CN109030315B - Low stress initial one-dimensional compression-penetration test system and its working method - Google Patents
Low stress initial one-dimensional compression-penetration test system and its working method Download PDFInfo
- Publication number
- CN109030315B CN109030315B CN201810959372.5A CN201810959372A CN109030315B CN 109030315 B CN109030315 B CN 109030315B CN 201810959372 A CN201810959372 A CN 201810959372A CN 109030315 B CN109030315 B CN 109030315B
- Authority
- CN
- China
- Prior art keywords
- stress
- pressure
- chassis
- water
- low stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 78
- 230000005540 biological transmission Effects 0.000 claims abstract description 56
- 239000002689 soil Substances 0.000 claims abstract description 51
- 238000007596 consolidation process Methods 0.000 claims abstract description 38
- 239000011148 porous material Substances 0.000 claims abstract description 17
- 230000035699 permeability Effects 0.000 claims abstract description 9
- 229920001971 elastomer Polymers 0.000 claims description 34
- 239000004575 stone Substances 0.000 claims description 26
- 238000006073 displacement reaction Methods 0.000 claims description 9
- 238000001764 infiltration Methods 0.000 claims description 6
- 238000012546 transfer Methods 0.000 claims description 6
- 230000000977 initiatory effect Effects 0.000 claims 4
- 238000013461 design Methods 0.000 abstract description 4
- 230000006835 compression Effects 0.000 abstract description 3
- 238000007906 compression Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 7
- 239000000725 suspension Substances 0.000 description 5
- 238000012669 compression test Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N15/0806—Details, e.g. sample holders, mounting samples for testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N15/082—Investigating permeability by forcing a fluid through a sample
- G01N15/0826—Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Fluid Mechanics (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
本发明涉及一种低应力起始一维压缩‑渗透试验系统,包括试验台,所述试验台的上部设置有固结容器,所述固结容器的上部设置有传压螺栓,所述传压螺栓经传压框架与传力杠杆相连接,所述传力杠杆上设置有低应力加载组件与高应力加载组件,所述固结容器的下部设置有水头测试组件;本发明还涉及一种低应力起始一维压缩‑渗透试验系统的工作方法。本发明不仅结构设计简单、合理,而且不仅实现了低应力与高应力土样的压缩性状,同时可以测定不同应力水平土样的渗透系数与孔隙水压力。
The invention relates to a low-stress initial one-dimensional compression-penetration test system, comprising a test bench, a consolidation container is arranged on the upper part of the test bench, a pressure transmission bolt is arranged on the upper part of the consolidation container, and the pressure transmission The bolt is connected with the force transmission lever through the pressure transmission frame, the low stress loading component and the high stress loading component are arranged on the force transmission lever, and the lower part of the consolidation vessel is arranged with a water head test component; the invention also relates to a low stress loading component. Working method of the initial one-dimensional compression-penetration test system. The invention not only has simple and reasonable structure design, but also realizes the compression properties of soil samples with low stress and high stress, and can measure the permeability coefficient and pore water pressure of soil samples with different stress levels.
Description
技术领域technical field
本发明涉及一种低应力起始一维压缩-渗透试验系统及其工作方法。The invention relates to a low-stress initial one-dimensional compression-penetration test system and a working method thereof.
背景技术Background technique
为了维持航道的畅通和河道泄洪能力,我国每年不可避免地大规模开展航道和河道的疏浚清淤工程,从而产生大量的疏浚泥。高含水率疏浚泥流动性大,骨架处于流态,强度低,抵抗变形的能力差,由于天然沉积土与高含水率疏浚泥存在流动性与强度的本质差异,在对高含水率的土样进行一维压缩试验时,常规试验仪器往往存在两个问题:一是常规固结容器的试样帽为金属材质(铜质300g 左右),会使初始含水率较高的土样溢出制样环刀;二是常规压力加载系统的金属挂钩(质量约为319g),当作为第一级荷载施加,土样面积为30cm2,则施加于土样的荷载约为12.5kPa,对于初始含水率较高的土样而言,该压力下土样极易溢出制样环刀。In order to maintain the smoothness of the waterway and the flood discharge capacity of the river, my country inevitably carries out large-scale dredging and dredging projects for the waterway and river every year, resulting in a large amount of dredging mud. Dredged mud with high water content has high fluidity, the skeleton is in a flowing state, the strength is low, and the ability to resist deformation is poor. Due to the essential difference in fluidity and strength between natural sedimentary soil and dredged mud with high water content When one-dimensional compression test is performed, conventional test instruments often have two problems: First, the sample cap of the conventional consolidation vessel is made of metal (about 300g copper), which will cause the soil sample with high initial moisture content to overflow the sample preparation ring. The second is the metal hook of the conventional pressure loading system (the mass is about 319g). When it is applied as the first-level load and the soil sample area is 30cm 2 , the load applied to the soil sample is about 12.5kPa, which is relatively high for the initial moisture content. For high soil samples, the soil samples under this pressure are very easy to overflow the sample preparation ring knife.
目前大规模疏浚泥的处理方式是就近征用土地,修筑围堰,将废弃疏浚泥排放到堆场中贮存,形成疏浚泥堆场,而疏浚泥的渗透系数是堆场处置设计中非常关键的技术参数,传统渗透仪无法对流态疏浚泥进行渗透试验,一维压缩试验所用的传统固结容器由于底部未对排水通道进行密封处理,也无法进行不同荷载作用后土体的渗透试验。At present, the treatment method of large-scale dredged mud is to requisition the nearby land, build a cofferdam, and discharge the waste dredged mud into the yard for storage to form a dredged mud yard. The permeability coefficient of the dredged mud is a very critical technology in the design of the yard disposal. Due to the parameters, the traditional permeameter cannot carry out the infiltration test of the flowing dredged mud, and the traditional consolidation container used in the one-dimensional compression test cannot carry out the infiltration test of the soil after different loads because the drainage channel is not sealed at the bottom.
经对现有的技术文献检索发现,近几年针对一维压缩试验装置进行了自动加压和数据采集等方面的改进,但都未能克服上述流态土的试验困境。After searching the existing technical documents, it is found that the one-dimensional compression test device has been improved in terms of automatic compression and data acquisition in recent years, but they have not been able to overcome the above-mentioned test dilemma of fluid soil.
发明内容SUMMARY OF THE INVENTION
鉴于现有技术的不足,本发明所要解决的技术问题是提供一种低应力起始一维压缩-渗透试验系统及其工作方法,不仅结构设计合理,而且高效便捷。In view of the deficiencies of the prior art, the technical problem to be solved by the present invention is to provide a low-stress initial one-dimensional compression-penetration test system and a working method thereof, which are not only reasonable in structure design, but also efficient and convenient.
为了解决上述技术问题,本发明的技术方案是:一种低应力起始一维压缩-渗透试验系统,包括试验台,所述试验台的上部设置有固结容器,所述固结容器的上部设置有传压螺栓,所述传压螺栓经传压框架与传力杠杆相连接,所述传力杠杆上设置有低应力加载组件与高应力加载组件,所述固结容器的下部设置有水头测试组件。In order to solve the above technical problems, the technical solution of the present invention is: a low-stress initial one-dimensional compression-penetration test system, including a test bench, the upper part of the test bench is provided with a consolidation container, and the upper part of the consolidation container is A pressure transmission bolt is provided, the pressure transmission bolt is connected with a force transmission lever through a pressure transmission frame, a low stress loading assembly and a high stress loading assembly are arranged on the force transmission lever, and the lower part of the consolidation container is provided with a water head test components.
进一步的,所述固结容器包含从下到上顺序设置的底盘、第一透水石、环刀、第二透水石以及试样帽,所述环刀内盛放有土样,所述第一透水石置于底盘的中心凹槽内部,所述环刀的外侧壁套设有第一固定套环,所述第一固定套环置于底盘的外环面上,所述第一固定套环与底盘之间设置有第一O字型橡胶圈,所述第二透水石的外侧壁套设有第二固定套环,所述第二固定套环置于第一固定套环上,所述第二固定套环与第一固定套环之间设置有第二O字型橡胶圈,所述环刀的上部外侧壁套设有第三O字型橡胶圈,所述第三O字型橡胶圈设置在环刀与第一固定套环之间。Further, the consolidation container comprises a bottom plate, a first permeable stone, a ring knife, a second permeable stone and a sample cap arranged in sequence from bottom to top, the ring knife contains soil samples, and the first permeable stone The permeable stone is placed inside the central groove of the chassis, the outer side wall of the ring knife is sleeved with a first fixing collar, the first fixing collar is placed on the outer ring surface of the chassis, and the first fixing collar is A first O-shaped rubber ring is arranged between it and the chassis, a second fixing collar is sleeved on the outer side wall of the second permeable stone, and the second fixing collar is placed on the first fixing collar. A second O-shaped rubber ring is arranged between the second fixed collar and the first fixed collar, and a third O-shaped rubber ring is sleeved on the upper outer side wall of the ring knife. The third O-shaped rubber The ring is arranged between the ring knife and the first fixed collar.
进一步的,所述底盘与第二固定套环之间穿设有若干根锁紧螺杆,若干根所述锁紧螺杆环向间隔设置,所述锁紧螺杆的一端与底盘螺纹连接,所述锁紧螺杆的另一端穿过第二固定套环后利用锁紧螺母锁紧。Further, a plurality of locking screws are arranged between the chassis and the second fixing collar, and the locking screws are arranged at intervals in the circumferential direction. One end of the locking screws is threadedly connected to the chassis, and the lock The other end of the tightening screw is locked with a locking nut after passing through the second fixing collar.
进一步的,所述水头测试组件包含水头管、第一水管以及第二水管,所述水头管纵向设置在固结容器的一侧,所述第一水管与第二水管横向设置在固结容器的两侧,所述水头管的上端设置有水头刻度标尺面板,所述水头管的下端经三通阀的第一流道口、第二流道口接入第一水管的一端,所述三通阀的第三流道口与孔隙水压力计相连接,所述第一水管的另一端穿过底盘后与第一透水石相连接,所述第二水管的一端与第一透水石相连接,所述第二水管的另一端设置有二通阀。Further, the water head test assembly includes a water head pipe, a first water pipe and a second water pipe, the water head pipe is longitudinally arranged on one side of the consolidation container, and the first water pipe and the second water pipe are laterally arranged on the side of the consolidation container. On both sides, the upper end of the water head pipe is provided with a water head scale scale panel, and the lower end of the water head pipe is connected to one end of the first water pipe through the first flow channel opening and the second flow channel opening of the three-way valve. The three-flow channel mouth is connected to the pore water pressure gauge, the other end of the first water pipe is connected to the first permeable stone after passing through the chassis, one end of the second water pipe is connected to the first permeable stone, and the second water pipe is connected to the first permeable stone. The other end of the water pipe is provided with a two-way valve.
进一步的,所述传压螺栓的顶部设置有位移百分表,所述传压螺栓的底部压在试样帽的顶部凹槽上,所述传压框架包含相互连接的上部横梁、传力拉杆以及下部横梁,所述传压螺栓的中部经螺纹与上部横梁相连接,所述下部横梁经第一铰链与传力杠杆相连接。Further, the top of the pressure transmission bolt is provided with a displacement dial indicator, the bottom of the pressure transmission bolt is pressed on the top groove of the sample cap, and the pressure transmission frame includes an upper beam and a force transmission rod connected to each other. and the lower beam, the middle part of the pressure transmission bolt is connected with the upper beam through the thread, and the lower beam is connected with the force transmission lever through the first hinge.
进一步的,所述低应力加载组件包含低应力砝码吊盘,所述低应力砝码吊盘设置在传力拉杆的正下方,所述高应力加载组件包含高应力砝码吊盘,所述高应力砝码吊盘设置在传力杠杆的一侧末端。Further, the low-stress loading assembly includes a low-stress weight suspension plate, the low-stress weight suspension plate is arranged directly below the force transmission rod, the high-stress loading assembly includes a high-stress weight suspension plate, and the The high stress weight hanger is set at one end of the force transmission lever.
一种低应力起始一维压缩-渗透试验系统的工作方法,包括上述任意一项所述的低应力起始一维压缩-渗透试验系统,包含以下步骤:通过低应力加载组件、传力杠杆、固结容器对土样进行低应力加载,通过高应力加载组件、传力杠杆、固结容器对土样进行高应力加载,利用水头测试组件可以测定不同应力水平土样的渗透系数与孔隙水压力。A working method of a low-stress initial one-dimensional compression-penetration test system, comprising the low-stress initial one-dimensional compression-penetration test system described in any one of the above, comprising the following steps: loading a component, a force transmission lever through a low stress The soil sample is loaded with low stress by the consolidation container, and the soil sample is loaded with high stress through the high stress loading component, the force transmission lever, and the consolidation container. The water head test component can be used to measure the permeability coefficient and pore water of the soil samples at different stress levels. pressure.
与现有技术相比,本发明具有以下有益效果:本发明不仅结构设计简单、合理,而且不仅实现了低应力与中高应力土样的压缩性状,同时可以测定不同应力水平土样的渗透系数与孔隙水压力。Compared with the prior art, the present invention has the following beneficial effects: the present invention is not only simple and reasonable in structural design, but also realizes the compressive properties of low-stress and medium-high-stress soil samples, and simultaneously can measure the permeability coefficient and soil samples of different stress levels. Pore water pressure.
下面结合附图和具体实施方式对本发明做进一步详细的说明。The present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
附图说明Description of drawings
图1为本发明实施例的构造示意图。FIG. 1 is a schematic structural diagram of an embodiment of the present invention.
图2为本发明实施例的固结容器主视示意图。FIG. 2 is a schematic front view of a consolidation vessel according to an embodiment of the present invention.
图3为本发明实施例的固结容器俯视示意图。3 is a schematic top view of a consolidation container according to an embodiment of the present invention.
图4为本发明实施例的传压框架侧视示意图。FIG. 4 is a schematic side view of a pressure transmission frame according to an embodiment of the present invention.
图中:1-试验台,2-固结容器,201-底盘,202-第一透水石,203-环刀,204-第二透水石,205-试样帽,206-第一固定套环,207-第一O字型橡胶圈,208-第二固定套环,209-第二O字型橡胶圈,210-第三O字型橡胶圈,211-锁紧螺杆,212-锁紧螺母,3-传压螺栓,4-传压框架,401-上部横梁,402-传力拉杆,403-下部横梁,5-传力杠杆,6-低应力加载组件,601-低应力砝码吊盘,7-高应力加载组件,701-高应力砝码吊盘,8-水头测试组件,801-水头管,802-第一水管,803-第二水管,804-水头刻度标尺面板,805-三通阀,806-孔隙水压力计,807-二通阀,9-位移百分表,10-第一铰链,11-调平组件,1101-调节箱,1102-调节手轮,1103-调节螺杆,1104-调节套筒,1105-平衡螺杆,1106-平衡锤,1107-挂钩,12-第二铰链,13-水准仪,14-第三铰链,a-土样,b-受力支点。In the picture: 1-Test bench, 2-Consolidation container, 201-Chassis, 202-First permeable stone, 203-Ring knife, 204-Second permeable stone, 205-Specimen cap, 206-First fixed collar , 207- The first O-shaped rubber ring, 208- The second fixed collar, 209- The second O-shaped rubber ring, 210- The third O-shaped rubber ring, 211- Locking screw, 212- Locking nut , 3-pressure transmission bolt, 4-pressure transmission frame, 401-upper beam, 402-force transmission rod, 403-lower beam, 5-force transmission lever, 6-low stress loading assembly, 601-low stress weight hanging plate , 7-High stress loading assembly, 701-High stress weight hanging plate, 8-Head test assembly, 801-Head pipe, 802-First water pipe, 803-Second water pipe, 804-Head scale scale panel, 805-Three Through valve, 806-pore water pressure gauge, 807-two-way valve, 9-displacement dial indicator, 10-first hinge, 11-leveling assembly, 1101-adjustment box, 1102-adjustment handwheel, 1103-adjustment screw , 1104-adjusting sleeve, 1105-balance screw, 1106-balance weight, 1107-hook, 12-second hinge, 13-level, 14-third hinge, a-soil sample, b-force fulcrum.
具体实施方式Detailed ways
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图,作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following specific embodiments are given and the accompanying drawings are described in detail as follows.
如图1~4所示,一种低应力起始一维压缩-渗透试验系统,包括试验台1,所述试验台1的上部设置有固结容器2,所述固结容器2的上部设置有传压螺栓3,所述传压螺栓3经传压框架4与传力杠杆5相连接,所述传力杠杆5上设置有低应力加载组件6与高应力加载组件7,所述固结容器2的下部设置有水头测试组件8。As shown in Figures 1-4, a low-stress initial one-dimensional compression-penetration test system includes a
在本发明实施例中,所述固结容器2包含从下到上顺序设置的底盘201、第一透水石202、环刀203、第二透水石204以及试样帽205,所述环刀203内盛放有土样,所述第一透水石202置于底盘201的中心凹槽内部,所述环刀203的外侧壁套设有第一固定套环206,所述第一固定套环206置于底盘201的外环面上,所述第一固定套环206与底盘201之间设置有第一O字型橡胶圈207,所述第二透水石204的外侧壁套设有第二固定套环208,所述第二固定套环208置于第一固定套环206上,所述第二固定套环208与第一固定套环206之间设置有第二O字型橡胶圈209,所述环刀203的上部外侧壁套设有第三O字型橡胶圈210,所述第三O字型橡胶圈210设置在环刀203与第一固定套环206之间;所述试样帽205采用现有的轻质有机玻璃制成。In the embodiment of the present invention, the
在本发明实施例中,所述底盘201与第二固定套环208之间穿设有若干根锁紧螺杆211,若干根所述锁紧螺杆211环向间隔设置,所述锁紧螺杆211的一端与底盘201螺纹连接,所述锁紧螺杆211的另一端穿过第二固定套环208后利用锁紧螺母212锁紧;优选的,所述锁紧螺杆211的数量为三根,本发明通过三根锁紧螺杆211、锁紧螺母212的约束压力,实现所述第三O字型橡胶圈210设对环刀203和第一固定套环206之间的密封作用、实现所述第一O字型橡胶圈207设对底盘201和第一固定套环206之间的密封作用、实现所述第二O字型橡胶圈209设对第二固定套环208和第三固定套环之间的密封作用,实现所述固结容器2底部的水只能经过环刀203土样内部才能到达固结容器2顶部。In the embodiment of the present invention, a plurality of
在本发明实施例中,土样的初始状态为可塑状态土体时,采用所述环刀203的刀口垂直向下缓慢插入土体,下压过程中为避免土样开裂需将所述环刀203外壁的多于土体逐步剔除,并最后削平所述环刀203上下部多余土体,将经脱气水饱和后的滤纸贴于土样上下两个表面;将经脱气水饱和后的第一透水石202放入底盘201的中心凹槽处,并在所述底盘201的外环面放置第一O字型橡胶圈207;将切好样的所述环刀203的上部箍上第三O字型橡胶圈210后,在所述环刀203的外部套上第一固定套环206;通过三根锁紧螺杆211将第二固定套环208与底盘201连接,并利用所述锁紧螺母212锁紧,使两两之间的第一O字型橡胶圈207、第二O字型橡胶圈209、第三O字型橡胶圈210受压发挥密封作用;土样的顶部依次放上第二透水石204与试样帽205;所述底盘201的外环面设置有用以放置第一O字型橡胶圈207的第一凹槽,所述第二固定套环208的下表面设置有用以放置第二O字型橡胶圈209的第二凹槽,所述第一固定套环206的内侧面设置有用以放置第三O字型橡胶圈210的第三凹槽;所述第一固定套环206的上部与第二固定套环208的下部设置有用以连接的凹凸部。In the embodiment of the present invention, when the initial state of the soil sample is a plastic state soil, the blade edge of the
在本发明实施例中,土样的初始状态为流塑状态土体时,首先将经脱气水饱和后的第一透水石202放入底盘201的中心凹槽处,并在所述底盘201的外环面放置第一O字型橡胶圈207;将所述环刀203的上部箍上第三O字型橡胶圈210后,在所述环刀203的外部套上第一固定套环206;将流态重塑土样搅拌均匀后缓慢倒入环刀203内,倒入过程可用铁丝上下提插泥浆排除泥中气泡,倒满后刮平土样上部表面;通过三根锁紧螺杆211将第二固定套环208与底盘201连接,并利用所述锁紧螺母212锁紧,使两两部件之间的第一O字型橡胶圈207、第二O字型橡胶圈209、第三O字型橡胶圈210受压发挥密封作用;放置24小时以保证流态重塑土样中的超静孔隙水压力消散。In the embodiment of the present invention, when the initial state of the soil sample is fluid plastic state soil, the first
在本发明实施例中,所述水头测试组件8包含水头管801、第一水管802以及第二水管,所述水头管801纵向设置在固结容器的一侧,所述第一水管802与第二水管横向设置在固结容器的两侧,所述水头管801的上端设置有水头刻度标尺面板804,所述水头管801的下端经三通阀805的第一流道口、第二流道口接入第一水管802的一端,所述三通阀805的第三流道口与孔隙水压力计806相连接,所述第一水管802的另一端穿过底盘201后与第一透水石202相连接,所述第二水管的一端与第一透水石202相连接,所述第二水管的另一端设置有二通阀807;所述水头刻度标尺面板804可以根据水头高度要求通过钉于墙上的滑轮连接进行升降。In the embodiment of the present invention, the water
在本发明实施例中,所述传压螺栓3的顶部设置有位移百分表9,所述传压螺栓3的底部压在试样帽205的顶部凹槽上,所述传压框架4包含相互连接的上部横梁401、传力拉杆402以及下部横梁403,所述传压螺栓3的中部经螺纹与上部横梁401相连接,所述下部横梁403经第一铰链10与传力杠杆5相连接;通过所述位移百分表9的读数测定土样高度变化;所述第一铰链10采用菱形刀口销钉,所述传压螺栓3可以调整相对于横梁401的上下位置;所述固结容器2置于两根传力拉杆402之间,所述上部横梁401、两根传力拉杆402以及下部横梁403形成口字型的传压框架4;所述位移百分表9经立架与试验台1相连接。In the embodiment of the present invention, the top of the
在本发明实施例中,所述低应力加载组件6包含低应力砝码吊盘601,所述低应力砝码吊盘601与传力拉杆402位于同一铅垂面,所述高应力加载组件7包含高应力砝码吊盘701,所述高应力砝码吊盘701设置在传力杠杆5的一侧末端;通过所述低应力砝码吊盘601上的砝码荷载按1:1的传递方式传递到试样帽205;试样帽205作用于土样的荷载为0.5~12.5kPa;通过所述高应力砝码吊盘701上的砝码荷载按12:1的传递方式传递到试样帽205,试样帽205作用于土样的荷载为25~1600kPa。In the embodiment of the present invention, the low-
在本发明实施例中,所述传力杠杆5的另一侧末端设置有调平组件11,所述调平组件11包含设置在试验台1的下部的调节箱1101,所述调节箱1101的内部设置有锥齿轮副,组成所述锥齿轮副的第一锥齿轮与横向设置的调节手轮1102相连接,组成所述锥齿轮副的第二锥齿轮与纵向设置的调节螺杆1103相连接,所述调节螺栓外螺纹连接有调节杆件1104,所述调节杆件1104经第二铰链12与传力杠杆5的受力支点相连接,所述调节杆件1104上横向经第三铰链14与平衡螺杆1105连接,所述平衡螺杆1105的左端螺纹连接有平衡锤1106;所述平衡螺杆1105的右端通过挂钩1107与传压框架4的下部横梁403中心位置相连接,所述第二铰链12采用菱形刀口销钉;第三铰链14采用转动销;转动所述调节手轮1102,所述第一锥齿轮调动第二锥齿轮发生转动,从而带动所述调节螺栓发生转动,由于所述传力杠杆5与第二铰链12限制调节杆件1104转动,从而可以调节所述调节螺栓与调节杆件1104之间的相对距离,同时调节所述平衡锤1106的位置,从而可以使得所述传力杠杆5绕着第二铰链12发生转动,从而可以调节所述传力杠杆5在空载的情况下的平衡;当然,所述调平组件11可以直接采用现有的单杠杆固结仪中的调平组件。In the embodiment of the present invention, the other end of the
在本发明实施例中,所述传力杠杆5的一侧末端设置有水准仪13,所述水准仪13辅助调节传力杠杆5在空载的情况下的平衡。In the embodiment of the present invention, a
在本发明实施例中,一种低应力起始一维压缩-渗透试验系统的工作方法,包括上述任意一项所述的低应力起始一维压缩-渗透试验系统,包含以下步骤:通过低应力加载组件6、传力杠杆5、固结容器对土样进行低应力加载,通过高应力加载组件7、传力杠杆5、固结容器对土样进行高应力加载,利用水头测试组件8可以测定不同应力水平土样的渗透系数与孔隙水压力。In an embodiment of the present invention, a working method of a low-stress initial one-dimensional compression-penetration test system, including the low-stress initial one-dimensional compression-penetration test system described in any one of the above, includes the following steps: The
在本发明实施例中,土样顶部依次放上第二透水石204和试样帽205,并在试样帽205顶部固定位移百分表9,调整所述调平组件11,使所述水准仪13的气泡处于中间位置,利用调平组件11调节所述传力杠杆5在空载的情况下的平衡;In the embodiment of the present invention, a second
低应力系统加载过程:当所需荷载小于12.5kPa并大于0.5kPa时,在所述低应力砝码吊盘601上放置砝码,砝码重量按1:1的传递方式将荷载传递到试样帽205;此时土样承受试样帽20 5的0.5kPa~12.5kPa的竖向固结压力,通过位移百分表9读取土样固结过程中的变形数据;Low-stress system loading process: when the required load is less than 12.5kPa and greater than 0.5kPa, place a weight on the low-stress
高应力系统加载过程:当所需荷载大于12.5kPa时,通过在所述高应力砝码吊盘701上放置砝码,砝码重量按12:1的传递方式将荷载传递到试样帽,此时土样承受试样帽205的25~1600kPa的竖向固结压力,通过位移百分表9读取土样固结过程中的变形数据。High-stress system loading process: when the required load is greater than 12.5kPa, by placing a weight on the high-stress
在本发明实施例中,孔压测试过程测量孔隙水压力:打开所述二通阀807,然后将所述三通阀805与水头管801相连通,此时所述三通阀805与孔隙水压力计806相隔绝,待所述二通阀807出水,并形成连续水流,说明试样底部残余空气排尽;接着将三通阀805与孔隙水压力计806相连通,此时所述三通阀805与水头管801相隔绝,关闭二通阀807,加载过程读取孔隙水压力数值。In the embodiment of the present invention, the pore pressure test process measures the pore water pressure: open the two-
在本发明实施例中,渗透试验过程测量渗透系数:当每级荷载下土体压缩变形稳定、孔隙水压力降到零值后,将所述三通阀805与水头管801连通,此时所述三通阀805与孔隙水压力计806相隔绝,关闭二通阀807,水头管801的水头压力不能大于施加于土样顶部的竖向荷载,并根据土样的渗透性选择初始水头高度,通过升降水头刻度标尺面板804达到初始水头高度要求,之后读取水头高度随时间的变化,获得当前土体状态下的渗透系数。In the embodiment of the present invention, the permeability coefficient is measured during the penetration test: when the soil compression deformation is stable under each level of load and the pore water pressure drops to zero, the three-
上述本发明公开的任一技术方案中所应用的用于表示位置关系或形状的术语除另有声明外其含义包括与其近似、类似或接近的状态或形状。Unless otherwise stated, the terms used in any of the technical solutions disclosed in the present disclosure and used to represent the positional relationship or shape include a state or shape that is similar to, similar to, or close to.
本发明提供的任一部件既可以是由多个单独的组成部分组装而成,也可以为一体成形工艺制造出来的单独部件。Any component provided by the present invention may be assembled from a plurality of individual components, or may be a single component manufactured by an integral molding process.
以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。The above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them; although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the specific embodiments of the present invention can still be carried out. Modification or equivalent replacement of some technical features; without departing from the spirit of the technical solution of the present invention, all of them should be included in the scope of the technical solution claimed in the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810959372.5A CN109030315B (en) | 2018-08-22 | 2018-08-22 | Low stress initial one-dimensional compression-penetration test system and its working method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810959372.5A CN109030315B (en) | 2018-08-22 | 2018-08-22 | Low stress initial one-dimensional compression-penetration test system and its working method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109030315A CN109030315A (en) | 2018-12-18 |
CN109030315B true CN109030315B (en) | 2020-11-27 |
Family
ID=64626918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810959372.5A Expired - Fee Related CN109030315B (en) | 2018-08-22 | 2018-08-22 | Low stress initial one-dimensional compression-penetration test system and its working method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109030315B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109682741B (en) * | 2019-02-12 | 2024-02-20 | 郑州大学 | Consolidation penetration test device and operation method thereof |
CN110608955B (en) * | 2019-10-22 | 2024-06-11 | 中国工程物理研究院化工材料研究所 | Tandem compression loading device for cylindrical samples |
CN112903383A (en) * | 2021-01-15 | 2021-06-04 | 中国矿业大学(北京) | Preparation device and method of loose particle sample for SHPB (split harmonic vibration suppression) experiment |
CN114813384A (en) * | 2022-03-18 | 2022-07-29 | 中国科学院武汉岩土力学研究所 | Temperature control infiltration consolidation test system and test method capable of replacing solution |
CN115979880B (en) * | 2022-11-25 | 2023-06-20 | 中国矿业大学 | Device and method for testing near-surface soil water retention curve under low-stress environment |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5679885A (en) * | 1993-07-29 | 1997-10-21 | Institut Francais Du Petrole | Process and device for measuring physical parameters of porous fluid wet samples |
CN101865810A (en) * | 2009-03-25 | 2010-10-20 | 中国科学院地质与地球物理研究所 | A Test Method for Measuring Moisture Characteristic Parameters of Unsaturated Soil |
CN102721618A (en) * | 2012-06-06 | 2012-10-10 | 中国科学院地质与地球物理研究所 | Uniaxial compression creep test method for saturated and unsaturated rock-soil body |
CN202928929U (en) * | 2012-09-26 | 2013-05-08 | 辽宁工程技术大学 | Consolidation-penetration test device for soil under chemical-stress coupling |
CN203824996U (en) * | 2014-03-21 | 2014-09-10 | 四川农业大学 | Single-lever consolidometer |
CN104122185A (en) * | 2014-07-22 | 2014-10-29 | 浙江理工大学 | Tester for researching compression-permeation relationship of garbage soil |
CN204177710U (en) * | 2014-09-16 | 2015-02-25 | 中国电力工程顾问集团西北电力设计院有限公司 | A kind of varying head permeability apparatus preventing infiltration cutting ring side seam from leaking |
CN107389474A (en) * | 2017-08-02 | 2017-11-24 | 华北科技学院 | A kind of soil test direct shear apparatus |
-
2018
- 2018-08-22 CN CN201810959372.5A patent/CN109030315B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5679885A (en) * | 1993-07-29 | 1997-10-21 | Institut Francais Du Petrole | Process and device for measuring physical parameters of porous fluid wet samples |
CN101865810A (en) * | 2009-03-25 | 2010-10-20 | 中国科学院地质与地球物理研究所 | A Test Method for Measuring Moisture Characteristic Parameters of Unsaturated Soil |
CN102721618A (en) * | 2012-06-06 | 2012-10-10 | 中国科学院地质与地球物理研究所 | Uniaxial compression creep test method for saturated and unsaturated rock-soil body |
CN202928929U (en) * | 2012-09-26 | 2013-05-08 | 辽宁工程技术大学 | Consolidation-penetration test device for soil under chemical-stress coupling |
CN203824996U (en) * | 2014-03-21 | 2014-09-10 | 四川农业大学 | Single-lever consolidometer |
CN104122185A (en) * | 2014-07-22 | 2014-10-29 | 浙江理工大学 | Tester for researching compression-permeation relationship of garbage soil |
CN204177710U (en) * | 2014-09-16 | 2015-02-25 | 中国电力工程顾问集团西北电力设计院有限公司 | A kind of varying head permeability apparatus preventing infiltration cutting ring side seam from leaking |
CN107389474A (en) * | 2017-08-02 | 2017-11-24 | 华北科技学院 | A kind of soil test direct shear apparatus |
Non-Patent Citations (1)
Title |
---|
初始含水率对重塑连云港黏土压缩特性的影响;高玉峰等;《沈阳建筑大学学报(自然科学版)》;20090930;第25卷(第5期);817-821 * |
Also Published As
Publication number | Publication date |
---|---|
CN109030315A (en) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109030315B (en) | Low stress initial one-dimensional compression-penetration test system and its working method | |
CN103048174B (en) | A triaxial sample preparation device for silty soil with low liquid limit | |
CN101788451B (en) | Equipment and method for measuring impermeability strength of silt | |
CN103018085A (en) | Method and device for preparing silty soil triaxial-test test sample | |
CN104122185B (en) | The compression of a kind of refuse soil and infiltration relation analyzer | |
CN109991099A (en) | A kind of ultra-soft soil large-scale consolidation test device and test method | |
CN102914631A (en) | Testing device for measuring expansive force of soil sample in real time | |
CN101813690B (en) | Testing device for simulating warp self-weight settlement consolidation process by settlement column indoors | |
CN105987850A (en) | Water area vane shear test platform with bucket truss and installation method | |
CN108663249A (en) | A kind of preparation facilities and preparation method thereof of soil test cohesiveless soil sample | |
CN115112531A (en) | A multifunctional penetration piping test device and method | |
CN103411811B (en) | Sample preparation device for ring shearing experiment of soil body under water-chemistry condition | |
CN104316378A (en) | Testing apparatus for preparing large-diameter remolded soft clay sample | |
CN205786036U (en) | A kind of transparent consolidation container of saturated manipulated soil | |
CN113552037A (en) | A device and method for testing seepage parameters of garbage dual porosity | |
CN107121360B (en) | Silt flow tester | |
CN206504989U (en) | A test device for measuring the deformation and penetration of coarse-grained saline soil | |
CN104914013A (en) | Sludge fluidity measuring device and measuring method | |
CN102818717B (en) | Water quality monitoring water collecting tank | |
CN105738595B (en) | A kind of soil body disintegration character and underwater information warfare joint test method and experimental rig | |
CN108507921A (en) | Geosynthetics bentonite liner high pressure aquation consolidation keeps case apparatus | |
CN206787994U (en) | A kind of concrete permeable factor detection device | |
CN113295597A (en) | Testing device and testing method for simulating characteristics of ballast particles under cyclic loading action | |
CN118687957A (en) | A triaxial sample preparation method for silt-sand mixed soil | |
Reynolds et al. | 3.4. 2 Laboratory Methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201127 |
|
CF01 | Termination of patent right due to non-payment of annual fee |