CN109030446A - 一种利用芽孢杆菌芽孢检测稀土元素含量的方法 - Google Patents

一种利用芽孢杆菌芽孢检测稀土元素含量的方法 Download PDF

Info

Publication number
CN109030446A
CN109030446A CN201811085411.XA CN201811085411A CN109030446A CN 109030446 A CN109030446 A CN 109030446A CN 201811085411 A CN201811085411 A CN 201811085411A CN 109030446 A CN109030446 A CN 109030446A
Authority
CN
China
Prior art keywords
rare earth
earth element
gemma
element content
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811085411.XA
Other languages
English (en)
Other versions
CN109030446B (zh
Inventor
董伟
谢东
李丝雨
何森
潘涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201811085411.XA priority Critical patent/CN109030446B/zh
Publication of CN109030446A publication Critical patent/CN109030446A/zh
Application granted granted Critical
Publication of CN109030446B publication Critical patent/CN109030446B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供一种利用芽孢杆菌芽孢检测稀土元素含量的方法,包括如下步骤:1)矿区土壤采样,得到土壤样品;2)芽孢的富集和分离,得到芽孢;3)将步骤2)得到的芽孢干燥后称重,沸水煮25~35min,离心,收取上清液,取200μL上清液于96孔板中,加入饱和稀土离子溶液,在吸收光谱275nm和发散光谱480~545nm下检测荧光强度,代入模式菌株标准曲线,得出稀土离子含量。本发明属于生物技术领域,通过检测DPA含量实现了离子型稀土元素的快速定量检测,具有操作简便、快速、检测信号强、处理量大、特异性高、准确性等特点。

