CN109023365A - 一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法 - Google Patents

一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法 Download PDF

Info

Publication number
CN109023365A
CN109023365A CN201810913843.9A CN201810913843A CN109023365A CN 109023365 A CN109023365 A CN 109023365A CN 201810913843 A CN201810913843 A CN 201810913843A CN 109023365 A CN109023365 A CN 109023365A
Authority
CN
China
Prior art keywords
tungsten carbide
rotary shaft
coating
film
oil sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810913843.9A
Other languages
English (en)
Other versions
CN109023365B (zh
Inventor
杨焜
林松盛
宋进兵
曾威
邓春明
邓畅光
代明江
刘敏
周克崧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of New Materials of Guangdong Academy of Sciences
Original Assignee
Guangdong Institute of New Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Institute of New Materials filed Critical Guangdong Institute of New Materials
Priority to CN201810913843.9A priority Critical patent/CN109023365B/zh
Publication of CN109023365A publication Critical patent/CN109023365A/zh
Application granted granted Critical
Publication of CN109023365B publication Critical patent/CN109023365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法,属于材料表面处理技术领域。一种唇型油封旋转轴耐磨减摩复合涂层,包括旋转轴基体和依次附着于旋转轴基体的碳化钨涂层、碳化钨膜和掺纳米晶碳化钨梯度非晶碳膜,该涂层具有优异的耐磨减摩性能。一种唇型油封旋转轴耐磨减摩复合涂层的制备方法,包括:采用空气助燃超音速火焰喷涂方法在经过前处理的旋转轴基体表面喷涂碳化钨涂层,对碳化钨涂层进行磨削、抛光和离子束清洗后,采用离子源辅助磁控溅射依次沉积碳化钨膜和掺纳米晶碳化钨梯度非晶碳膜。该方法简单可靠,易实现批量生产,对环境污染小。

Description

一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法
技术领域
本发明涉及材料表面处理技术领域,且特别涉及一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法。
背景技术
旋转轴唇形油封(简称油封)具有结构简单、成本低廉、占用空间小,安装简便和密封可靠性高等优点,主要用于发动机、传动系统和各类设备转动位置润滑油(或其他介质)的轴端密封,其结构主要由金属骨架、紧箍弹簧和橡胶材料三部分组成。油封的工作原理是橡胶唇口与轴在过盈配合下产生的力与弹簧的紧箍力合成径向力,阻止被密封介质的流出,从而达到密封的效果,还可起到对外防尘的作用。在旋转轴工作时,油封唇部和轴之间的接触表面上同时并存干摩擦、边界润滑和流体润滑三种情况,并不断交替产生。干摩擦产生磨损,流体润滑产生密封泄漏,在边界润滑下,油封唇部与轴的界面之间形成一层稳定的流体动压油膜,将油封唇与轴分离开来。这层油膜除用作润滑之外,还起密封作用。随着各种机器设备技术性、使用寿命和首翻期的不断提高,对油封的使用条件、使用寿命和密封性能的要求也随之提高。通常通过油封的结构设计、橡胶配方设计及油封的安装使用上为形成薄而稳定的边界润滑油膜密封效果提供条件。
另一方面,旋转轴在高转速条件下工作一段时间后会在油封接触处磨出沟痕,密封效果会随之变差。轴表面状态的持续恶化,还会使密封系统中运转零件由预期的设计状态转变为磨粒磨损过程,进而引起泄漏。目前的改善措施主要是从旋转轴的材料、热处理、机械加工工艺等方面予以优化,但常规金属旋转轴的耐磨性能已难以满足长时服役的要求,而旋转轴除油封接触处磨损严重外,其它位置精度仍可满足技术要求,若此时更换旋转轴会造成时间和成本的极大浪费。因此,可通过表面处理技术对旋转轴与油封接触位置进行表面强化处理,以达到延长旋转轴和唇形油封使用寿命、提高密封效果及降低生产成本的目的。根据油封的使用环境及服役特性,只有设法降低油封唇与旋转轴接触部位的摩擦系数,减少唇口磨损速度,才是提高油封寿命的根本方法。换言之,油封旋转轴表面强化层应具备优异的耐磨减摩性能。目前国内外常用电镀、化学镀、激光熔覆、物理气相沉积(PVD)、化学气相沉积(CVD)和热喷涂等表面处理手段在工件表面制备高耐磨性陶瓷或金属复合涂层。
电镀硬铬作为一种常用的表面强化方式,镀层内部的网状裂纹可有效降低残余应力,这些裂纹的储油作用对降低磨损亦具有显著影响,也是目前国内外广泛采用的唇形油封旋转轴表面改性方法。据报道,电镀硬铬表面粗糙度在0.4μm以内时密封性能较佳。然而,表面镀铬后会降低零件承受较大交变载荷时的弯曲疲劳寿命,且镀铬层的耐磨性能已无法满足越来越高的使用要求,长时间服役后表面会更为光滑,进而导致油膜太薄,不能形成流体润滑膜,唇部就会磨损,进而影响其密封性能及使用寿命。此外,制备过程对环境有严重污染,处理电镀硬铬的三废排放成本也越来越高。复合电镀是在传统电镀基础上再复合可以改善基质性能的颗粒,使之在电化学的作用下和金属离子共同沉积,最终完成具有耐磨、耐蚀以及自润滑等特定性能镀层的镀覆。然而,电镀过程中会在电解质溶液中通入直流电,有可能发生尖端电流密度过大的情况,从而导致在基质的棱角和尖角处镀层偏厚或出现毛刺,使得整个镀层的表面不均匀,从而造成油封唇口的严重磨损。
化学镀是在无外加电流的情况下借助合适的还原剂,使镀液中金属离子还原成金属,并沉积到零件表面的一种镀覆方法。该技术具有镀层均匀、针孔小、不需直流电源设备等特点。化学复合镀是在化学镀的镀液中再添加一种或多种不溶性的颗粒,通过搅拌或者其它方法使颗粒均匀悬浮镀液中,利用化学镀的方法使微粒与金属共沉积在基质表面,最终完成功能性不同的镀层的镀覆。但该技术沉积速度偏低和对环境污染比较严重等问题限制了进一步的应用。
激光熔覆技术通过在基体表面添加熔覆材料,并利用高能密度的激光束使之与基体表面薄层一起熔凝的方法,在基体表面形成与其为冶金结合的添料熔覆层。利用激光熔覆可以实现耐磨、自润滑、耐蚀和热障涂层的制备。然而,熔覆过程会经历快速加热及冷却,容易有较大的应力产生而使裂纹出现,会影响到整个涂层的质量。同时,激光熔覆的成本比较高、应用范围窄,主要是修复常规的零部件。
气相沉积技术(PVD和CVD)工艺过程简单,对环境友善,无污染,耗材少,成膜均匀致密,能达到比较好的表面粗糙度,但是其形成的膜材厚度比较低,在旋转轴基体硬度不足和高载荷使用条件下容易导致膜层脱落或塌陷。
热喷涂技术是一种将涂层粉末或丝材材料送入某种热源中加热到熔融或半熔融状态,并利用高速气流将其喷射到旋转轴基体材料表面形成覆盖层的工艺。该工艺操作简便、灵活高效,涂层材料种类繁多,可以获得耐磨损、耐腐蚀、抗氧化、耐热、绝缘、导电、防辐射等方面的一种或数种性能,已在包括航空航天、冶金、能源、石油化工、机械制造、交通运输、轻工机械和生物工程等领域得到广泛应用。然而,具备优异耐磨性能的超硬涂层通常延展性较低,且没有电镀硬铬的固有润滑性,容易导致与之配合的密封件寿命降低。
综上,单一的表面处理工艺已难以满足唇形油封旋转轴对耐磨减摩性能日益严苛的需求,采用多种工艺制备复合涂层以集其相应涂覆层性能之长,是实现唇形油封旋转轴表面强化性能需求的可行方式。
发明内容
针对现有技术的不足,本发明的目的在于提供一种唇型油封旋转轴耐磨减摩复合涂层,该涂层具有优异的耐磨减摩性能。
本发明的另一目的在于提供上述唇型油封旋转轴耐磨减摩复合涂层的制备方法,该方法简单可靠,易实现批量生产,对环境污染小。
本发明解决其技术问题是采用以下技术方案来实现的。
本发明提出一种唇型油封旋转轴耐磨减摩复合涂层,包括旋转轴基体和依次附着于旋转轴基体的碳化钨涂层、碳化钨膜和掺纳米晶碳化钨梯度非晶碳膜。
本发明提出一种唇型油封旋转轴耐磨减摩复合涂层的制备方法,包括:
采用空气助燃超音速火焰喷涂方法在经过前处理的旋转轴基体的表面喷涂碳化钨涂层,对碳化钨涂层进行磨削、抛光和离子束清洗后,在碳化钨涂层上采用离子源辅助磁控溅射依次沉积碳化钨膜和掺纳米晶碳化钨梯度非晶碳膜。
本发明的有益效果包括:
(1)采用空气助燃超音速火焰喷涂制备碳化钨涂层,喷涂过程中火焰温度和氧化性相较于常规氧气助燃超音速火焰喷涂更低,注入焰流中的粉末颗粒具有更低温度的同时仍具备较高的速度,所制备的碳化钨涂层具有优异的耐磨性能和韧性,且具备比基体更高的硬度和弹性模量,可作为后续离子源辅助磁控溅射沉积膜层的支撑体,从而避免界面处的应力集中,延缓掺纳米晶碳化钨的非晶碳膜内的裂纹,显著提高掺纳米晶碳化钨的非晶碳膜的机械性能。
(2)离子源辅助磁控溅膜层成分从碳化钨梯度过渡到含少量纳米晶碳化钨耐磨颗粒的非晶碳膜,可以大幅度降低膜层内应力,提高膜与碳化钨涂层的结合强度,进一步提高膜层的应用性能。
(3)碳化钨膜具有对碳化钨涂层的封孔功能,可防止润滑油中添加剂对涂层及旋转轴基体的腐蚀,且不会明显改变碳化钨涂层粗糙度。特别的,表面的掺纳米晶碳化钨的非晶碳膜可显著降低与唇形油封的摩擦系数,减摩效果明显,可延长唇形油封及旋转轴的服役寿命。
(4)唇型油封旋转轴耐磨减摩复合涂层的制备方法简单可靠,易实现批量生产,对环境污染小,在唇形油封旋转轴表面强化上具有巨大的潜能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明唇型油封旋转轴耐磨减摩复合涂层剖面结构示意图;
图2为本发明实施例中唇型油封旋转轴耐磨减摩复合涂层与唇形油封橡胶摩擦系数。
图标:1-旋转轴基体;2-碳化钨涂层;3-碳化钨膜;4-掺纳米晶碳化钨梯度非晶碳膜。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明实施例的一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法进行具体说明。
请参照图1,本发明实施例提供了一种唇型油封旋转轴耐磨减摩复合涂层,包括旋转轴基体1和依次附着于旋转轴基体1的碳化钨涂层2、碳化钨膜3和掺纳米晶碳化钨梯度非晶碳膜4。
在本发明实施例中,旋转轴基体的材质可以为钛合金、高强铝合金、碳钢或合金钢。
碳化钨涂层材料可以为碳化钨钴和碳化钨钴铬,优选地,本发明实施例中碳化钨涂层的材料为WC10Co4Cr,兼具耐磨损和腐蚀性能。喷涂采用细粉可以降低喷涂态涂层粗糙度,进而节约磨削和抛光加工时间和成本。较优的,细粉的粒径为5~30μm。碳化钨涂层的厚度为100~200μm。
采用与碳化钨涂层性能相近的碳化钨膜层作为过渡膜层,使表面的掺纳米晶碳化钨梯度非晶碳膜与碳化钨涂层之间结合良好。在本发明实施例中,碳化钨膜的厚度为0.5~1.0μm。
表面的掺纳米晶碳化钨梯度非晶碳膜具有高硬度和高耐磨性,以满足表面摩擦磨损性能。掺纳米晶碳化钨梯度非晶碳膜为碳化钨含量从30at%梯度渐变到8at%,厚度为1.5~4.0μm。碳化钨膜和掺纳米晶碳化钨梯度非晶碳膜的总厚度为2~5μm。
本发明实施例提供了上述唇型油封旋转轴耐磨减摩复合涂层的制备方法,包括:
将旋转轴基体脱脂除油后,对喷涂位置进行喷砂处理。喷砂处理可去掉基体表面氧化层以增加表面活性并提高涂层与基体间的结合强度。喷砂处理所使用的砂粒材料可以为白刚玉、棕刚玉或锆刚玉,砂粒材料的粒度可以为46#、54#或60#。可参考地,喷砂过程中,喷砂压力可控制为0.2~0.5MPa,喷砂距离可控制在100~300mm。喷砂机的喷嘴轴向方向与样品表面保持70°~90°的夹角,喷砂处理后,试样表面粗糙度均匀一致且无金属光泽,可用压缩空气吹掉残留的砂粒或粉尘。
喷砂后,在未送粉条件下利用喷枪焰流对基体进行预热处理,以提高涂层与基体表面接触的温度,减小因基体与涂层的热膨胀差异产生的应力,增强涂层与基体的结合强度。本发明采用的预热处理为本技术领域的通用技术,具体的处理参数本发明对其不做限定。
本发明采用空气助燃超音速火焰喷涂涂层,相较于传统的氧气助燃超音速火焰喷涂,空气助燃超音速火焰喷涂系统设备大大简化,且可降低火焰温度和氧化性,注入焰流中的粉末颗粒具有更低温度的同时仍具备较高的速度,所制备的碳化钨涂层具有优异的抗磨损性能和较好的韧性,且具备比基体更高的硬度和弹性模量,可作为后续离子源辅助磁控溅射沉积膜层的支撑体,从而避免界面处的应力集中,延缓掺纳米晶碳化钨梯度非晶碳膜内的裂纹,显著提高掺纳米晶碳化钨梯度非晶碳膜的机械性能,长时间服役后表面仍可维持在初始状态。
喷涂碳化钨涂层的方法包括:在压缩空气压强为0.55~0.62MPa,丙烯压强为0.48~0.55MPa,氢气流量为30~35L/min,氮气流量为30~35L/min,送粉速率为60~120g/min,喷距为150~200mm,工件旋转速度为150~300rpm,喷枪移动速度为10~30mm/s的条件下,在经过喷砂处理和预热处理的旋转轴基体表面进行喷涂。喷涂后的碳化钨涂层的厚度为150~300μm。
为保证旋转轴与油封唇口的良好配合,必须保证旋转轴表面粗糙度在适宜的范围内。表面太光滑时不利于形成和保持油膜,会导致油封唇口处在干摩擦条件下工作,很容易撕裂或严重磨损,从而引起密封泄漏;表面较粗糙时,虽然可以留住润滑油,但在表面微凸体的法向力和剪切力的作用下,油封唇口的材料表层会发生很大的变形,从而导致唇口与轴摩擦处的润滑油膜发生破裂而摩擦系数急剧增加,最终使油封唇口发生严重磨损而漏油。采用空气助燃超音速火焰喷涂制备的碳化钨涂层仍具备较高的粗糙度,因此,在采用离子源辅助磁控溅射沉积碳化钨膜和掺纳米晶碳化钨梯度非晶碳膜前,必须对涂层进行磨削和抛光加工处理至适宜的粗糙度并进行离子束清洗。
对碳化钨涂层进行磨削的方法包括:在树脂金刚石砂轮横向移动速度为2~6mm/s、砂轮线速度为20~32m/s,工件转速为20~40rpm的条件下,磨削碳化钨涂层表面至粗糙度Ra0.5~0.8μm。
磨削后,进行抛光处理,以进一步降低涂层表面粗糙度。在工件转速为400~800rpm的条件下,依次采用45、30、15、9及3μm的金刚石抛光带进行抛光,直到碳化钨涂层的表面粗糙度达到Ra0.1~0.3μm,然后进行脱脂除油处理。经过磨削、抛光的碳化钨涂层的厚度为100~200μm。
对经过抛光的碳化钨涂层进行离子束清洗的方法包括:采用离子束在炉内压强为0.2~1.0Pa、Ar气流量为100~300sccm、离子源为1.0~3.0kW、负偏压为100~800V的条件下清洗40~60min。
超音速火焰喷涂的超硬及高密度碳化钨涂层具有优良的耐磨性能,但其延展性较低且润滑性能不佳,容易导致与之配合的密封件寿命降低。采用离子源辅助磁控溅射技术制备的非晶碳膜具有良好的耐磨性和低的摩擦系数、高的硬度和良好的化学稳定性,特别适合于滑动零部件表面强化处理。然而,该膜层具有较高的脆性、硬度及内应力,直接在基体上制备的非晶碳膜在高载荷使用条件下容易导致膜层脱落或塌陷。因此,本发明利用离子源辅助磁控溅射在经磨削抛光加工和离子束清洗的碳化钨涂层表面沉积掺纳米晶碳化钨梯度非晶碳膜为减摩层,膜层结构上从碳化钨梯度过渡到含少量纳米晶碳化钨耐磨颗粒的非晶碳膜,可以大幅度降低膜层内应力,提高膜与碳化钨涂层的结合强度。特别的,表面的掺纳米晶碳化钨的非晶碳膜可显著降低摩擦系数。
在经磨削抛光及等离子清洗的空气助燃超音速火焰喷涂碳化钨涂层上沉积碳化钨膜的方法包括:在炉内压强为0.2~0.5Pa、Ar气流量为50~150sccm、CH4或C2H2气流量为50~100sccm、磁控溅射W靶功率为5.0~8.0kW、离子源为0.5~1.0kW、负偏压为50~100V的条件下沉积30~60min。
在碳化钨膜上沉积掺纳米晶碳化钨梯度非晶碳膜的方法包括:在炉内压强为0.2~0.5Pa、Ar气流量为100~200sccm、CH4或C2H2气流量为100~200sccm、磁控溅射W靶功率为1.0~8.0kW、离子源为2.5~3.5kW、负偏压为20~100V的条件下沉积180~240min。需要说明的是,在实际的沉积过程中,磁控溅射W靶功率由高至低逐渐递减,如7.0→2.0kW,功率递减的速率根据实际需要设置。
空气助燃超音速火焰喷涂碳化钨涂层可作为后续离子源辅助磁控溅射膜层的支撑体,可显著提高掺纳米晶碳化钨梯度非晶碳膜的机械性能;而离子源辅助磁控溅射膜层具有对空气助燃超音速火焰喷涂碳化钨涂层的封孔功能,可提高涂层的耐蚀性能,且不会对经磨削和抛光加工的碳化钨涂层表面粗糙度造成明显的影响。
该制备方法简单可靠,易实现批量生产,对环境污染小,在唇形油封旋转轴表面强化上具有巨大的潜能。通过该方法制得的耐磨减摩复合涂层中空气助燃超音速火焰喷涂碳化钨涂层显微结构均匀,涂层与基体结合强度>70MPa,涂层显微硬度HV0.3>1100,涂层厚度150~300μm。磨削和抛光加工后,涂层厚度为100~200μm,表面粗糙度Ra0.1~0.3μm。离子源辅助磁控溅射碳化钨过渡膜层及掺纳米晶碳化钨梯度非晶碳膜总厚度2~5μm,硬度HV0.025>2600,与碳化钨涂层的结合强度>70N。所制备的复合涂层与唇形油封的摩擦系数和磨损量降低明显,耐磨减摩效果显著。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供了一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法,包括:
1.将Φ57mm的TC4钛合金样品脱脂除油后对喷涂面进行喷砂处理,砂粒材料为54#白刚玉,吹砂压力控制在0.24MPa,喷距180mm,角度75°,吹砂后试样表面粗糙度均匀一致,并用压缩空气吹走表面残留的砂粒。
2.采用空气助燃超音速火焰喷涂WC10Co4Cr涂层,粉末粒度为5~25μm,压缩空气压强0.59MPa,丙烯压强0.50MPa,氢气流量为32L/min,氮气流量为33L/min,送粉速率70g/min,喷距175mm,转台转速240rpm,喷枪移动速度20mm/s,涂层厚度为250μm。
3.树脂金刚石砂轮横向移动速度3mm/s,砂轮线速度24m/s,工件转速35rpm。通过粗磨和精磨至涂层表面粗糙度Ra 0.7μm后进行抛光,工件转速为600rpm,依次采用45、30、15、9及3μm金刚石抛光带进行抛光直到表面粗糙度Ra 0.20μm,涂层厚度为170μm,然后进行脱脂除油处理。
4.采用离子束对待镀膜区域进行清理,炉内压强:0.2Pa,Ar气流量:100sccm,离子源:1.0kW,负偏压:800V,时间:40min。
5.采用离子源辅助磁控溅射制备碳化钨膜层。炉内压强:0.2Pa,Ar气流量:50sccm,CH4气流量:50sccm,磁控溅射W靶功率:5.0kW,离子源:0.5kW,负偏压:50V,时间:30min。
6.采用离子源辅助磁控溅射制备成分从碳化钨梯度过渡到含少量纳米晶碳化钨耐磨颗粒的非晶碳膜。炉内压强:0.2Pa,Ar气流量:100sccm,CH4气流量:100sccm,磁控溅射W靶功率:5.0→1.0kW,离子源:2.5kW,负偏压:20V,时间:180min。
空气助燃超音速火焰喷涂碳化钨涂层硬度1180HV0.3,与基体结合强度75MPa,磨削和抛光后涂层厚度为170μm,表面粗糙度为Ra0.20μm。离子源辅助磁控溅射掺碳化钨过渡膜层及纳米晶碳化钨的非晶碳膜总厚度2.1μm,硬度为2624HV0.025,与碳化钨涂层的结合力为81N。复合涂层与F202-1橡胶的摩擦系数为0.834,复合涂层磨损量<0.1mg,橡胶磨损量为0.06mg。
实施例2
本实施例提供了一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法,包括:
1.将Φ80mm的7075铝合金样品脱脂除油后对喷涂面进行吹砂处理,砂粒材料为60#锆刚玉,吹砂压力控制在0.26MPa,喷距200mm,角度80°,吹砂后试样表面粗糙度均匀一致,并用压缩空气吹走表面残留的砂粒。
2.采用空气助燃超音速火焰喷涂WC10Co4Cr涂层,粉末粒度为10~30μm,压缩空气压强0.61MPa,丙烯压强0.52MPa,氢气流量为33L/min,氮气流量为34L/min,送粉速率110g/min,喷距185mm,转台转速200rpm,喷枪移动速度16mm/s,涂层厚度为280μm。
3.树脂金刚石砂轮横向移动速度4mm/s,砂轮线速度26m/s,工件转速25rpm。通过粗磨和精磨至涂层表面粗糙度达到Ra 0.6μm后进行抛光,工件转速为450rpm,依次采用45、30、15、9及3μm金刚石抛光带进行抛光直到表面粗糙度Ra 0.16μm,涂层厚度为200μm,然后进行脱脂除油处理。
4.采用离子束对待镀膜区域进行清理,炉内压强:0.6Pa,Ar气流量:200sccm,离子源:2.0kW,负偏压:500V,时间:50min。
5.采用离子源辅助磁控溅射制备碳化钨膜层。炉内压强:0.35Pa,Ar气流量:100sccm,C2H2气流量:75sccm,磁控溅射W靶功率:6.5kW,离子源:0.7kW,负偏压:100V,时间:60min。
6.采用离子源辅助磁控溅射制备成分从碳化钨梯度过渡到含少量纳米晶碳化钨耐磨颗粒的非晶碳膜。炉内压强0.35Pa,Ar气流量:150sccm,C2H2气流量:150sccm,离子源:3.0kW,磁控溅射W靶功率:6.5→1.0kW,负偏压:100V,时间:200min。
空气助燃超音速火焰喷涂碳化钨涂层硬度1210HV0.3,与基体结合强度78MPa,磨削和抛光后涂层厚度为200μm,表面粗糙度为Ra0.16μm。离子源辅助磁控溅射掺碳化钨过渡膜层及纳米晶碳化钨的非晶碳膜总厚度3.2μm,硬度为2724HV0.025,与碳化钨涂层的结合力为75N。复合涂层与F223-15橡胶的摩擦系数为0.717,复合涂层磨损量<0.1mg,橡胶磨损量为0.07mg。
实施例3
本实施例提供了一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法,包括:
1.Φ65mm的4340合金钢样品脱脂除油后对喷涂面进行吹砂处理,砂粒材料为46#棕刚玉,吹砂压力控制在0.40MPa,喷距220mm,角度85°,吹砂后试样表面粗糙度均匀一致,并用压缩空气吹走表面残留的砂粒。
2.采用空气助燃超音速火焰喷涂WC10Co4Cr涂层,粉末粒度为5~30μm,压缩空气压强0.57MPa,丙烯压强0.51MPa,氢气流量为31L/min,氮气流量为32L/min,送粉速率95g/min,喷距180mm,转台转速220rpm,喷枪移动速度18mm/s,涂层厚度为190μm。
3.树脂金刚石砂轮横向移动速度3mm/s,砂轮线速度28m/s,工件转速28rpm,通过粗磨和精磨至涂层表面粗糙度达到Ra 0.75μm后进行抛光,工件转速为520rpm,依次采用45、30、15、9及3μm金刚石抛光带进行抛光直到表面粗糙度Ra 0.24μm,涂层厚度为120μm,然后进行脱脂除油处理。
4.采用离子束对待镀膜区域进行清理。炉内压强:1.0Pa,Ar气流量:300sccm,离子源:3.0kW,负偏压:100V,时间:60min。
5.采用离子源辅助磁控溅射制备碳化钨膜层。炉内压强:0.5Pa,Ar气流量:150sccm,CH4气流量:100sccm,磁控溅射W靶功率:8.0kW,离子源:1.0kW,负偏压:75V,时间:45min。
6.采用离子源辅助磁控溅射制备成分从碳化钨梯度过渡到含少量纳米晶碳化钨耐磨颗粒的非晶碳膜。炉内压强0.5Pa,Ar气流量:200sccm,CH4气流量:200sccm,离子源:3.5kW,磁控溅射W靶功率:8.0→1.0kW,负偏压:50V,时间:240min。
空气助燃超音速火焰喷涂碳化钨涂层硬度1150HV0.3,与基体结合强度76MPa,磨削和抛光后涂层厚度为120μm,表面粗糙度为Ra0.24μm。离子源辅助磁控溅射掺碳化钨过渡膜层及纳米晶碳化钨的非晶碳膜总厚度4.9μm,硬度为2775HV0.025,与碳化钨涂层的结合力为72N。复合涂层与F250橡胶的摩擦系数为0.770,复合涂层磨损量<0.1mg,橡胶磨损量为0.15mg。
对比例1
本对比例提供了一种电镀硬铬涂层,加工至表面粗糙度Ra0.34μm,电镀硬铬与F202-1橡胶的摩擦系数为0.894,磨损量为0.18mg。
对比例2
本对比例提供了一种电镀硬铬涂层,加工至表面粗糙度Ra0.26μm,电镀硬铬与F223-15橡胶的摩擦系数为0.912,磨损量为0.20mg。
对比例3
本对比例提供了一种电镀硬铬涂层,加工至表面粗糙度Ra0.30μm,电镀硬铬与F250橡胶的摩擦系数为0.819,磨损量为0.21mg。
试验例
上述实施例中,按ASTM C633测试超音速火焰喷涂碳化钨涂层与基体结合强度;按ASTM E384测试超音速火焰喷涂碳化钨涂层显微硬度;按ASTM C1624测试磁控溅射掺纳米晶碳化钨梯度非晶碳膜与碳化钨涂层结合强度;按GB 9790测试磁控溅射掺纳米晶碳化钨梯度非晶碳膜显微硬度;按ASTM G98-02(2009)分别测试唇型油封旋转轴耐磨减摩复合涂层和电镀硬铬与唇形油封材料橡胶的摩擦系数和磨损量。其中,唇形油封橡胶材料作为摩擦件,采用本发明方法制备了耐磨减摩复合涂层的对磨球作为摩擦副,并采用三组表面电镀硬铬的对磨球作为对比。测试参数为载荷1.5kg,磨头转速200rpm,时间10min。
由实施例1~3提供的测试结果可知,通过本发明提供的制备方法制得的耐磨减摩复合涂层,碳化钨涂层及掺纳米晶碳化钨梯度非晶碳膜均具备较高的显微硬度,碳化钨涂层与基体,以及磁控溅射掺纳米晶碳化钨梯度非晶碳膜与碳化钨涂层间均有较好的结合强度。
选取实施例1~3、对比例1~3制备的耐磨减摩复合涂层,分别对其摩擦系数和磨损量进行总结对比,结果如下表:
表1表征结果
由表1可知,与对比例相比,实施例1~3提供的耐磨减摩复合涂层,在相同实验条件下,与对磨橡胶的摩擦系数以及对磨橡胶的磨损量,均比对比例中电镀硬铬显著降低,表明本发明所提供的涂层耐磨减摩效果明显。在有油润滑的条件下,磨损速度更慢,可满足唇型油封旋转轴的表面强化要求。
图2为实施例1~3提供的耐磨减摩复合涂层与唇形油封橡胶摩擦系数。其中,图2(a)为实施例1提供的耐磨减摩复合涂层与F202-1橡胶摩擦系数,图2(b)为实施例2提供的耐磨减摩复合涂层与F223-15橡胶摩擦系数,图2(c)为实施例3提供的耐磨减摩复合涂层与F250橡胶摩擦系数。
以上所描述的实施例是本发明一部分实施例,而不是全部的实施例。本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (10)

1.一种唇型油封旋转轴耐磨减摩复合涂层,其特征在于,包括旋转轴基体和依次附着于所述旋转轴基体的碳化钨涂层、碳化钨膜和掺纳米晶碳化钨梯度非晶碳膜。
2.根据权利要求1所述的唇型油封旋转轴耐磨减摩复合涂层,其特征在于,所述旋转轴基体的材料包括钛合金、高强铝合金、碳钢和合金钢中的至少一种,所述碳化钨涂层的材料包括碳化钨钴和碳化钨钴铬中的一种或两种;优选地,所述碳化钨涂层为WC10Co4Cr。
3.根据权利要求1所述的唇型油封旋转轴耐磨减摩复合涂层,其特征在于,所述碳化钨涂层的厚度为100~200μm。
4.根据权利要求1所述的唇型油封旋转轴耐磨减摩复合涂层,其特征在于,所述碳化钨膜的厚度为0.5~1.0μm,所述掺纳米晶碳化钨梯度非晶碳膜的厚度为1.5~4.0μm,所述碳化钨膜和所述掺纳米晶碳化钨梯度非晶碳膜的总厚度为2~5μm。
5.一种如权利要求1至4任一项所述的唇型油封旋转轴耐磨减摩复合涂层的制备方法,其特征在于,包括:
采用空气助燃超音速火焰喷涂方法在经过前处理的所述旋转轴基体的表面喷涂所述碳化钨涂层,对所述碳化钨涂层进行磨削、抛光和离子束清洗后,在所述碳化钨涂层上采用离子源辅助磁控溅射依次沉积所述碳化钨膜和所述掺纳米晶碳化钨梯度非晶碳膜。
6.根据权利要求5所述的唇型油封旋转轴耐磨减摩复合涂层的制备方法,其特征在于,喷涂所述碳化钨涂层的方法包括:
在经过喷砂处理和预热处理的所述旋转轴基体表面,采用空气助燃超音速火焰喷涂设备进行喷涂,压缩空气压强为0.55~0.62MPa,丙烯压强为0.48~0.55MPa,氢气流量为30~35L/min,氮气流量为30~35L/min,送粉速率60~120g/min,喷距150~200mm,工件旋转速度150~300rpm,喷枪移动速度10~30mm/s,喷涂后的所述碳化钨涂层的厚度为150~300μm。
7.根据权利要求5所述的唇型油封旋转轴耐磨减摩复合涂层的制备方法,其特征在于,对所述碳化钨涂层进行磨削的方法包括:在树脂金刚石砂轮横向移动速度为2~6mm/s、砂轮线速度为20~32m/s,工件转速为20~40rpm的条件下,磨削所述碳化钨涂层表面至粗糙度Ra0.5~0.8μm;
对经过磨削的所述碳化钨涂层进行抛光的方法包括:在工件转速为400~800rpm的条件下,依次采用45、30、15、9及3μm的金刚石抛光带进行抛光,直到所述碳化钨涂层的表面粗糙度达到Ra0.1~0.3μm,然后进行脱脂除油处理;
经过磨削、抛光的所述碳化钨涂层的厚度为100~200μm。
8.根据权利要求5或7所述的唇型油封旋转轴耐磨减摩复合涂层的制备方法,其特征在于,对经过抛光的所述碳化钨涂层进行离子束清洗的方法包括:采用离子束在炉内压强为0.2~1.0Pa、Ar气流量为100~300sccm、离子源为1.0~3.0kW、负偏压为100~800V的条件下清洗40~60min。
9.根据权利要求5所述的唇型油封旋转轴耐磨减摩复合涂层的制备方法,其特征在于,在所述碳化钨涂层上沉积所述碳化钨膜的方法包括:
在炉内压强为0.2~0.5Pa、Ar气流量为50~150sccm、CH4或C2H2气流量为50~100sccm、磁控溅射W靶功率为5.0~8.0kW、离子源为0.5~1.0kW、负偏压为50~100V的条件下沉积30~60min。
10.根据权利要求5所述的唇型油封旋转轴耐磨减摩复合涂层的制备方法,其特征在于,在所述碳化钨膜上沉积掺纳米晶碳化钨梯度非晶碳膜的方法包括:
在炉内压强为0.2~0.5Pa、Ar气流量为100~200sccm、CH4或C2H2气流量为100~200sccm、磁控溅射W靶功率为1.0~8.0kW、离子源为2.5~3.5kW、负偏压为20~100V的条件下沉积180~240min。
CN201810913843.9A 2018-08-10 2018-08-10 一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法 Active CN109023365B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810913843.9A CN109023365B (zh) 2018-08-10 2018-08-10 一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810913843.9A CN109023365B (zh) 2018-08-10 2018-08-10 一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN109023365A true CN109023365A (zh) 2018-12-18
CN109023365B CN109023365B (zh) 2020-05-26

Family

ID=64632893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810913843.9A Active CN109023365B (zh) 2018-08-10 2018-08-10 一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN109023365B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765119A (zh) * 2019-01-14 2019-05-17 北京工业大学 一种用于测量热障涂层系统表面热应力的原位装置
CN110408881A (zh) * 2019-08-16 2019-11-05 中国航发北京航空材料研究院 一种碳化钨涂层后处理方法
CN112593213A (zh) * 2020-12-11 2021-04-02 岳阳市青方环保科技有限公司 一种自动倾斜器导筒表面的耐磨防腐工艺
WO2021148690A1 (es) * 2020-01-20 2021-07-29 Mecanizacion Industrial Astillero, S.A. Procedimiento de obtención de cilindros para laminación con un recubrimiento de aleaciones de carburo de tungsteno y cilindro obtenido
CN113201713A (zh) * 2021-05-18 2021-08-03 中国科学院兰州化学物理研究所 一种橡胶表面超低摩擦碳基复合薄膜的构筑方法
CN114683101A (zh) * 2022-04-29 2022-07-01 中国电子科技集团公司第十四研究所 一种流体旋转关节转轴成形方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2044775A1 (en) * 1991-06-17 1992-12-18 Jean M. Quets Duplex coatings for various substrates
CN1390667A (zh) * 2001-06-13 2003-01-15 住友电气工业株式会社 非晶性碳被覆工具及其制造方法
JP2005213612A (ja) * 2004-01-30 2005-08-11 Jfe Steel Kk Wcサーメット溶射ロール
CN101525235A (zh) * 2009-04-16 2009-09-09 山东大学 多功能梯度复合陶瓷刀具材料的制备方法
CN103953772A (zh) * 2014-04-21 2014-07-30 宁波丰基特种阀门有限公司 碳化钨氮化铬复合涂层的超硬耐磨阀门及其制备方法
CN105543760A (zh) * 2015-12-22 2016-05-04 上海开维喜集团股份有限公司 高温高压氧阀密封面耐磨涂层的制备方法
CN106435584A (zh) * 2016-10-18 2017-02-22 安徽工业大学 一种热喷涂‑pvd复合涂层及其制备方法
CN106884149A (zh) * 2015-12-15 2017-06-23 中国科学院宁波材料技术与工程研究所 水环境耐磨涂层、其制备方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2044775A1 (en) * 1991-06-17 1992-12-18 Jean M. Quets Duplex coatings for various substrates
CN1390667A (zh) * 2001-06-13 2003-01-15 住友电气工业株式会社 非晶性碳被覆工具及其制造方法
JP2005213612A (ja) * 2004-01-30 2005-08-11 Jfe Steel Kk Wcサーメット溶射ロール
CN101525235A (zh) * 2009-04-16 2009-09-09 山东大学 多功能梯度复合陶瓷刀具材料的制备方法
CN103953772A (zh) * 2014-04-21 2014-07-30 宁波丰基特种阀门有限公司 碳化钨氮化铬复合涂层的超硬耐磨阀门及其制备方法
CN106884149A (zh) * 2015-12-15 2017-06-23 中国科学院宁波材料技术与工程研究所 水环境耐磨涂层、其制备方法及应用
CN105543760A (zh) * 2015-12-22 2016-05-04 上海开维喜集团股份有限公司 高温高压氧阀密封面耐磨涂层的制备方法
CN106435584A (zh) * 2016-10-18 2017-02-22 安徽工业大学 一种热喷涂‑pvd复合涂层及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765119A (zh) * 2019-01-14 2019-05-17 北京工业大学 一种用于测量热障涂层系统表面热应力的原位装置
CN110408881A (zh) * 2019-08-16 2019-11-05 中国航发北京航空材料研究院 一种碳化钨涂层后处理方法
WO2021148690A1 (es) * 2020-01-20 2021-07-29 Mecanizacion Industrial Astillero, S.A. Procedimiento de obtención de cilindros para laminación con un recubrimiento de aleaciones de carburo de tungsteno y cilindro obtenido
US11702727B2 (en) 2020-01-20 2023-07-18 Mecanizacion Industrial Astillero, S.A. Method for obtaining rolling mill rolls with a coating of tungsten carbide alloy, and resulting roll
CN112593213A (zh) * 2020-12-11 2021-04-02 岳阳市青方环保科技有限公司 一种自动倾斜器导筒表面的耐磨防腐工艺
CN113201713A (zh) * 2021-05-18 2021-08-03 中国科学院兰州化学物理研究所 一种橡胶表面超低摩擦碳基复合薄膜的构筑方法
CN113201713B (zh) * 2021-05-18 2022-06-14 中国科学院兰州化学物理研究所 一种橡胶表面超低摩擦碳基复合薄膜的构筑方法
CN114683101A (zh) * 2022-04-29 2022-07-01 中国电子科技集团公司第十四研究所 一种流体旋转关节转轴成形方法

Also Published As

Publication number Publication date
CN109023365B (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
CN109023365A (zh) 一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法
Tyagi et al. A critical review of diamond like carbon coating for wear resistance applications
Asgari et al. Tribological behavior of nanostructured high velocity oxy-fuel (HVOF) thermal sprayed WC-17NiCr coatings
CN111778470B (zh) 一种复合粉末及其制备方法、一种自修复涂层及其制备方法和应用
Wang et al. Mechanical and tribological evaluation of CrSiCN, CrBCN and CrSiBCN coatings
CN109023211A (zh) 一种液压作动筒耐磨减摩铁黄铜涂层及其制备方法
Tyagi et al. Tribological behavior of carbon coating for piston ring applications using Taguchi approach
Christy et al. Influence of graphite and polytetrafluoroethylene dispersions on mechanical, abrasive, and erosive wear performance of thermal spray coatings
CN105386040B (zh) 一种在钛合金表面制备wc/石墨复合涂层的方法
Kovací et al. Effect of plasma nitriding parameters on the wear resistance of alloy Inconel 718
CN103256142A (zh) 一种节油型Cr-O-N纳米晶复合陶瓷涂层柴油发动机活塞环及制备方法
Górnik et al. Influence of spray distance on mechanical and tribological properties of HVOF sprayed WC-Co-Cr coatings
CN101398122B (zh) 一种铁铬硼硅/FeS复合固体润滑薄膜及其制备方法
CN212223077U (zh) 一种钛合金轴类件
CN102534532A (zh) 一种钢质零件及其复合表面处理方法
CN116987922B (zh) 一种复合陶瓷颗粒增强钛合金耐磨涂层的制备方法
Zhang et al. Structure control of high-quality TiAlN Monolithic and TiAlN/TiAl multilayer coatings based on filtered cathodic vacuum arc technique
Singh et al. An overview: Electron beam-physical vapor deposition technology-Present and future applications
Ivancivsky et al. Research into properties of wear resistant ceramic metal plasma coatings
Venkateshwarlu et al. Influence of Critical Plasma Spray Parameter on Microstructural and Tribological Characteristics of Nanostructured Tungsten Carbide-Cobalt Coatings
CN113025941A (zh) 一种Cr3C2基耐磨涂层及超音速火焰喷涂制备方法与应用
CN111411318A (zh) 一种钛合金轴类件及其制备方法和应用
CN108265260B (zh) 一种镍铬硼硅耐磨耐疲劳涂层的制备方法
Cappelli et al. Erosion Behavior of Cold-Sprayed Coatings Made of CoCrFeMnNi HEA and Tungsten Carbide Nanoparticles in a Nickel Matrix
Olsson et al. Thin hard CVD and PVD coatings and their potential in steel wire drawing applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 510000 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee after: Institute of new materials, Guangdong Academy of Sciences

Address before: 510000 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee before: GUANGDONG INSTITUTE OF NEW MATERIALS