CN109030148A - 一种铁基合金粉末ebsd检测试样的制备方法 - Google Patents

一种铁基合金粉末ebsd检测试样的制备方法 Download PDF

Info

Publication number
CN109030148A
CN109030148A CN201810846725.0A CN201810846725A CN109030148A CN 109030148 A CN109030148 A CN 109030148A CN 201810846725 A CN201810846725 A CN 201810846725A CN 109030148 A CN109030148 A CN 109030148A
Authority
CN
China
Prior art keywords
powder
iron
base powder
preparation
detection sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810846725.0A
Other languages
English (en)
Other versions
CN109030148B (zh
Inventor
刘祖铭
李全
黄伯云
吕学谦
彭凯
赵凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201810846725.0A priority Critical patent/CN109030148B/zh
Priority to US17/260,560 priority patent/US20210270706A1/en
Priority to PCT/CN2018/103114 priority patent/WO2020019400A1/zh
Publication of CN109030148A publication Critical patent/CN109030148A/zh
Application granted granted Critical
Publication of CN109030148B publication Critical patent/CN109030148B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1676Heating of the solution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/168Control of temperature, e.g. temperature of bath, substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/06Etching of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/24Polishing of heavy metals of iron or steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/053Investigating materials by wave or particle radiation by diffraction, scatter or reflection back scatter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Chemically Coating (AREA)

Abstract

本发明涉及一种铁基合金粉末EBSD检测试样的制备方法,属于材料表征技术领域。所述制备方法包括下述步骤:在电解液中对铁基合金粉末进行电解活化处理;然后用无水乙醇和/或无水甲醇溶液超声清洗,干燥,得到备用粉末;将备用粉末加入到化学包埋溶液中超声分散;超声分散后,进行A处理;然后再升温至80~92℃,反应,得到包覆有镍的铁基合金块体。所述A处理为:以静置、搅拌,再静置为一个周期;实施至少一个周期的操作,即完成A处理。对所得包覆有镍的铁基合金块体进行打磨、电解抛光,得到所述铁基合金粉末EBSD检测试样。本发明首次实现了对铁基合金粉末EBSD检测试样的制备。

Description

一种铁基合金粉末EBSD检测试样的制备方法
技术领域
本发明涉及一种铁基合金粉末EBSD检测试样的制备方法,属于特种材料表征技术领域。
背景技术
电子背散射衍射(Elecrton Backscatter Diffraction,简称EBSD)技术是基于扫描电镜中电子束在倾斜样品表面激发出并形成的衍射菊池带的分析从而确定晶体结构、取向及相关信息的方法。
氧化物弥散强化合金粉末是制备高性能氧化物弥散强化合金的原料,其显微组织形貌、结构与取向分布、成分分布是决定合金性能的关键。制备高质量合金粉末(包括铁磁性合金粉末)EBSD检测试样是获得合金粉末显微组织形貌、结构与取向分布的关键。目前绝大部分EBSD研究工作主要涉及块体材料和薄膜材料,而关于粉体(≤150μm)材料的EBSD研究分析未见报道,这主要由于粉体材料的EBSD试样制备困难。
EBSD检测对检测试样的要求有:(1)样品观察面与载物台之间要有有效的导电连接;(2)样品观察面要求光亮平整;(3)样品观察面至样品内部1~5μm深度范围内无残余应力。
目前,制备粉体EBSD检测试样的方法主要采用树脂(酚醛树脂或导电树脂)镶嵌粉末,对镶嵌后粉末进行打磨、机械抛光、振动抛光,得到EBSD检测试样。其中,采用不导电酚醛树脂镶嵌粉末经振动抛光后需要对样品表面进行镀碳膜处理,为了保证在EBSD检测时有清晰的菊池线条带信号,样品表面所镀碳膜厚度要求小于5nm,而普通镀碳设备无法满足该条件。
中国专利CN107228870A公开了一种硬质合金(WC)粉末EBSD制样方法,将硬质合金粉末和电解Cu粉按一定比例混合,压胚,烧结,得到烧结试样;对烧结试样进行镶嵌、研磨和抛光、表面清洁,得到EBSD试样。该方法预先将硬质合金粉末与铜粉混合、预烧结,该过程会改变粉末原始显微组织,仅适用于高熔点难熔金属及合金;EBSD分析通常要求保持粉末原始显微组织状态,特别是机械合金化粉末/球磨粉末,因此无法采用上述方法制备EBSD试样。
针对以上问题,本发明首次提出了一种采用化学镀镍包埋铁基粉末再进行磨抛、电解抛光的方法,适用于雾化合金粉末和机械合金化粉末的EBSD检测试样的制备。本发明一种铁基合金粉末EBSD检测试样的制备方法,解决了粉末EBSD检测时样品导电性的问题;解决了粉末EBSD检测样品制备过程中抛光困难的问题,高效解决粉末EBSD检测样品表面残余应力的问题;填补了合金粉末EBSD检测试样制备方法的空缺。目前,国内外未见相关研究成果的公开报道。
发明内容
本发明提供了一种铁基合金粉末EBSD检测试样的制备方法。
本发明在开发过程中遇到的关键技术问题有:
(1)铁基合金粉末的镶嵌体系设计
本发明在开发过程中,针对铁基合金粉末设计了多种镶嵌方案,包括物理粘接:树脂冷镶/热镶,电木粉温热镶,快干胶冷粘接,Pb、Sn等低熔点金属熔融粘接;机械混合压制:采用Pb、Sn、Cu、Al等金属粉末混合压制。化学粘接:采用化学元素,包括Fe、Cr、Cu、Al、Ni等化学包埋。
所述的物理粘接,或无法形成有效的界面粘接,导致粉末脱落;或因加热,改变了粉末的状态;或不导电,无法进行有效的表征。
所述的机械混合压制,采用Pb、Sn、Cu等易变形金属粉末混合压制,一方面使铁基合金粉末变形,另一方面粉末之间界面结合强度低,导致粉末脱落,无法完成样品制备。
所述的化学粘接,采用Fe、Cr、Cu、Al、Ni等化学包埋;其中,采用Fe、Cr、Cu、Al等化学镀包埋,一方面难以在铁基粉末表面形成有效沉积,包埋效果差,无法进行电解抛光;采用电镀的方法在铁基粉末表面镀Fe、Cr、Cu、Al,当镀层达到1μm时就发生镀层脱落现象,难以制备符合要求的样品。
针对上述问题,设计了电镀、化学镀等多种工艺方案,以及多种溶液体系,并实施综合实验,最终设计了本发明技术方案,采用Ni进行化学镀包覆。
(2)粉末表面活化
在开发过程中,出现包埋不致密和镀层脱落的现象,最终在化学镀之前对粉末作表面活化预处理,使得粉末表面能和镀层发生紧密的化学结合。
(3)化学镀温度的控制
在开发过程中发现不同温度条件下镀层生成的速度有很大差异,温度过低反应速度过慢,无法产生有效镀层;温度过高反应速度快,会出现镍在溶液中自形核长大,而无法在粉末表面生长。
(4)化学镀时粉末的铺设
在开发过程中发现粉末铺设密度对最终包埋致密度有重大影响,因此要求在包埋前将粉末铺设厚度均匀。
本发明在解决上述问题的过程中逐渐形成本发明的方案以及优化方案。
本发明一种铁基合金粉末EBSD检测试样的制备方法,包括下述步骤:
步骤一
在电解液中,对铁基合金粉末进行电解活化处理;电解活化处理后用无水醇和/或无水甲醇溶液超声清洗,干燥,得到备用粉末;
步骤二
将备用粉末加入到化学包埋溶液中,超声分散;超声分散后,进行A处理;然后再升温至80~92℃、优选88~92℃,反应,得到包覆有镍的铁基合金块;所述A处理为:以静置、搅拌,再静置为一个周期;实施至少一个周期的操作,即完成A处理;所述化学包埋溶液包括下述组分:
氯化镍28-32g/L、优选为30g/L;
次亚磷酸钠15-30g/L;
醋酸钠14-16g/L、优选为15g/L;
柠檬酸钠14-16g/L、优选为15g/L;
丁二酸4-6g/L、优选为5g/L;
氨基乙酸5-15g/L;
丙三醇1-3vol.%;
冰醋酸1-3vol.%、优选为2vol.%;
所述包埋溶液的pH值为3.5~5.4、优选为4.0~5.4;
步骤三
对步骤二所得包覆有镍的铁基合金块进行打磨、电解抛光,得到所述铁基合金粉末EBSD检测试样。
本发明一种铁基合金粉末EBSD检测试样的制备方法,所述铁基合金粉末为气雾化Fe基合金粉末,或机械合金化铁基合金粉末,或经球磨处理的铁基合金粉末。
本发明一种铁基合金粉末EBSD检测试样的制备方法,所述铁基合金粉末的粒度小于等于150μm。
本发明一种铁基合金粉末EBSD检测试样的制备方法,在工业上应用时,步骤一中所述电解活化处理为:将铁基合金粉末装入勺形铜容器电极中,进行电解活化粉末表面,活化后粉末利用无水乙醇和超声波清洗仪清洗并干燥待后续使用。在本发明中,经步骤一处理后,可以实现Ni的化学镀。
本发明一种铁基合金粉末EBSD检测试样的制备方法,步骤一中所述电解液由下述组分构成:高氯酸0.5~1wt%、丙三醇0.05~0.15wt%,余量为无水乙醇或无水甲醇。
本发明一种铁基合金粉末EBSD检测试样的制备方法,步骤一中:电解活化的时间为30-60s、温度为25-30℃。
本发明一种铁基合金粉末EBSD检测试样的制备方法,步骤一中:超声清洗时间为10~15min,其中更换2~3次无水乙醇和/或无水甲醇。
本发明一种铁基合金粉末EBSD检测试样的制备方法,步骤二中:按固液质量比1-3:500,将备用粉末加入到化学包埋溶液中。
本发明一种铁基合金粉末EBSD检测试样的制备方法,步骤二中:所述超声分散时间为10~15min
本发明一种铁基合金粉末EBSD检测试样的制备方法,步骤二中:单次静置的时间为30-60min;搅拌速度为100-120r/min,单次搅拌时间为3-5min;单次再静置的时间为30-60min。通过A处理,实现了粉末在化学镀容器底部的均匀沉积。上述工作为后续升温镀镍得到块体提供了必要条件。
本发明一种铁基合金粉末EBSD检测试样的制备方法,步骤二中:进行A处理后,升温至80~92℃、优选88~92℃,反应2-3.5小时;反应时控制镍的生长速度30~50μm/h。在工业上应用时,当化学包埋溶液成分确定后,通过严格控制温度来控制镍的生长速度。在本发明探索过程中,发现镍太快生成或太慢生成均不利于得到致密的块体,导致无法制备符合要求的EBSD检测样品。
本发明一种铁基合金粉末EBSD检测试样的制备方法,包埋完成后合金块体的尺寸调整成10×10mm,厚度50~200μm。
本发明一种铁基合金粉末EBSD检测试样的制备方法,包覆有镍的铁基合金块利用400~2000目水磨砂纸进行打磨平整,最后采用2000~3000目SiC金相砂纸打磨光亮,样品表面无明显划痕。
本发明一种铁基合金粉末EBSD检测试样的制备方法,步骤三中所述电解抛光溶液为:高氯酸3~10wt%、冰醋酸1~2wt%、磷酸0.5~1wt%、丙三醇1~2wt%,余量为无水甲醇和/或无水乙醇。
本发明一种铁基合金粉末EBSD检测试样的制备方法,所述电解抛光过程以不锈钢板作阴极,尺寸为5×3cm,以待电解抛光的合金试样块为阳极,样品夹具为纯铜,抛光面正对阴极板,恒电压电解,电压3~6V,室温条件电解10~30s,获得用于EBSD检测的粉末试样。
本发明的优点和积极效果:
(1)本发明一种铁基合金粉末EBSD检测试样的制备方法,首次提出利用化学镀镍的方法包埋铁基金属粉末,并利用电解抛光工艺制备铁基粉末EBSD检测试样,解决了无法制备粉末(尤其是铁基金属粉末)EBSD检测样品的问题。
(2)本发明一种铁基合金粉末EBSD检测试样的制备方法,利用电解抛光工艺制备铁基粉末EBSD检测试样,适用于雾化铁基粉末和机械合金化粉末,该工艺能获得平整光亮的样品待测表面,并完全消除粉末EBSD检测样品待测面存在的残余应力,为EBSD检测提供良好的试样。
(3)本发明一种铁基合金粉末EBSD检测试样的制备方法,利用电解法对粉末预先进行表面活化,解决了化学包埋时,包埋金属与粉末表面结合问题。
(4)本发明一种铁基合金粉末EBSD检测试样的制备方法,通过严格控制化学镀镍工艺及沉降方式,得到了结合紧密的致密块体材料,将粉末无损块体化,解决了粉末无法进行电解抛光的问题。
(5)本发明一种铁基合金粉末EBSD检测试样的制备方法,通过严格控制沉降方式、反应温度及包埋反应溶液含量,能有效调控包埋速率,可获得粉末包埋厚度可控的块体材料。
(6)本发明一种铁基合金粉末EBSD检测试样的制备方法,通过选用镍对铁基粉末进行包埋,在电解抛光过程中能对包埋粉末进行有效抛光。
附图说明
图1为本发明实施例1所制备的铁基粉末化学镀镍包埋样品经打磨后试样的OM图像。
图2为本发明实施例1所制备的铁基粉末化学镀镍包埋样品经电解抛光后粉末表面的SEM图像。
图3为本发明实施例1粉末的EBSD图像。
从图1中能看出铁粉被包埋致密,其中打磨光亮的部分不存在空隙,该区域在后续检测中作为主要观察面。
从图2中能看出粉末经电解抛光后,其球磨粉末的层状结构被凸显。
图3为粉末经EBSD检测获得的IPF图像,不同色彩代表粉末晶粒不同取向,其中大尺寸晶粒为本发明所用铁基材料,而细小晶粒区域为包埋镍材料,从IPF图中我们可以获得粉末晶粒尺寸分布和晶粒取向分布。
具体实施方式
实施例1:
首先,称取Fe-14Cr-3W-0.4Ti-0.5Y2O3机械合金化粉末2g,在无水乙醇中利用超声波清洗仪清洗10min,期间更换2次无水乙醇,将清洗完毕的粉末过滤后干燥。然后进行以下操作:
步骤一:将清洗、干燥的粉末装入勺形铜电极中,浸没在活化电解液中,进行电解活化处理,所用活化电解液为:高氯酸0.5%、丙三醇0.1%,余量为无水甲醇,活化30s。电解活化处理后用无水醇和/或无水甲醇溶液超声清洗10min,过滤,干燥,得到备用粉末;
步骤二:将备用粉末加入到化学镀镍溶液中,超声分散10min,所用化学镀镍溶液为:氯化镍30g、次亚磷酸钠15g、醋酸钠15g、柠檬酸钠15g、丁二酸5g、氨基乙酸5g、丙三醇10ml、冰醋酸20ml、蒸馏水970ml,溶液pH=4.0。超声分散后,进行A处理,所用A处理为:超声分散10min,随后静置0.5h,再以100转/min的搅拌速率搅拌3min;然后再静置0.5h。然后将完成A处理后的含有铁基合金粉末的化学镀镍溶液升温至85±5℃;反应2h后获得包覆有镍的铁基合金块,调整金块体尺寸为10×10mm,厚度115μm。
步骤三:对步骤二所得包覆有镍的铁基合金块利用400~2000目水磨砂纸将样品打磨平整,再利用2000目SiC金相砂纸将样品打磨光亮。然后将合金块体浸没在电解液中进行电解抛光,得到Fe-14Cr-3W-0.4Ti-0.5Y2O3机械合金化粉末EBSD检测试样。该步骤所用电解抛光溶液为:高氯酸6ml、冰醋酸2ml、磷酸1ml、丙三醇2ml,无水甲醇89ml;该步骤电解抛光采用合金试样块为阳极,不锈钢板作阴极(尺寸为5×3cm),样品夹具为纯铜,抛光面正对阴极板,恒电压电解,电压3V,室温条件电解15s。
附图1为本实施例所制备的铁基粉末化学镀镍包埋样品经打磨后试样的OM图像。
附图2为本实施例所制备的铁基粉末化学镀镍包埋样品经电解抛光后粉末表面的SEM图像。其中出现花纹状凸起为球磨粉末由多个粉末冷焊造成的。
附图3为本实施例粉末的EBSD图像。
实施例2:
首先,称取Fe-14Cr-3W-0.4Ti-1Y2O3机械合金化粉末2g,在无水乙醇中利用超声波清洗仪清洗10min,期间更换2次无水乙醇,将清洗完毕的粉末过滤后干燥。然后进行以下操作:
步骤一:将清洗、干燥的粉末装入勺形铜电极中,浸没在活化电解液中,进行电解活化处理,所用活化电解液为:高氯酸1%、丙三醇0.1%,余量为无水甲醇,活化60s。电解活化处理后用无水醇和/或无水甲醇溶液超声清洗10min,过滤,干燥,得到备用粉末;
步骤二:将备用粉末加入到化学镀镍溶液中,超声分散10min,所用化学镀镍溶液为:氯化镍28g、次亚磷酸钠15g、醋酸钠14g、柠檬酸钠14g、丁二酸4g、氨基乙酸4g、丙三醇10ml、冰醋酸20ml、蒸馏水970ml,溶液pH=5.4。超声分散后,进行A处理,所用A处理为:超声分散10min,随后静置0.5h,再以100转/min的搅拌速率搅拌3min;然后再静置0.5h。然后将完成A处理后的含有铁基合金粉末的化学镀镍溶液升温至85±5℃;反应1h后获得包覆有镍的铁基合金块,调整金块体尺寸为10×10mm,厚度45μm。
步骤三:对步骤二所得包覆有镍的铁基合金块利用400~2000目水磨砂纸将样品打磨平整,再利用2000目SiC金相砂纸将样品打磨光亮。然后将合金块体浸没在电解液中进行电解抛光,得到Fe-14Cr-3W-0.4Ti-1Y2O3机械合金化粉末EBSD检测试样。该步骤所用电解抛光溶液为:高氯酸6ml、冰醋酸2ml、磷酸1ml、丙三醇2ml,无水甲醇89ml;该步骤电解抛光采用合金试样块为阳极,不锈钢板作阴极(尺寸为5×3cm),样品夹具为纯铜,抛光面正对阴极板,恒电压电解,电压6V,室温条件电解20s。
对比例1:
首先,称取Fe-14Cr-3W-0.4Ti-0.25Y2O3机械合金化粉末2g,在无水乙醇中利用超声波清洗仪清洗10min,期间更换2次无水乙醇,将清洗完毕的粉末过滤后干燥。然后进行以下操作:
步骤一:将备用粉末加入到化学镀镍溶液中,超声分散10min,所用化学镀镍溶液为:氯化镍30g、次亚磷酸钠15g、醋酸钠15g、柠檬酸钠15g、丁二酸5g、氨基乙酸5g、丙三醇10ml、冰醋酸20ml、蒸馏水970ml,溶液pH=4.0。超声分散后,进行A处理,所用A处理为:超声分散10min,随后静置0.5h,再以100转/min的搅拌速率搅拌3min;然后再静置0.5h。然后将完成A处理后的含有铁基合金粉末的化学镀镍溶液升温至85±5℃;反应2h。
由于没有对粉末进行活化处理,在包埋过程中粉末无法结块,反应2h后仍是松散粉末,包埋失败。
对比例2:
首先,称取Fe-14Cr-3W-0.4Ti-1Y2O3机械合金化粉末2g,在无水乙醇中利用超声波清洗仪清洗10min,期间更换2次无水乙醇,将清洗完毕的粉末过滤后干燥。然后进行以下操作:
步骤一:将清洗、干燥的粉末装入勺形铜电极中,浸没在活化电解液中,进行电解活化处理,所用活化电解液为:高氯酸0.5%、丙三醇0.1%,余量为无水甲醇,活化30s。电解活化处理后用无水醇和/或无水甲醇溶液超声清洗10min,过滤,干燥,得到备用粉末;
步骤二:将备用粉末加入到化学镀镍溶液中,超声分散10min,随后静置0.5h。所用化学镀镍溶液为:氯化镍30g、次亚磷酸钠15g、醋酸钠15g、柠檬酸钠15g、丁二酸5g、氨基乙酸5g、丙三醇10ml、冰醋酸20ml、蒸馏水970ml,溶液pH=4.0。将含有铁基合金粉末的化学镀镍溶液升温至85±5℃;反应4h。
由于没有对含有铁基合金粉末的化学镀镍溶液进行多道次搅拌、静置,所得粉末铺设不均匀,即使反应4h也没有形成致密包埋金属块,包埋失败。
对比例3:
首先,称取Fe-14Cr-3W-0.4Ti-0.5Y2O3机械合金化粉末2g,在无水乙醇中利用超声波清洗仪清洗10min,期间更换2次无水乙醇,将清洗完毕的粉末过滤后干燥。然后进行以下操作:
步骤一:将清洗、干燥的粉末装入勺形铜电极中,浸没在活化电解液中,进行电解活化处理,所用活化电解液为:高氯酸0.5%、丙三醇0.1%,余量为无水甲醇,活化30s。电解活化处理后用无水醇和/或无水甲醇溶液超声清洗10min,过滤,干燥,得到备用粉末;
步骤二:将备用粉末加入到化学镀镍溶液中,超声分散10min,所用化学镀镍溶液为:氯化镍30g、次亚磷酸钠15g、醋酸钠15g、柠檬酸钠15g、丁二酸5g、氨基乙酸5g、丙三醇10ml、冰醋酸20ml、蒸馏水970ml,溶液pH=4.0。超声分散后,进行A处理,所用A处理为:超声分散10min,随后静置0.5h,再以100转/min的搅拌速率搅拌3min;然后再静置0.5h。然后将完成A处理后的含有铁基合金粉末的化学镀镍溶液升温至95±5℃;反应2h后获得包覆有镍的铁基合金块,调整金块体尺寸为10×10mm,厚度132μm。
步骤三:对步骤二所得包覆有镍的铁基合金块利用400~2000目水磨砂纸将样品打磨平整,在打磨过程中样品破碎。
由于包埋温度过高,粉末样品表面镀层松散,粉末之间有大量孔隙,在打磨过程中粉末均从包埋基体上脱落,最终导致样品破碎。

Claims (10)

1.一种铁基合金粉末EBSD检测试样的制备方法,其特征在于:包括下述步骤:
步骤一
在电解液中,对铁基合金粉末进行电解活化处理;电解活化处理后用无水乙醇和/或无水甲醇溶液超声清洗,干燥,得到备用粉末;
步骤二
将备用粉末加入到化学包埋溶液中,超声分散;超声分散后,进行A处理;然后再升温至80~92℃,反应,得到包覆有镍的铁基合金块;所述A处理为:以静置、搅拌,再静置为一个周期;实施至少一个周期的操作,即完成A处理;所述化学包埋溶液包括下述组分:
氯化镍 28-32g/L;
次亚磷酸钠 15-30g/L;
醋酸钠 14-16g/L;
柠檬酸钠 14-16g/L;
丁二酸 4-6g/L;
氨基乙酸 5-15g/L;
丙三醇 1-3vol.%;
冰醋酸 1-3vol.%;
所述包埋溶液的pH值为3.5~5.4;
步骤三
对步骤二所得包覆有镍的铁基合金块进行打磨、电解抛光,得到所述铁基合金粉末EBSD检测试样。
2.根据权利要求1所述的一种铁基合金粉末EBSD检测试样的制备方法,其特征在于:所述铁基合金粉末为气雾化Fe基合金粉末,或机械合金化铁基合金粉末,或经球磨处理的铁基合金粉末。
3.根据权利要求1所述的一种铁基合金粉末EBSD检测试样的制备方法,其特征在于:所述铁基合金粉末的粒度小于等于150μm。
4.根据权利要求1所述的一种铁基合金粉末EBSD检测试样的制备方法,其特征在于:
步骤一中所述电解活化处理为:将铁基合金粉末装入勺形铜容器电极中,进行电解活化粉末表面,活化后粉末利用无水乙醇和超声波清洗仪清洗并干燥待后续使用;
步骤一中所述电解液由下述组分构成:高氯酸0.5~1wt%、丙三醇0.05~0.15wt%,余量为无水乙醇或无水甲醇;
步骤一中,电解活化的时间为30-60s、温度为25-30℃;
步骤一中,超声清洗时间为10~15min,其中更换2~3次无水乙醇和/或无水甲醇。
5.根据权利要求1所述的一种铁基合金粉末EBSD检测试样的制备方法,其特征在于:
步骤二中:按固液质量比1-3:500;将备用粉末加入到化学包埋溶液中;
步骤二中:所述超声分散时间为10~15min。
6.根据权利要求1所述的一种铁基合金粉末EBSD检测试样的制备方法,其特征在于:步骤二中,单次静置的时间为30-60min;搅拌时,搅拌速度为100-120r/min单次搅拌时间为3-5min;单次再静置的时间为30-60min。
7.根据权利要求1所述的一种铁基合金粉末EBSD检测试样的制备方法,其特征在于:步骤二中,进行A处理后,升温至88~92℃,反应2-3.5小时;反应时控制镍的生长速度30~50μm/h。
8.根据权利要求1所述的一种铁基合金粉末EBSD检测试样的制备方法,其特征在于:包埋完成后合金块体的尺寸调整成10×10mm,厚度50~200μm;然后利用400~2000目水磨砂纸进行打磨平整,最后采用2000~3000目SiC金相砂纸打磨光亮,样品表面无明显划痕。
9.根据权利要求1所述的一种铁基合金粉末EBSD检测试样的制备方法,其特征在于:步骤三中,所述电解抛光溶液为:高氯酸3~10wt%、冰醋酸1~2wt%、磷酸0.5~1wt%、丙三醇1~2wt%,余量为无水甲醇和/或无水乙醇。
10.根据权利要求1所述的一种铁基合金粉末EBSD检测试样的制备方法,其特征在于:步骤三中,所述电解抛光过程以不锈钢板作阴极,尺寸为5×3cm,以待电解抛光的合金试样块为阳极,样品夹具为纯铜,抛光面正对阴极板,恒电压电解,电压3~6V,室温条件电解10~30s,获得所述的粉末EBSD检测试样。
CN201810846725.0A 2018-07-27 2018-07-27 一种铁基合金粉末ebsd检测试样的制备方法 Active CN109030148B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810846725.0A CN109030148B (zh) 2018-07-27 2018-07-27 一种铁基合金粉末ebsd检测试样的制备方法
US17/260,560 US20210270706A1 (en) 2018-07-27 2018-08-30 Preparation method for iron-based alloy powder ebsd test sample
PCT/CN2018/103114 WO2020019400A1 (zh) 2018-07-27 2018-08-30 一种铁基合金粉末ebsd检测试样的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810846725.0A CN109030148B (zh) 2018-07-27 2018-07-27 一种铁基合金粉末ebsd检测试样的制备方法

Publications (2)

Publication Number Publication Date
CN109030148A true CN109030148A (zh) 2018-12-18
CN109030148B CN109030148B (zh) 2020-09-29

Family

ID=64646317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810846725.0A Active CN109030148B (zh) 2018-07-27 2018-07-27 一种铁基合金粉末ebsd检测试样的制备方法

Country Status (3)

Country Link
US (1) US20210270706A1 (zh)
CN (1) CN109030148B (zh)
WO (1) WO2020019400A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916941A (zh) * 2019-03-25 2019-06-21 苏州大学 一种预混合粉末3d打印分离检测方法
CN112505075A (zh) * 2020-11-23 2021-03-16 江苏理工学院 一种用于电子背散射衍射检测的铜铬铌合金的电解抛光方法
CN112697825A (zh) * 2020-12-18 2021-04-23 中国科学院金属研究所 一种Ti2AlNb合金粉末的EBSD样品制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621841B (zh) * 2020-05-21 2022-05-10 南京理工大学 一种基于TiAl单晶EBSD样品的电解抛光液及其电解方法
CN113758784A (zh) * 2021-09-06 2021-12-07 湘潭大学 一种应用于铁基基体镍基涂层金相腐蚀液及腐蚀方法
CN113933327A (zh) * 2021-09-08 2022-01-14 华中科技大学 一种微球ebsd样品的制备方法
CN114088502A (zh) * 2021-10-20 2022-02-25 包头钢铁(集团)有限责任公司 一种冷轧取向硅钢ebsd用样品电解抛光制样方法
CN113960082A (zh) * 2021-11-08 2022-01-21 东北大学 一种热轧带钢氧化铁皮ebsd分析的制样方法
CN114324426B (zh) * 2022-01-17 2024-03-01 西安石油大学 一种高温合金ebsd测试试样的处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128752A (ja) * 1992-10-14 1994-05-10 Nippon Chem Ind Co Ltd ニッケル合金めっき粉末及びその製造方法
CN1420349A (zh) * 2002-07-12 2003-05-28 北京科技大学 一种用于透射电镜观察的化学沉积镍固定合金粉末制样方法
CN104999077A (zh) * 2015-08-05 2015-10-28 北京科技大学 一种高比重合金用复合粉体及其制备方法
CN105506592A (zh) * 2015-12-11 2016-04-20 天津爱田汽车部件有限公司 一种铝合金粉末表面镀镍的方法
CN107121316A (zh) * 2017-03-22 2017-09-01 华南理工大学 一种微米级镍基高温合金粉末透射电镜薄膜样品的制备方法
CN107228870A (zh) * 2017-06-05 2017-10-03 株洲钻石切削刀具股份有限公司 一种硬质合金粉末ebsd制样方法
CN107402150A (zh) * 2017-07-24 2017-11-28 东北大学 一种钛铝基合金ebsd分析用样品的电解抛光制备方法
CN108106913A (zh) * 2017-11-20 2018-06-01 东北大学 一种用于EBSD测试的Al-Si合金OPS抛光制样的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296286B (zh) * 2011-08-17 2013-06-19 程绍鹏 一种长效纳微米复合层合成液及其制备方法
CN102721715A (zh) * 2012-06-07 2012-10-10 山西太钢不锈钢股份有限公司 一种双相不锈钢晶粒组织显示方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128752A (ja) * 1992-10-14 1994-05-10 Nippon Chem Ind Co Ltd ニッケル合金めっき粉末及びその製造方法
CN1420349A (zh) * 2002-07-12 2003-05-28 北京科技大学 一种用于透射电镜观察的化学沉积镍固定合金粉末制样方法
CN104999077A (zh) * 2015-08-05 2015-10-28 北京科技大学 一种高比重合金用复合粉体及其制备方法
CN105506592A (zh) * 2015-12-11 2016-04-20 天津爱田汽车部件有限公司 一种铝合金粉末表面镀镍的方法
CN107121316A (zh) * 2017-03-22 2017-09-01 华南理工大学 一种微米级镍基高温合金粉末透射电镜薄膜样品的制备方法
CN107228870A (zh) * 2017-06-05 2017-10-03 株洲钻石切削刀具股份有限公司 一种硬质合金粉末ebsd制样方法
CN107402150A (zh) * 2017-07-24 2017-11-28 东北大学 一种钛铝基合金ebsd分析用样品的电解抛光制备方法
CN108106913A (zh) * 2017-11-20 2018-06-01 东北大学 一种用于EBSD测试的Al-Si合金OPS抛光制样的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DRBKJ32042: "金属试样电解抛光、腐蚀规则", 《豆丁网》 *
王连伟等: "金属粉末制备透射电镜薄膜样品的方法", 《物理测试》 *
闫操等: "化学镀法制备包覆型铁基复合粉末及其烧结过程", 《稀有金属材料与工程》 *
黎德育等: "粉体上的化学镀镍", 《材料科学与工艺》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916941A (zh) * 2019-03-25 2019-06-21 苏州大学 一种预混合粉末3d打印分离检测方法
CN109916941B (zh) * 2019-03-25 2021-04-30 苏州大学 一种预混合粉末3d打印分离检测方法
CN112505075A (zh) * 2020-11-23 2021-03-16 江苏理工学院 一种用于电子背散射衍射检测的铜铬铌合金的电解抛光方法
CN112697825A (zh) * 2020-12-18 2021-04-23 中国科学院金属研究所 一种Ti2AlNb合金粉末的EBSD样品制备方法

Also Published As

Publication number Publication date
CN109030148B (zh) 2020-09-29
WO2020019400A1 (zh) 2020-01-30
US20210270706A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
CN109030148A (zh) 一种铁基合金粉末ebsd检测试样的制备方法
JP2002515090A (ja) 非晶質で微晶質のニッケル−タングステン被膜の電着
CN104232967B (zh) 一种少粘结相碳化钨硬质合金的制备方法
CN102146573A (zh) 超临界流体电铸成型制备纳米复合材料的方法
Lv et al. Electrodeposition of nanocrystalline nickel assisted by flexible friction from an additive-free Watts bath
CN109023250A (zh) 一种镀镍金刚石及其生产工艺
JPH0570718B2 (zh)
CN103361615B (zh) 金刚石表面双阴极等离子沉积纳米涂层的装备与工艺
Huang et al. Fabrication and evaluation of electroplated diamond grinding rods strengthened with Cr-C deposit
JP4764330B2 (ja) 複合めっき製品及びその製造方法
CN103543054B (zh) 一种带或未带氧化层的金相试样的制样方法
CN108181308A (zh) 金属粉末的金相组织显示方法
CN104862764A (zh) 强韧化镍-纳米金刚石复合电沉积镀液及镀层的制备方法
CN109440146A (zh) 一种基于无氰体系的银-碳化钛复合镀层及其制备方法
JP2009191291A (ja) 自己潤滑性皮膜を有するセラミックス構造体及びその製造方法
CN101255592A (zh) 一种铬/金刚石复合镀层及其制备方法
CN108103422A (zh) 一种镀Cu短碳纤维增强Cu基复合材料
CN101654803A (zh) 获得耐磨损、抗高温氧化纳米复合镀层的复合镀液和电镀方法
Zhou et al. Preparation of Al2O3 coating on Nb fiber and the effect on interfacial microstructure of Nbf/TiAl composite
CN100376719C (zh) 一种金刚石表面镀钛镀镍镀银复合结构及制造方法
CN109183079A (zh) 一种高自锐性金属基金刚石切割片的制备方法
Yehia et al. Microstructure and physical properties of blended and coated (Ta, Nb) C/Ni cermets
CN110408966B (zh) 一种扩散合成镍合金化Fe3Si复合层增强钢材表面综合性能的方法
US8673445B2 (en) Composite-plated article and method for producing same
CN103736995B (zh) 一种用表面镀锡的磁粉热模压制备复合磁体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant