison of fiducial marker method with electron diffraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20181218 |
|
WD01 | Invention patent application deemed withdrawn after publication |