Description

一种利用芽孢杆菌芽孢检测稀土元素含量的方法
技术领域
本发明属于生物技术领域,尤其涉及一种利用芽孢杆菌芽孢检测稀土元素含量的方法。
背景技术
稀土因其稀土元素(Rare earth elements,REEs)具有很强的活性和生物效应,已广泛应用于国防工业、航空、陶瓷、石油、钢铁等行业,被称为“工业维生素”。中国离子型稀土矿主要分布在南方地区,江西赣州拥有全国30%以上的离子型重稀土,被誉为“稀土王国”。
随着人们对矿产资源的日益需求增长,寻找潜在矿藏的新学科逐渐成为关注的新焦点,如微生物冶金、生物成矿学、微生物找矿技术等。生物矿化的作用对矿区形成贡献巨大,因此矿区所具有的特殊微生物类群可用于寻找潜在矿藏。自1985年Watterson提出利用蜡样芽孢杆菌找金矿的设想后,蜡样芽孢杆菌在找金矿方面已得到广泛应用。
芽孢杆菌(Bacillus)是一类能够在极端环境下存活的微生物菌属,具有较强的稀土元素吸附性,而且在稀土矿区普遍存在。现有研究表明2,6-吡啶二羧酸(dipicolinicacid,DPA)含量约占芽孢干重的25%,且DPA可通过煮沸的方法从芽孢中释放出来。然而,目前微生物找矿的研究大多停留在显微镜观察、细菌的分离培养及平板计数等较为传统的方法上,并未形成现代化的快速检测方法,不利于稀土等矿区资源的勘探和开发。
发明内容
为解决现有技术中存在的问题,本发明发现芽孢杆菌在离子型稀土矿区主要以芽孢形式存在,存在的数量远高于背景地区,芽孢杆菌形成芽孢时能够有效吸附稀土元素,利用热处理富集法收集土壤中的芽孢杆菌芽孢,然后通过煮沸法释放芽孢中的DPA,芽孢杆菌芽孢中DPA与离子型稀土元素按摩尔比1:1结合,通过特定的吸收光谱和发散光谱下产生荧光信号进行检测,进而建立芽孢量与吸附稀土元素含量关系的标准曲线,通过检测DPA含量实现了离子型稀土元素的快速定量检测。
本发明的目的将通过下面的详细描述来进一步说明。
本发明提供一种利用芽孢杆菌芽孢检测稀土元素含量的方法,包括如下步骤:
1)矿区土壤采样:去除风化矿区表层土,取剖面12~22cm的土壤,用灭菌塑料袋包装,得到土壤样品;
2)芽孢的富集和分离:将所述土壤样品加入无菌去离子水中,振荡,制成土壤混悬液,在75~90℃加热8~15min杀灭细胞菌体,然后在12000~16000rmp转速下离心4~7min,去除上清液,加入18~25%质量百分含量的碘海醇溶液悬浮菌体,振荡后再转入45~60%质量百分含量的碘海醇溶液,振荡,4℃下13000~15000rmp离心9~12min,去除上清液,收集沉淀并用无菌水洗涤2~4次,于13000~15000rmp离心1~2min,得到芽孢;
3)将步骤2)得到的芽孢干燥后称重,沸水煮25~35min,冰浴12~18min后于12000~16000rmp离心4~7min,收取上清液,取200μL上清液于96孔板中,加入饱和稀土离子溶液,在吸收光谱275nm和发散光谱480~545nm下检测荧光强度,代入模式菌株标准曲线,得出稀土离子含量。
采用上述技术方案,实现了利用芽孢杆菌芽孢检测稀土元素含量,具有操作简便、快速、检测信号强、处理量大、特异性高、准确性等特点,对稀土矿区勘探和土壤重稀土污染分析等具有重要意义。
通过先后加入不同浓度的碘海醇溶液进行高速离心并控制离心时间,有效去除了杂物,步骤2)得到的芽孢纯度>99%。饱和稀土离子溶液的浓度为9~12μmol/L。
优选地,所述模式菌株标准曲线的构建方法包括如下步骤:取芽孢标准品,煮沸25~35min后冰浴12~18min,12000~16000rmp离心4~7min,收取上清液,取200μL系列浓度的上清液于96孔板中,加入饱和稀土离子溶液,在吸收光谱275nm,发散光谱480~545nm下检测荧光强度,构建得到模式菌株标准曲线。
优选地,所述矿区为离子型稀土矿区。
优选地,所述稀土元素为铽或镝。
更优选地,所述稀土元素为铽,发散光谱545nm下检测荧光强度。
更优选地,所述稀土元素为镝,发散光谱480nm下检测荧光强度。
更优选地,所述芽孢标准品为芽孢杆菌Bacillus subtilis,保藏编号为CICC NO:10498。
与现有技术相比,本发明的有益效果包括:
(1)本发明发现芽孢杆菌在离子型稀土矿区主要以芽孢形式存在,芽孢杆菌形成芽孢时能够有效吸附稀土元素,芽孢杆菌芽孢中DPA与离子型稀土元素按摩尔比1:1结合,进而通过特定的吸收光谱和发散光谱下产生荧光信号进行检测,建立了模式菌株标准曲线,实现稀土元素含量的定量检测;
(2)与传统方法相比,本发明技术具有操作简便、快速、检测信号强、处理量大、特异性高、准确性等特点,对稀土矿区勘探和土壤重稀土污染分析等具有重要意义。
