CN109023432A - 一种电解熔融二氧化钛制备钛铝合金的方法及电解装置 - Google Patents

一种电解熔融二氧化钛制备钛铝合金的方法及电解装置 Download PDF

Info

Publication number
CN109023432A
CN109023432A CN201811172652.8A CN201811172652A CN109023432A CN 109023432 A CN109023432 A CN 109023432A CN 201811172652 A CN201811172652 A CN 201811172652A CN 109023432 A CN109023432 A CN 109023432A
Authority
CN
China
Prior art keywords
titanium
aluminium alloy
electrolytic cell
anode
anode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811172652.8A
Other languages
English (en)
Inventor
陈建立
王冬花
贺高峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longmang Group Ltd By Share Ltd Billions
Original Assignee
Longmang Group Ltd By Share Ltd Billions
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longmang Group Ltd By Share Ltd Billions filed Critical Longmang Group Ltd By Share Ltd Billions
Priority to CN201811172652.8A priority Critical patent/CN109023432A/zh
Publication of CN109023432A publication Critical patent/CN109023432A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/36Alloys obtained by cathodic reduction of all their ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本发明涉及种电解熔融二氧化钛制备钛铝合金的方法,包括电解质制备,去杂提纯,电解作业及钛铝合金加工等四个步骤。本发明与现有的电解法制备钛铝合金的工艺技术相比,本发明和传统的以金属钛为原料制备钛铝合金的工艺相比,本发明以TiO2为原料,降低了原料成本,后期不需要复杂的除杂工序并有利于TiO2中氧脱除,有助于提高电解反应的效率。

Description

一种电解熔融二氧化钛制备钛铝合金的方法及电解装置
技术领域
本发明涉及一种电解熔融二氧化钛制备钛铝合金的方法及电解装置,属于化工冶金领域。
背景技术
钛铝合金具有低密度和优良的力学性能,是航空航天领域广泛使用的金属材料,因而钛铝合金的加工及利用也越来越受到人们的重视。钛铝合金在700~900℃范围内的比强度要优于钛合金以及传统的镍基高温合金,在设计上可以实现结构减重,减少支撑件的负荷。钛铝合金比航空发动机其他常用结构材料的比刚性高约50%,可制造高压压气叶片和低压涡轮叶片。而且其阻燃能力良好,可代替一些昂贵的阻燃设计用钛合金。钛铝合金在化工、医疗、能源中的应用范围也在不断扩大,我们的日常生活中的钛铝合金制品也慢慢变多,比如体育用品、珠宝首饰等。钛铝合金无论在航空工业、化学工业、医疗等领域都有广阔的应用前景,其加工利用的环保、节能、低成本化亦是人们关注的重点。
传统的钛铝合金的加工方法有铸造、铸锭冶金、粉末冶金等,均采用纯钛金属与铝金属进行合成与加工,由于金属钛的制备成本高,导致金属钛价格昂贵,以至于以纯金属钛为原料的钛铝合金制备成本非常高,难以实现长久地发展及大规模生产。研究者们便开始转换方向,研究低成本的钛铝合金制备工艺,被采用的原料主要有钛铁矿、废钛以及钛的氯化物、氧化物等,报道最多的加工方法是在熔盐介质中制备钛铝基合金。例如专利CN104625081A-2公开了一种以熔盐法制备钛铝合金粉末的方法,该方法是以铝粉和钛粉为原料,在350~650℃的液态熔盐介质中进行合成,实现了在较低温度的熔盐介质中制备钛铝合金。高玉璞等用废钛为可熔阳极,在碱金属氧化物熔盐体系中电解制取钛铝合金粉,产品存在较多缺点,铝含量不均匀,受工艺操作的影响大,质量不稳定,不能满足制造要求。攀钢集团在专利CN201410364760.0中公开以钛为阳极,液态铝为阴极,在NaCl-KCl和可溶性钛盐中电解得到了海绵状钛铝合金,制备过程中需要先将铝块置于石墨坩埚底部,铝块上铺放熔盐,加热到一定温度后铝块熔融开始合金化,但该过程不能实现钛铝合金的连续制备。在专利CN200910198192.0中,鲁雄刚等人公开了一种由钛精矿粉直接制备钛系合金的方法,该方法采用的是熔盐电解法,在氯化钙熔盐电解质中电解阴极攀枝花钛精矿,得到了钛系合金。利用钛精矿直接制备钛合金,虽然大大降低了成本,但会导致后续除杂工艺复杂,钛合金杂质去除不彻底,不能满足制造要求。
借鉴各种钛铝合金的制备工艺,并总结各个工艺的优点与不足,本发明形成了具有一定独特性的钛铝合金制备方法,旨在以较低成本制备杂质含量低的钛铝合金。
发明内容
本发明目的就在于克服上述不足,提供一种电解熔融二氧化钛制备钛铝合金的方法及电解装置。本发明为解决上述技术问题所采用的技术方案是:
为实现上述目的,本发明是通过以下技术方案来实现:
一种电解熔融二氧化钛制备钛铝合金的方法,包括以下步骤:
S1,电解质制备,将配置好的熔盐电解质盐在270~350℃下进行10~15h的脱水处理后,迅速转移至电解槽内,并用高纯氩气进行保护;
S2,去杂提纯,在10—15分钟内,将电解槽内部匀速升温至1000~1100℃并保温,然后在2~3V电压下对电解质进行预电解10—50分钟,去除熔盐中含有的杂质;
S3,电解作业,将充分干燥的TiO2粉持续匀速添加到熔盐电解质内,并保持电解槽内TiO2与熔盐电解质之间比例恒定在1:3—10,然后将电解槽进行匀速升温,当温度升高至1000~1200℃后并保温,将电解槽的阳极装置插入电解池中开始电解反应,且电解电压为3~4.5V,且每电解时间为1—10小时后,均使电解槽底部聚集的钛铝合金从电解槽底部排出;
S4,钛铝合金加工,将S3步骤中收集到的钛铝合金通过电子束冷床炉进行再加工,即可得到钛铝合金成品。
进一步的,所述的熔盐电解质为氟钛酸钾、氯化钾、氯化镁、氯化钠的中的任意一种或任意两种以任意比例混合使用。
进一步的,所述的S3中的阳极装置为碳饱和的液态铜或铜合金及与其并联的金属铝棒和镍铝合金中的任意一种。
进一步的,所述的S3中的阳极装置为碳饱和的液态铜或铜合金及与其并联的金属铝棒时,碳饱和的液态铜或铜合金阳极盛放在钇稳定氧化锆透氧膜管内。
进一步的,所述的S3中的阳极装置,在电解槽内剩余量为所述的S3中的阳极装置为初始量10%—30%时即需对阳极装置进行更换,且更换作业中,待新更换的阳极装置处于运行状态后再将原阳极装置剩余部分从电解槽中拆除。
一种用于实现权利要求1所述电解熔融二氧化钛制备钛铝合金的电解槽,包括电解槽体、阳极装置、阴极装置、电解电极及导线,其中电解槽体为横断面为矩形的密闭腔体结构,其上端面设加料口、阳极定位口及过线孔,侧壁下端位置设至少一个出料口,加料口、阳极定位口、过线孔及出料口处均设密封端盖,且密封端盖均与电解槽体外表面连接,阳极装置通过阳极定位口嵌于电解槽体内,且阳极装置有效长度的10%—30%部分位于电解槽体外,阴极装置嵌于电解槽体内并均布在电解槽体底部和侧壁上,阳极装置、阴极装置均通过导线与电解电极相互电气连接。
进一步的,所述的阴极装置材质为钇稳定氧化锆,为厚度不低于10毫米的板状结构,并包覆在电解槽体底部及侧壁内表面。
与现有的电解法制备钛铝合金的工艺技术相比,本发明的优点在于:
(1)和传统的以金属钛为原料制备钛铝合金的工艺相比,本发明以TiO2为原料,降低了原料成本。
(2)本发明中由于原料中杂质含量少,后期不需要复杂的除杂工序。
(3)有利于TiO2中氧脱除,有助于提高电解反应的效率。
附图说明
图1为本发明方法流程图;
图2为制备钛铝合金的电解槽结构示意图。
具体实施方式
实施例1
如图1所示一种电解熔融二氧化钛制备钛铝合金的方法,包括以下步骤:
S1,电解质制备,将配置好的熔盐电解质盐在270℃下进行10h的脱水处理后,迅速转移至电解槽内,并用高纯氩气进行保护,其中脱水后的熔盐电解质含水量不大于3%,氩气气压为1.5倍标准大气压;
S2,去杂提纯,在10分钟内,将电解槽内部匀速升温至1000℃并保温,然后在2电压下对电解质进行预电解50分钟,去除熔盐中含有的杂质;
S3,电解作业,将充分干燥的TiO2粉持续匀速添加到熔盐电解质内,并保持电解槽内TiO2与熔盐电解质之间比例恒定在1:3,然后将电解槽进行匀速升温,当温度升高至1000℃后并保温,将电解槽的阳极装置插入电解池中开始电解反应,且电解电压为3V,且每电解时间为10小时后,均使电解槽底部聚集的钛铝合金从电解槽底部排出;
S4,钛铝合金加工,将S3步骤中收集到的钛铝合金通过电子束冷床炉进行再加工,即可得到钛铝合金成品。
本实施例中,所述的熔盐电解质为氟钛酸钾。
本实施例中,所述的S3中的阳极装置为碳饱和的液态铜或铜合金及与其并联的金属铝棒,且碳饱和的液态铜或铜合金阳极盛放在钇稳定氧化锆透氧膜管内。
本实施例中,所述的S3中的阳极装置,在电解槽内剩余量为所述的S3中的阳极装置为初始量10%时即需对阳极装置进行更换,且更换作业中,待新更换的阳极装置处于运行状态后再将原阳极装置剩余部分从电解槽中拆除。
实施例2
如图1所示,一种电解熔融二氧化钛制备钛铝合金的方法,包括以下步骤:
S1,电解质制备,将配置好的熔盐电解质盐在350℃下进行15h的脱水处理后,迅速转移至电解槽内,并用高纯氩气进行保护,其中脱水后的熔盐电解质含水量不大于3%,氩气气压为3倍标准大气压;
S2,去杂提纯,在15分钟内,将电解槽内部匀速升温至1100℃并保温,然后在3V电压下对电解质进行预电解10分钟,去除熔盐中含有的杂质;
S3,电解作业,将充分干燥的TiO2粉持续匀速添加到熔盐电解质内,并保持电解槽内TiO2与熔盐电解质之间比例恒定在1: 10,然后将电解槽进行匀速升温,当温度升高至1200℃后并保温,将电解槽的阳极装置插入电解池中开始电解反应,且电解电压为4.5V,且每电解时间为1小时后,均使电解槽底部聚集的钛铝合金从电解槽底部排出;
S4,钛铝合金加工,将S3步骤中收集到的钛铝合金通过电子束冷床炉进行再加工,即可得到钛铝合金成品。
本实施例中,所述的熔盐电解质为氟钛酸钾、氯化钾以1:1.5比例混合。
本实施例中,所述的S3中的阳极装置为镍铝合金中的任意一种。
进一步的,所述的S3中的阳极装置,在电解槽内剩余量为所述的S3中的阳极装置为初始量30%时即需对阳极装置进行更换,且更换作业中,待新更换的阳极装置处于运行状态后再将原阳极装置剩余部分从电解槽中拆除。
实施例3
如图1所示,一种电解熔融二氧化钛制备钛铝合金的方法,包括以下步骤:
S1,电解质制备,将配置好的熔盐电解质盐在300℃下进行13h的脱水处理后,迅速转移至电解槽内,并用高纯氩气进行保护,其中脱水后的熔盐电解质含水量不大于3%,氩气气压为5倍标准大气压;
S2,去杂提纯,在12分钟内,将电解槽内部匀速升温至1050℃并保温,然后在2.5V电压下对电解质进行预电解30分钟,去除熔盐中含有的杂质;
S3,电解作业,将充分干燥的TiO2粉持续匀速添加到熔盐电解质内,并保持电解槽内TiO2与熔盐电解质之间比例恒定在1:5,然后将电解槽进行匀速升温,当温度升高至1060℃后并保温,将电解槽的阳极装置插入电解池中开始电解反应,且电解电压为4V,且每电解时间为3小时后,均使电解槽底部聚集的钛铝合金从电解槽底部排出;
S4,钛铝合金加工,将S3步骤中收集到的钛铝合金通过电子束冷床炉进行再加工,即可得到钛铝合金成品。
本实施例中,所述的熔盐电解质为氯化镁、氯化钠以1:2.5比例混合。
本实施例中,所述的S3中的阳极装置为镍铝合金。
本实施例中,所述的S3中的阳极装置,在电解槽内剩余量为所述的S3中的阳极装置为初始量15%时即需对阳极装置进行更换,且更换作业中,待新更换的阳极装置处于运行状态后再将原阳极装置剩余部分从电解槽中拆除。
实施例4
S1,电解质制备,选取氟钛酸钾、氯化钾、氯化镁制成混合熔盐电解质,KCl与MgCl2质量配比为1.1:1,KCl-MgCl2与氟钛酸钾的质量配比为40:1,将配置好的熔盐在300℃下进行12h的脱水处理后,迅速转移至上述特制的电解槽内,并用高纯氩气进行实验保护。
S2,去杂提纯,当温度升至1000℃范围内时,在2.5V电压下进行预电解,去除熔盐中含有的杂质。
S3,电解作业,将充分干燥的TiO2粉加入熔盐电解质内,并将电解槽置于加热炉内进行升温,当温度升高至1100℃时,将(1)中所述的双阳极装置插入电解池中开始电解反应,电解电压3.8V。
S4,钛铝合金加工,电解过程中阳极金属铝不断熔于熔盐中,TiO2粉也不断被消耗,电解一段时间后更换金属阳极,电解1~2h后向熔盐中添加TiO2粉。随着反应的进行,生成的钛铝合金在电解槽底部积聚,电解反应一段时间之后将其从电解槽底部放出,然后对收集到的钛铝合金经过电子束冷床炉的再加工,制得钛铝含量不同的钛铝合金。
实施例5:
S1,电解质制备,选取氟钛酸钾、氯化钾制成二元混合熔盐电解质,氯化钾与氟钛酸钾的质量配比为45:1,将配置好的熔盐在270℃下进行15h的脱水处理后,迅速转移至上述特制的电解槽内,并用高纯氩气进行实验保护。
S2,去杂提纯,当温度升至1050℃范围内时,在2.5V电压下进行预电解,去除熔盐中含有的杂质。
S3,电解作业,将充分干燥的TiO2粉加入熔盐电解质内,并将电解槽置于加热炉内进行升温,当温度升高至1150℃时,将(1)中所述的双阳极装置插入电解池中开始电解反应,电解电压3.2V。
S4,钛铝合金加工,电解过程中阳极金属铝不断熔于熔盐中,TiO2粉也不断被消耗,电解一段时间后更换金属阳极,电解1~2h后向熔盐中添加TiO2粉。随着反应的进行,生成的钛铝合金在电解槽底部积聚,电解反应一段时间之后将其从电解槽底部放出,然后对收集到的钛铝合金经过电子束冷床炉的再加工,制得钛铝含量不同的钛铝合金。
实施例6
S1,电解质制备,选取氟钛酸钾、氯化钾、氯化钠制成混合熔盐电解质,KCl与NaCl质量配比为1:1.2,KCl-NaCl与氟钛酸钾的质量配比为50:1,将配置好的熔盐在310℃下进行15h的脱水处理后,迅速转移至上述特制的电解槽内,并用高纯氩气进行实验保护。
S2,去杂提纯,当温度升至1000℃范围内时,在2.5V电压下进行预电解,去除熔盐中含有的杂质。
S3,电解作业,将充分干燥的TiO2粉加入熔盐电解质内,并将电解槽置于加热炉内进行升温,当温度升高至1150℃时,将(1)中所述的双阳极装置插入电解池中开始电解反应,电解电压3.5V。
S4,钛铝合金加工,电解过程中阳极金属铝不断熔于熔盐中,TiO2粉也不断被消耗,电解一段时间后更换金属阳极,电解1~2h后向熔盐中添加TiO2粉。随着反应的进行,生成的钛铝合金在电解槽底部积聚,电解反应一段时间之后将其从电解槽底部放出,然后对收集到的钛铝合金经过电子束冷床炉的再加工,制得钛铝含量不同的钛铝合金。
实施例7
S1,电解质制备,选取氟钛酸钾、氯化钾制成二元混合熔盐电解质,氯化钾与氟钛酸钾的质量配比为40:1,将配置好的熔盐在300℃下进行15h的脱水处理后,迅速转移至上述特制的电解槽内,并用高纯氩气进行实验保护。
S2,去杂提纯,当温度升至1050℃范围内时,在2.5V电压下进行预电解,去除熔盐中含有的杂质。
S3,电解作业,将充分干燥的TiO2粉加入熔盐电解质内,并将电解槽置于加热炉内进行升温,当温度升高至1150℃时,将(1)中所述的镍铝合金极装置(图2所示)插入电解池中开始电解反应,电解电压4.0V。
S4,钛铝合金加工,电解过程中镍铝合金阳极中的金属铝不断熔于熔盐中,TiO2粉也不断被消耗,电解一段时间后更换阳极,电解1~2h后向熔盐中添加TiO2粉。随着反应的进行,生成的钛铝合金在电解槽底部积聚,电解反应一段时间之后将其从电解槽底部放出。
E.收集到的钛铝合金经过电子束冷床炉的再加工,制得钛铝含量不同的钛铝合金。
如图2所示,一种用于实现电解熔融二氧化钛制备钛铝合金的电解槽,包括电解槽体1、阳极装置2、阴极装置3、电解电极4及导线5,其中电解槽体1为横断面为矩形的密闭腔体结构,其上端面设加料口6、阳极定位口7及过线孔8,侧壁下端位置设至少一个出料口9,加料口6、阳极定位口7、过线孔8及出料口9处均设密封端盖10,且密封端盖10均与电解槽体1外表面连接,阳极装置2通过阳极定位口7嵌于电解槽体1内,且阳极装置2有效长度的10%—30%部分位于电解槽体1外,阴极装置3嵌于电解槽体1内并均布在电解槽体1底部和侧壁上,阳极装置2、阴极装置3均通过导线5与电解电极4相互电气连接。
本实施例中,所述的阴极装置3材质为钇稳定氧化锆,为厚度不低于10毫米的板状结构,并包覆在电解槽体1底部及侧壁内表面。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.一种电解熔融二氧化钛制备钛铝合金的方法,其特征在于:所述的电解熔融二氧化钛制备钛铝合金的方法包括以下步骤:
S1,电解质制备,将配置好的熔盐电解质盐在270~350℃下进行10~15h的脱水处理后,迅速转移至电解槽内,并用高纯氩气进行保护;
S2,去杂提纯,在10—15分钟内,将电解槽内部匀速升温至1000~1100℃并保温,然后在2~3V电压下对电解质进行预电解10—50分钟,去除熔盐中含有的杂质;
S3,电解作业,将充分干燥的TiO2粉持续匀速添加到熔盐电解质内,并保持电解槽内TiO2与熔盐电解质之间比例恒定在1:3—10,然后将电解槽进行匀速升温,当温度升高至1000~1200℃后并保温,将电解槽的阳极装置插入电解池中开始电解反应,且电解电压为3~4.5V,且每电解时间为1—10小时后,均使电解槽底部聚集的钛铝合金从电解槽底部排出;
S4,钛铝合金加工,将S3步骤中收集到的钛铝合金通过电子束冷床炉进行再加工,即可得到钛铝合金成品。
2.根据权利要求1所述的一种电解熔融二氧化钛制备钛铝合金的方法,其特征在于,所述的熔盐电解质为氟钛酸钾、氯化钾、氯化镁、氯化钠的中的任意一种或任意两种以任意比例混合使用。
3.根据权利要求1所述的一种电解熔融二氧化钛制备钛铝合金的方法,其特征在于,所述的S3中的阳极装置为碳饱和的液态铜或铜合金及与其并联的金属铝棒和镍铝合金中的任意一种。
4.根据权利要求3所述的一种电解熔融二氧化钛制备钛铝合金的方法,其特征在于,所述的S3中的阳极装置为碳饱和的液态铜或铜合金及与其并联的金属铝棒时,碳饱和的液态铜或铜合金阳极盛放在钇稳定氧化锆透氧膜管内。
5.根据权利要求1所述的一种电解熔融二氧化钛制备钛铝合金的方法,其特征在于,所述的S3中的阳极装置,在电解槽内剩余量为所述的S3中的阳极装置为初始量10%—30%时即需对阳极装置进行更换,且更换作业中,待新更换的阳极装置处于运行状态后再将原阳极装置剩余部分从电解槽中拆除。
6.一种用于实现权利要求1所述电解熔融二氧化钛制备钛铝合金的电解槽,其特征在于,所述的电解槽包括电解槽体、阳极装置、阴极装置、电解电极及导线,其中所述的电解槽体为横断面为矩形的密闭腔体结构,其上端面设加料口、阳极定位口及过线孔,侧壁下端位置设至少一个出料口,所述的加料口、阳极定位口、过线孔及出料口处均设密封端盖,且所述的密封端盖均与电解槽体外表面连接,所述的阳极装置通过阳极定位口嵌于电解槽体内,且阳极装置有效长度的10%—30%部分位于电解槽体外,所述的阴极装置嵌于电解槽体内并均布在电解槽体底部和侧壁上,所述的阳极装置、阴极装置均通过导线与电解电极相互电气连接。
7.根据权利要求6所述的一种用于电解熔融二氧化钛制备钛铝合金的电解槽,其特征在于,所述的阴极装置材质为钇稳定氧化锆,为厚度不低于10毫米的板状结构,并包覆在电解槽体底部及侧壁内表面。
CN201811172652.8A 2018-10-09 2018-10-09 一种电解熔融二氧化钛制备钛铝合金的方法及电解装置 Pending CN109023432A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811172652.8A CN109023432A (zh) 2018-10-09 2018-10-09 一种电解熔融二氧化钛制备钛铝合金的方法及电解装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811172652.8A CN109023432A (zh) 2018-10-09 2018-10-09 一种电解熔融二氧化钛制备钛铝合金的方法及电解装置

Publications (1)

Publication Number Publication Date
CN109023432A true CN109023432A (zh) 2018-12-18

Family

ID=64615904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811172652.8A Pending CN109023432A (zh) 2018-10-09 2018-10-09 一种电解熔融二氧化钛制备钛铝合金的方法及电解装置

Country Status (1)

Country Link
CN (1) CN109023432A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699711A (zh) * 2019-10-15 2020-01-17 昆明理工大学 一种熔盐电解二氧化钛制备钛锌合金的方法
CN111020194A (zh) * 2019-11-16 2020-04-17 银隆新能源股份有限公司 一种从废旧钛酸锂正负极粉合成钛铝合金的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063909A (zh) * 1991-02-04 1992-08-26 中国科学院化工冶金研究所 熔盐电解法制取钛-铝合金粉
CN101092715A (zh) * 2007-05-25 2007-12-26 山东南山铝业股份有限公司 一种生产铝钛合金的电解共析法
WO2008046018A1 (en) * 2006-10-11 2008-04-17 Boston University Magnesiothermic som process for production of metals
CN101457372A (zh) * 2008-12-04 2009-06-17 上海大学 一种含钛废渣直接制备钛及钛合金的方法
CN101709490A (zh) * 2009-11-03 2010-05-19 上海大学 一种由钛精矿粉直接制备钛系合金的方法
CN102719857A (zh) * 2012-07-03 2012-10-10 北京科技大学 一种直接电解二氧化钛生产金属钛的方法及电解槽
CN103060850A (zh) * 2013-01-31 2013-04-24 宝纳资源控股(集团)有限公司 一种连续熔盐电解制备金属钛的方法
CN104099643A (zh) * 2014-07-29 2014-10-15 攀钢集团攀枝花钢铁研究院有限公司 钛铝合金的制备方法
CN104878413A (zh) * 2015-06-25 2015-09-02 贵州师范大学 一种用含钛电炉渣直接电解生产低钛铝合金的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063909A (zh) * 1991-02-04 1992-08-26 中国科学院化工冶金研究所 熔盐电解法制取钛-铝合金粉
WO2008046018A1 (en) * 2006-10-11 2008-04-17 Boston University Magnesiothermic som process for production of metals
CN101092715A (zh) * 2007-05-25 2007-12-26 山东南山铝业股份有限公司 一种生产铝钛合金的电解共析法
CN101457372A (zh) * 2008-12-04 2009-06-17 上海大学 一种含钛废渣直接制备钛及钛合金的方法
CN101709490A (zh) * 2009-11-03 2010-05-19 上海大学 一种由钛精矿粉直接制备钛系合金的方法
CN102719857A (zh) * 2012-07-03 2012-10-10 北京科技大学 一种直接电解二氧化钛生产金属钛的方法及电解槽
CN103060850A (zh) * 2013-01-31 2013-04-24 宝纳资源控股(集团)有限公司 一种连续熔盐电解制备金属钛的方法
CN104099643A (zh) * 2014-07-29 2014-10-15 攀钢集团攀枝花钢铁研究院有限公司 钛铝合金的制备方法
CN104878413A (zh) * 2015-06-25 2015-09-02 贵州师范大学 一种用含钛电炉渣直接电解生产低钛铝合金的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699711A (zh) * 2019-10-15 2020-01-17 昆明理工大学 一种熔盐电解二氧化钛制备钛锌合金的方法
CN111020194A (zh) * 2019-11-16 2020-04-17 银隆新能源股份有限公司 一种从废旧钛酸锂正负极粉合成钛铝合金的方法
CN111020194B (zh) * 2019-11-16 2023-10-13 银隆新能源股份有限公司 一种从废旧钛酸锂正负极粉合成钛铝合金的方法

Similar Documents

Publication Publication Date Title
CN106591892B (zh) 亚氧化钛系可溶电极制备方法及其在电解制备高纯钛中的应用
CN108580902B (zh) 一种电化学辅助粉末冶金制备多孔钛或钛合金的方法
CN101949038B (zh) 一种电解法制备碳氧钛复合阳极的方法
CN106544701B (zh) 用氟化物电解回收碳化钨废料中的金属的方法
US3114685A (en) Electrolytic production of titanium metal
CN104451783A (zh) 一种难熔金属含氧酸盐直接电解制备金属的方法
CN109023432A (zh) 一种电解熔融二氧化钛制备钛铝合金的方法及电解装置
CN101974767B (zh) 一种熔盐电解制备钨粉的方法
CN113106496A (zh) 一种钒碳氧固溶体阳极熔盐电解高纯金属钒方法
CN106702431A (zh) 一种电解铝炭素阳极用防氧化涂料
Li et al. Electrochemical properties of powder-pressed Pb–Ag–PbO2 anodes
CN107868964A (zh) 合金粉末的制备方法
CN113699560B (zh) 一种氟氯混合熔盐体系可溶阳极电解制备金属钛的方法
Wendt et al. Cathodic deposition of refractory intermetallic compounds from FLINAK melts Part II: Preparative cathodic deposition of TiB 2 and ZrB 2 and coatings thereof
An et al. Facile preparation of metallic vanadium from consumable V2CO solid solution by molten salt electrolysis
CN104372380B (zh) 一种低温熔盐法制备高纯铬
CN109797318B (zh) 一种制备Al3Ti增强铝基材料的方法
FI61726B (fi) Sintrad kiselkarbid-ventil-metallborid-kolanod foer elektrokemiska processer
JP2007247002A (ja) チタン酸化物の電気化学的還元方法
US3098805A (en) Process for the extraction of relatively pure titanium and of relatively pure zirconium and hafnium
CN113279022B (zh) 一种还原性熔盐介质及其制备方法
JP2003293180A (ja) 電解槽及び電解方法
CN102912382B (zh) 一种在氟氯化物熔盐体系中电解制备铝-镁合金的方法
CN115305521A (zh) 一种熔盐电解制备金属铌的方法
CN108441892A (zh) 基于络合离子的亚稳态高温熔盐电解精炼高纯钛的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181218