(3)本发明利用自然环境中存在的芽孢进行稀土元素含量的检测,对环境的影响比现有物理化学法等方法的影响小,不会造成二次污染。
附图说明
图1芽孢与稀土元素结合激发荧光的标准曲线;其中A为芽孢与稀土元素铽结合激发荧光的标准曲线;B为芽孢与稀土元素镝结合激发荧光的标准曲线。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本发明中,芽孢杆菌Bacillus subtilis购自中国工业微生物菌种保藏管理中心,保藏编号为:CICC NO:10498,以该芽孢杆菌为模式菌株。
实施例一芽孢杆菌Bacillus subtilis芽孢的制备
芽孢杆菌Bacillus subtilis芽孢的制备包括如下步骤:
1)取一环芽孢杆菌Bacillus subtilis菌体在LB平板上划线,于37℃培养箱中过夜培养;
2)挑取LB平板上单菌落接入装有培养液的三角瓶,置于摇床培养,培养条件:转速275rpm,温度37℃,培养2天;
3)收集培养液并离心,离心条件:转速8000rpm,温度4℃,离心10min;
4)去除上清,加入20%质量百分含量的碘海醇溶液悬浮菌体,振荡后再转入50%质量百分含量的碘海醇溶液,振荡,4℃下14000rmp离心10min,去除上清液,收集沉淀并用无菌水洗涤3次,于14000rmp离心1min,收集沉淀,得到纯度>99.5%的芽孢。
实施例二模式菌株标准曲线的建立
稀土元素为铽时,取125μg芽孢标准品煮沸30min,14000rmp离心5min,收取上清液,取200μL系列浓度的上清液于96孔板中,加入10μmol/L的饱和铽离子溶液,在吸收光谱275nm,发散光谱545nm下检测荧光强度,构建得到模式菌株标准曲线,如图1中的A所示。R2=0.9976,标准曲线的线性好。
稀土元素为镝时,取125μg芽孢标准品煮沸30min,14000rmp离心5min,收取上清液,取200μL系列浓度的上清液于96孔板中,加入10μmol/L的饱和镝离子溶液,在吸收光谱275nm,发散光谱480nm下检测荧光强度,构建得到模式菌株标准曲线,如图1中的B所示。R2=0.9981,标准曲线的线性好。
实施例三利用芽孢杆菌芽孢检测稀土元素铽含量的方法
一种利用芽孢杆菌芽孢检测稀土元素铽含量的方法,包括如下步骤:
1)矿区土壤采样:去除风化矿区表层土,取剖面18~20cm的土壤,用灭菌塑料袋包装,得到土壤样品;
2)芽孢的富集和分离:将10g所述土壤样品加入9mL无菌去离子水中,振荡,制成土壤混悬液,在80℃水浴加热10min杀灭细胞菌体,然后在14000rmp转速下离心5min,去除上清液,加入100μL 20%质量百分含量的碘海醇溶液(Nycodenz)悬浮菌体,振荡后再转入900μL50%质量百分含量的碘海醇溶液,4℃下14000rmp离心10min,去除上清液,收集沉淀并用无菌水洗涤3次,于14000rmp离心1min,收集沉淀,得到芽孢;
3)将步骤2)得到的芽孢干燥后称重,沸水煮30min,冰浴15min后于14000rmp离心5min,收取上清液,取200μL上清液于96孔板中,加入10μmol/L的饱和铽离子溶液,在吸收光谱275nm和发散光谱545nm下检测荧光强度,代入模式菌株标准曲线,得出稀土铽离子含量。
此外,对检测方法的特异性进行考察,矿区土壤中含有的镝、镧等稀土元素不会干扰稀土铽离子的检测。
实施例四利用芽孢杆菌芽孢检测稀土元素镝含量的方法
一种利用芽孢杆菌芽孢检测稀土元素镝含量的方法,包括如下步骤:
1)矿区土壤采样:去除风化矿区表层土,取剖面18~20cm的土壤,用灭菌塑料袋包装,得到土壤样品;
2)芽孢的富集和分离:将10g所述土壤样品加入9mL无菌去离子水中,振荡,制成土壤混悬液,在80℃水浴加热10min杀灭细胞菌体,然后在14000rmp转速下离心5min,去除上清液,加入无菌水洗涤,加入100μL 20%质量百分含量的碘海醇溶液悬浮菌体,振荡后再转入900μL 50%质量百分含量的碘海醇溶液,4℃下14000rmp离心10min,去除上清液,收集沉淀并用无菌水洗涤3次,于14000rmp离心1min,收集沉淀,得到芽孢;
3)将步骤2)得到的芽孢干燥后称重,沸水煮30min,冰浴15min后于14000rmp离心5min,收取上清液,取200μL上清液于96孔板中,加入10μmol/L的饱和镝离子溶液,在吸收光谱275nm和发散光谱480nm下检测荧光强度,代入模式菌株标准曲线,得出稀土镝离子含量。
此外,对检测方法的特异性进行考察,矿区土壤中含有的铽、镧等稀土元素不会干扰稀土镝离子的检测。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (7)

1.一种利用芽孢杆菌芽孢检测稀土元素含量的方法,其特征在于:包括如下步骤:
1)矿区土壤采样:去除风化矿区表层土,取剖面12~22cm的土壤,用灭菌塑料袋包装,得到土壤样品;
2)芽孢的富集和分离:将所述土壤样品加入无菌去离子水中,振荡,制成土壤混悬液,在75~90℃加热8~15min杀灭细胞菌体,然后在12000~16000rmp转速下离心4~7min,去除上清液,加入18~25%质量百分含量的碘海醇溶液悬浮菌体,振荡后再转入45~60%质量百分含量的碘海醇溶液,振荡,4℃下13000~15000rmp离心9~12min,去除上清液,收集沉淀并用无菌水洗涤2~4次,于13000~15000rmp离心1~2min,得到芽孢;
3)将步骤2)得到的芽孢干燥后称重,沸水煮25~35min,冰浴12~18min后于12000~16000rmp离心4~7min,收取上清液,取200μL上清液于96孔板中,加入饱和稀土离子溶液,在吸收光谱275nm和发散光谱480~545nm下检测荧光强度,代入模式菌株标准曲线,得出稀土离子含量。
2.根据权利要求1所述的利用芽孢杆菌芽孢检测稀土元素含量的方法,其特征在于:所述模式菌株标准曲线的构建方法包括如下步骤:取芽孢标准品,煮沸25~35min后冰浴12~18min,于12000~16000rmp离心4~7min,收取上清液,取200μL系列浓度的上清液于96孔板中,加入饱和稀土离子溶液,在吸收光谱275nm,发散光谱480~545nm下检测荧光强度,构建得到模式菌株标准曲线。
3.根据权利要求1所述的利用芽孢杆菌芽孢检测稀土元素含量的方法,其特征在于:所述矿区为离子型稀土矿区。
4.根据权利要求1所述的利用芽孢杆菌芽孢检测稀土元素含量的方法,其特征在于:所述稀土元素为铽或镝。
5.根据权利要求4所述的利用芽孢杆菌芽孢检测稀土元素含量的方法,其特征在于:所述稀土元素为铽,发散光谱545nm下检测荧光强度。
6.根据权利要求4所述的利用芽孢杆菌芽孢检测稀土元素含量的方法,其特征在于:所述稀土元素为镝,发散光谱480nm下检测荧光强度。
7.根据权利要求1或2所述的利用芽孢杆菌芽孢检测稀土元素含量的方法,其特征在于:所述芽孢标准品为芽孢杆菌Bacillus subtilis,保藏编号为CICC NO:10498。
CN201811085411.XA 2018-09-18 2018-09-18 一种利用芽孢杆菌芽孢检测稀土元素含量的方法 Active CN109030446B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811085411.XA CN109030446B (zh) 2018-09-18 2018-09-18 一种利用芽孢杆菌芽孢检测稀土元素含量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811085411.XA CN109030446B (zh) 2018-09-18 2018-09-18 一种利用芽孢杆菌芽孢检测稀土元素含量的方法

Publications (2)

Publication Number Publication Date
CN109030446A true CN109030446A (zh) 2018-12-18
CN109030446B CN109030446B (zh) 2021-05-28

Family

ID=64616899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811085411.XA Active CN109030446B (zh) 2018-09-18 2018-09-18 一种利用芽孢杆菌芽孢检测稀土元素含量的方法

Country Status (1)

Country Link
CN (1) CN109030446B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416688A (zh) * 2021-06-23 2021-09-21 江西理工大学 一种固定化芽孢的制备方法及其在吸附稀土离子中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106442453A (zh) * 2016-11-17 2017-02-22 中南民族大学 一种快速定量测定芽孢浓度的方法
CN107955829A (zh) * 2017-11-07 2018-04-24 中南民族大学 一种采用响应面法快速优化金属离子促进芽孢杆菌产孢的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106442453A (zh) * 2016-11-17 2017-02-22 中南民族大学 一种快速定量测定芽孢浓度的方法
CN107955829A (zh) * 2017-11-07 2018-04-24 中南民族大学 一种采用响应面法快速优化金属离子促进芽孢杆菌产孢的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XUAN YI等: "Efficient Inhibition of Germination of Coat-Deficient Bacterial Spores by Multivalent Metal Cations, Including Terbium (Tb3+)", 《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》 *
慈云祥等: "微量铽的萤光光度测定——铽与吡啶-2,6-二羧酸螯合物的萤光", 《高等学校化学学报》 *
百度文库: "从土壤中分离芽孢杆菌", 《百度文库》 *
谭培功等: "吡啶_2_6_二羧酸体系导数荧光法同时测定铀_钐_铕_铽_镝", 《唐山工程技术学院学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416688A (zh) * 2021-06-23 2021-09-21 江西理工大学 一种固定化芽孢的制备方法及其在吸附稀土离子中的应用

Also Published As

Publication number Publication date
CN109030446B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
Kai et al. Plant growth promotion due to rhizobacterial volatiles–an effect of CO2?
Su et al. Pierce's Disease of Grapevines in T aiwan: Isolation, Cultivation and Pathogenicity of X ylella fastidiosa
Lundgren Fluorescein diacetate as a stain of metabolically active bacteria in soil
Kaestli et al. Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia
US9803172B2 (en) Method for inducing bacteria to enter into viable but nonculturable state
Almario et al. Rhizosphere ecology and phytoprotection in soils naturally suppressive to T hielaviopsis black root rot of tobacco
CN104403978B (zh) 沼泽红假单胞菌菌株、菌剂及菌剂的制备方法、胞外蛋白及其提取方法和应用
CN106011005B (zh) 一种解淀粉芽孢杆菌t600及其菌剂制备方法和应用
CN102965306B (zh) 一种枯草芽孢杆菌及其在抗曲霉菌中的应用
CN104673715B (zh) 对镉具有固定效应并能促进植物生长的肠杆菌及其应用
Brandes Ammann et al. Detection of bacterial endospores in soil by terbium fluorescence
Li et al. Biosafety and colonization of Burkholderia multivorans WS-FJ9 and its growth-promoting effects on poplars
CN106085897A (zh) 一种从土壤或污泥中获取能够降解八氯二丙醚的微生物的方法及八氯二丙醚降解菌
Margesin et al. Enumeration of soil microorganisms
Remigi et al. The exotic legume tree species Acacia holosericea alters microbial soil functionalities and the structure of the arbuscular mycorrhizal community
CN107151665A (zh) 固定化内生菌生物吸附剂处理含铅废水的方法
CN108893420A (zh) 处理重金属污染土壤用微生物菌株及其筛选方法与应用
CN104805033B (zh) 一株可降解多种邻苯二甲酸酯的微杆菌(Microbacterium sp.)J-1
CN109030446A (zh) 一种利用芽孢杆菌芽孢检测稀土元素含量的方法
CN105969670A (zh) 一种桑黄菌株及其选育方法
CN106011002A (zh) 一种巨大芽孢杆菌t317及其菌剂和菌剂制备方法
CN106434450B (zh) 用于降解烟叶中果胶的smxp-58菌株及其应用
CN104805036A (zh) 微杆菌(Microbacterium sp.)J-1在降解多种邻苯二甲酸酯中的应用
Cassán et al. Protocol for the quality control of Azospirillum spp. inoculants
Tihanyi‐Kovács et al. The effect of transportation vibration on the microbiological status of bottled mineral water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant