CN109012150B - 一种钴酸镨/凹凸棒石/石墨炔纳米复合材料及其制备方法和应用 - Google Patents

一种钴酸镨/凹凸棒石/石墨炔纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN109012150B
CN109012150B CN201810825001.8A CN201810825001A CN109012150B CN 109012150 B CN109012150 B CN 109012150B CN 201810825001 A CN201810825001 A CN 201810825001A CN 109012150 B CN109012150 B CN 109012150B
Authority
CN
China
Prior art keywords
attapulgite
praseodymium
cobaltate
graphite alkyne
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810825001.8A
Other languages
English (en)
Other versions
CN109012150A (zh
Inventor
姚超
夏建文
李霞章
左士祥
严向玉
刘文杰
夏青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Huayuan Mines Co ltd
Original Assignee
Jiangsu Huayuan Mines Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Huayuan Mines Co ltd filed Critical Jiangsu Huayuan Mines Co ltd
Priority to CN201810825001.8A priority Critical patent/CN109012150B/zh
Publication of CN109012150A publication Critical patent/CN109012150A/zh
Application granted granted Critical
Publication of CN109012150B publication Critical patent/CN109012150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • B01J35/39

Abstract

本发明属于化工新材料领域,具体涉及一种钴酸镨/凹凸棒石/石墨炔纳米复合材料及其制备方法和应用。首先通过金属催化的交叉偶联反应制备石墨炔,再通过溶胶凝胶法以凹凸棒石为载体负载钴酸镨,最后利用石墨炔材料独特的炔键引起碳骨架中部分碳原子带正电的特性,将钴酸镨/凹凸棒石负载在石墨炔片层上。本发明中以凹凸棒石为骨架,钙钛矿纳米粒子均匀的负载在凹凸棒石上,避免了钙钛矿颗粒的团聚,凹凸棒石均匀分散在石墨炔上,通过石墨炔自身特殊的结构来构建Z型光催化剂,抑制钴酸镨和凹凸棒石电子‑空穴的复合,延长载流子的寿命,能很好的发挥三者的协同催化作用,提高光耦合脱硝性能。

Description

一种钴酸镨/凹凸棒石/石墨炔纳米复合材料及其制备方法和 应用
技术领域
本发明属于化工新材料领域,涉及一种钴酸镨/凹凸棒石/石墨炔纳米复合材料及其制备方法和应用。
背景技术
近年来,工业化大生产使得大气污染愈发严重,其中,氮氧化物作为主要的大气污染物之一,严重威胁着人类的生态系统和身体健康,因而,对于氮氧化物的治理变得刻不容缓。光耦合脱硝技术结合了光催化和常规SCR两者的特点,具有低温高效的特点,有较好的应用前景。
钙钛矿(ABO3)结构的稀土复合金属氧化物因其具备良好的光响应范围而备受关注,且其结构稳定性高,价格低廉,原料易得,合成简单,但是,单一的钙钛矿纳米颗粒尺寸较大,易于团聚,很大程度上限制了稀土钙钛矿的功能化应用前景。凹凸棒石具有较大的比表面积、优越的吸附性能及独特的孔隙结构,使得其被广泛地用于催化剂载体。
现有技术将钙钛矿与粘土复合制备光催化剂,然而这两种材料复合仍然存在光催化材料普遍存在的电子-空穴复合速率快的问题,很大程度上限制了两种材料复合在光催化领域的应用前景。因而寻找能抑制这种电子空穴复合问题的第三种材料就显得尤为重要。
发明内容
新型碳材料具有较好的电荷迁移率,其中,新一代二维(2D)碳同素异形体石墨炔具有良好的化学稳定性,类似硅优异的半导体性能,有着天然的带隙(1.22eV),同时具有较高的导电性,正是石墨炔特殊的电子结构使其在超导、电子、能源以及光电等领域具有潜在、重要的应用前景。
鉴于背景技术所存在的问题,本发明的目的之一是提供一种低成本、使用性能好的钴酸镨/凹凸棒石/石墨炔的制备方法。本发明的目的之二是通过石墨炔自身特殊的结构来构建Z型光催化剂,抑制钴酸镨和凹凸棒石电子-空穴的复合,延长载流子的寿命,提高光耦合脱硝性能。
本发明解决上述问题的技术方案是:
一种钴酸镨/凹凸棒石/石墨炔纳米结构复合材料,首先通过金属催化的交叉偶联反应制备石墨炔,再通过溶胶凝胶法以凹凸棒石为载体负载钴酸镨,利用石墨炔材料独特的炔键引起碳骨架中部分碳原子带正电的特性,将钴酸镨/凹凸棒石负载在石墨炔片层上。
钴酸镨/凹凸棒石/石墨炔纳米结构复合材料的制备方法,工艺步骤如下:
(1)、石墨炔的制备:首先将0.2~0.6mL 1mol/L四丁基氯化铵(TBAF)和0.044~0.088mmol六[(三甲基甲硅烷基)乙炔基]苯在氮气保护下加入到10~30mL 1mol/L四氢呋喃(THF)中,6~10℃下搅拌反应8~12min,用乙酸乙酯稀释,饱和食盐水洗涤三次,无水硫酸钠干燥,浓缩得到六乙炔基苯单体。氮气保护下,用20~40mL吡啶溶解六乙炔基苯单体,然后慢慢滴入到装有40~60mL吡啶和2~6cm2铜箔基质的三口烧瓶中,滴加时间1h,六乙炔基苯单体与吡啶,铜箔发生交叉偶联反应,反应温度60~80℃,反应时间48~72h,在铜箔表面上形成石墨炔;得到的石墨炔片层的厚度为20~80nm,本发明范围内的原料用量和工艺参数制得的石墨炔的厚度较好,使得材料的导电率较好。
(2)、钴酸镨/凹凸棒石的制备:按照镨和钴的摩尔比为1:1~1:5,金属硝酸盐总和与柠檬酸的摩尔比为1:2~1:6,钴酸镨与凹凸棒石的质量比为1:2~1:10,称取硝酸镨、硝酸钴、络合剂柠檬酸和凹凸棒石加入到去离子水中搅拌,并滴加2~6mL乙二醇,然后将其转移到水浴锅中,在70℃~90℃下继续搅拌,搅拌蒸发16~24h,得到湿凝胶,在70~90℃下干燥,得到干凝胶,然后在600~800℃马弗炉中煅烧,研磨即得钴酸镨/凹凸棒石复合物;
煅烧温度低于600℃会造成钙钛矿不能形成,随着温度逐渐升高,凹凸棒石会无法保持原来的结构形貌,钙钛矿纳米颗粒也会因为烧结而团聚,造成活性位点的减少而使得催化性能下降。因此,本发明选择煅烧温度为600~800℃。
(3)、制备钴酸镨/凹凸棒石/石墨炔:将所制备的钴酸镨/凹凸棒石和石墨炔按照1:0.001-1:0.1的质量比加入到去离子水中,将混合溶液再搅拌2-4h以获得均匀的悬浮液,在70℃~90℃真空干燥,研磨即得钴酸镨/凹凸棒石/石墨炔复合材料。
本发明范围的钴酸镨/凹凸棒石和石墨炔的用量,能保证钴酸镨转移到石墨炔中的电子数能和凹凸棒石转移到石墨炔中的空穴数平衡,如果打破了平衡,则会造成自身电子空穴的复合,从而降低催化效率;石墨炔越多,迁移电子越快,但是过量的石墨炔容易造成石墨炔的堆叠,使得其迁移速率反而降低,造成光催化效率的降低。
本发明方法采用钴酸镨与凹凸棒石复合,凹凸棒石抑制了钴酸镨纳米颗粒的团聚,然后再将钴酸镨与凹凸棒石复合物负载在石墨炔片层上,石墨炔抑制了凹凸棒石的团聚,且石墨炔较大的比表面积有利于气体分子的物理吸附。
此外,通过石墨炔自身特殊的结构来构建Z型光催化剂,石墨炔特殊的结构使得其具有较高的电子迁移效率,并且具有半导体性质,钴酸镨上的电子可以快速转移至石墨炔上,而凹凸棒石上的空穴可以转移至石墨炔价带,从而电子被空穴捕获,防止了电子回流到钴酸镨上,而留下了钴酸镨价带上具有更强氧化性能的空穴和凹凸棒石导带上具有更强还原性能的电子。三者的协同作用极大地提高了光耦合脱硝性能。
与已有技术相比,本发明具有以下优点:
1、本发明中以凹凸棒石为骨架,钙钛矿纳米粒子均匀的负载在凹凸棒石上,避免了钙钛矿颗粒的团聚,凹凸棒石均匀分散在石墨炔上,能很好的发挥三者的协同催化作用。
2、本发明中凹凸棒石自身具有丰富的微孔结构和较大的比表面积,对气体分子有很好的原位吸附能力;石墨炔具有较大的比表面积和均匀分布的孔,可提供较多的活性位点,对气体分子有着极好的物理吸附。
3、本发明中石墨炔不仅可以提高催化剂的光吸收能力,加快电子迁移速率,还可以作为导电介质,缩短钙钛矿和凹凸棒石之间的电荷转移距离,钙钛矿导带上的电子转移到石墨炔的导带,进而转移至凹凸棒石的价带,与价带上的空穴复合,形成Z型异质结,从而抑制了自身电子-空穴的复合,进一步提高光耦合脱硝活性。
具体实施方式
本发明下面结合实施例作进一步详述:
实施例1
1、首先将29.1000g六[(三甲基甲硅烷基)乙炔基]苯溶于10mL 1mol/L四氢呋喃中,氮气保护下加入0.2mL 1mol/L四丁基氯化铵(TBAF),于6℃下搅拌反应8min,用乙酸乙酯稀释,饱和食盐水洗涤三次,无水硫酸钠干燥,浓缩得到六乙炔基苯单体。氮气保护下,用20mL吡啶溶解六乙炔基苯单体,慢慢滴入40mL吡啶和2cm2铜箔基质中,反应温度60℃,六乙炔基苯单体交叉偶联反应48h,在铜箔表面上形成石墨炔;
2、称取0.8776g硝酸镨、0.5872g硝酸钴、0.8063g络合剂柠檬酸和1g凹凸棒石加入到去离子水中搅拌,并滴加2mL乙二醇,然后将其转移到水浴锅中,在70℃下继续搅拌,搅拌蒸发16h,得到湿凝胶,在70℃下干燥,得到干凝胶,然后在600℃马弗炉中煅烧,研磨即得钴酸镨/凹凸棒石复合物;
3、称取1.0000g上述制备的钴酸镨/凹凸棒石和0.0010g石墨炔加入到去离子水中,将混合溶液搅拌2h以获得均匀的悬浮液,在70℃真空干燥,研磨即得钴酸镨/凹凸棒石/石墨炔复合材料。
实施例2
1、首先将43.6g六[(三甲基甲硅烷基)乙炔基]苯溶于20mL1mol/L四氢呋喃中,氮气保护下加入0.4mL 1mol/L四丁基氯化铵(TBAF),于8℃下搅拌反应10min,用乙酸乙酯稀释,饱和食盐水洗涤三次,无水硫酸钠干燥,浓缩得到六乙炔基苯单体。氮气保护下,用30mL吡啶溶解六乙炔基苯单体,慢慢滴入50mL吡啶和4cm2铜箔基质中,反应温度70℃,六乙炔基苯单体交叉偶联反应60h,在铜箔表面上形成石墨炔;
2、称取0.8776g硝酸镨、1.7615g硝酸钴、1.9230g络合剂柠檬酸和3g凹凸棒石加入到去离子水中搅拌,并滴加4mL乙二醇,然后将其转移到水浴锅中,在80℃下继续搅拌,搅拌蒸发20h,得到湿凝胶,在80℃下干燥,得到干凝胶,然后在800℃马弗炉中煅烧,研磨即得钴酸镨/凹凸棒石复合物;
3、称取1.0000g上述制备的钴酸镨/凹凸棒石和0.0500g石墨炔加入到去离子水中,将混合溶液搅拌3h以获得均匀的悬浮液,在80℃真空干燥,研磨即得钴酸镨/凹凸棒石/石墨炔复合材料。
实施例3
1、首先将58.1g六[(三甲基甲硅烷基)乙炔基]苯溶于30mL1mol/L四氢呋喃中,氮气保护下加入0.6mL 1mol/L四丁基氯化铵(TBAF),于10℃下搅拌反应12min,用乙酸乙酯稀释,饱和食盐水洗涤三次,无水硫酸钠干燥,浓缩得到六乙炔基苯单体。氮气保护下,用40mL吡啶溶解六乙炔基苯单体,慢慢滴入60mL吡啶和6cm2铜箔基质中,反应温度80℃,六乙炔基苯单体交叉偶联反应72h,在铜箔表面上形成石墨炔;
2、称取0.8776g硝酸镨、2.9358g硝酸钴、4.3938g络合剂柠檬酸和5g凹凸棒石加入到去离子水中搅拌,并滴加6mL乙二醇,然后将其转移到水浴锅中,在90℃下继续搅拌,搅拌蒸发24h,得到湿凝胶,在90℃下干燥,得到干凝胶,然后在900℃马弗炉中煅烧,研磨即得钴酸镨/凹凸棒石复合物;
3、称取1.0000g上述制备的钴酸镨/凹凸棒石和0.10g石墨炔加入到去离子水中,将混合溶液搅拌4h以获得均匀的悬浮液,在90℃真空干燥,研磨即得钴酸镨/凹凸棒石/石墨炔复合材料。
实施例4
1、首先将43.6g六[(三甲基甲硅烷基)乙炔基]苯溶于20mL1mol/L四氢呋喃中,氮气保护下加入0.4mL 1mol/L四丁基氯化铵(TBAF),于8℃下搅拌反应10min,用乙酸乙酯稀释,饱和食盐水洗涤三次,无水硫酸钠干燥,浓缩得到六乙炔基苯单体。氮气保护下,用30mL吡啶溶解六乙炔基苯单体,慢慢滴入50mL吡啶和4cm2铜箔基质中,反应温度60℃,六乙炔基苯单体交叉偶联反应48h,在铜箔表面上形成石墨炔;
2、称取0.8776g硝酸镨、0.5872g硝酸钴、0.8063g络合剂柠檬酸和1g凹凸棒石加入到去离子水中搅拌,并滴加6mL乙二醇,然后将其转移到水浴锅中,在80℃下继续搅拌,搅拌蒸发20h,得到湿凝胶,在80℃下干燥,得到干凝胶,然后在600℃马弗炉中煅烧,研磨即得钴酸镨/凹凸棒石复合物;
3、称取1.0000g上述制备的钴酸镨/凹凸棒石和0.0070g石墨炔加入到去离子水中,将混合溶液搅拌4h以获得均匀的悬浮液,在80℃真空干燥,研磨即得钴酸镨/凹凸棒石/石墨炔复合材料。
对比例1
在对比例1中,将实施例4中的石墨炔制备和加入石墨炔复合的步骤去掉,其他工艺条件不变,具体操作步骤如下:
1、称取0.8776g硝酸镨、0.5872g硝酸钴、0.8063g络合剂柠檬酸和1g凹凸棒石加入到去离子水中搅拌,并滴加6mL乙二醇,然后将其转移到水浴锅中,在80℃下继续搅拌,搅拌蒸发20h,得到湿凝胶,在80℃下干燥,得到干凝胶,然后在600℃马弗炉中煅烧,研磨即得钴酸镨/凹凸棒石复合物。
对比有无石墨炔,由于石墨炔的作用能抑制钙钛矿,凹凸棒石自身电子-空穴的复合,构建成Z型结构,如果没有石墨炔,钙钛矿/凹凸棒石纳米复合物只是普通的typeII异质结,其自身电子-空穴易于复合,进而造成光催化效率降低。
对比例2
在对比例2中,将实施例4中的凹凸棒石去掉,其他工艺条件不变,具体操作步骤如下:
1、首先将43.6g六[(三甲基甲硅烷基)乙炔基]苯溶于20mL1mol/L四氢呋喃中,氮气保护下加入0.4mL 1mol/L四丁基氯化铵(TBAF),于8℃下搅拌反应10min,用乙酸乙酯稀释,饱和食盐水洗涤三次,无水硫酸钠干燥,浓缩得到六乙炔基苯单体。氮气保护下,用30mL吡啶溶解六乙炔基苯单体,慢慢滴入50mL吡啶和4cm2铜箔基质中,反应温度60℃,六乙炔基苯单体交叉偶联反应48h,在铜箔表面上形成石墨炔;
2、称取0.8776g硝酸镨、0.5872g硝酸钴和0.8063g络合剂柠檬酸加入到去离子水中搅拌,并滴加6mL乙二醇,然后将其转移到水浴锅中,在80℃下继续搅拌,搅拌蒸发20h,得到湿凝胶,在80℃下干燥,得到干凝胶,然后在600℃马弗炉中煅烧,称取1.0000g上述制备的钴酸镨和0.0070g石墨炔加入到去离子水中,将混合溶液搅拌4h以获得均匀的悬浮液,在80℃真空干燥,研磨即得钴酸镨/石墨炔。
凹凸棒石具有很好的吸附性能,有利于对氮氧化物的吸附,催化性能的提高,为了将转移至石墨炔上的电子捕获提供了空穴,并留下了还原性能更强的电子。
对比例3
在对比例3中,将实施例4中的石墨炔换成石墨烯并将石墨炔制备步骤去掉,其他工艺条件不变,具体操作步骤如下:
1、称取0.8776g硝酸镨、0.5872g硝酸钴、0.8063g络合剂柠檬酸和1g凹凸棒石加入到去离子水中搅拌,并滴加6mL乙二醇,然后将其转移到水浴锅中,在80℃下继续搅拌,搅拌蒸发20h,得到湿凝胶,在80℃下干燥,得到干凝胶,然后在600℃马弗炉中煅烧,研磨即得钴酸镨/凹凸棒石复合物;
3、称取1.0000g上述制备的钴酸镨/凹凸棒石和0.0070g石墨烯加入到去离子水中,将混合溶液搅拌4h以获得均匀的悬浮液,在80℃真空干燥,研磨即得钴酸镨/凹凸棒石/石墨烯复合材料。
制得的钴酸镨/凹凸棒石/石墨烯复合材料中,由于石墨烯只能转移电子,不能储存或者捕捉电子,会存在一个电子回流现象,从而导致电子空穴复合,催化效果相对较差。而实施例4中石墨炔不仅具有较好的电荷迁移率,能加速电子的迁移,从而抑制钙钛矿和凹凸棒石自身电子-空穴的复合,而且其自身具有半导体性质,有着天然的带隙,凹凸棒石中的空穴转移至石墨炔的价带,使得从钴酸镨转移至石墨炔上的电子被捕获,避免了电子回流现象,从而抑制了钙钛矿和凹凸棒石自身电子-空穴的复合,并且获得了更强还原氧化性的电子空穴。
对比例4
在对比例4中,将实施例4中的硝酸镨换成硝酸镧,其他工艺条件不变,具体操作步骤如下:
1、首先将43.6g六[(三甲基甲硅烷基)乙炔基]苯溶于20mL1mol/L四氢呋喃中,氮气保护下加入0.4mL 1mol/L四丁基氯化铵(TBAF),于8℃下搅拌反应10min,用乙酸乙酯稀释,饱和食盐水洗涤三次,无水硫酸钠干燥,浓缩得到六乙炔基苯单体。氮气保护下,用30mL吡啶溶解六乙炔基苯单体,慢慢滴入50mL吡啶和4cm2铜箔基质中,反应温度60℃,六乙炔基苯单体交叉偶联反应48h,在铜箔表面上形成石墨炔;
2、称取0.6607g硝酸镧、0.5918g硝酸钴、0.8048g络合剂柠檬酸和1g凹凸棒石加入到去离子水中搅拌,并滴加6mL乙二醇,然后将其转移到水浴锅中,在80℃下继续搅拌,搅拌蒸发20h,得到湿凝胶,在80℃下干燥,得到干凝胶,然后在600℃马弗炉中煅烧,研磨即得钴酸镨/凹凸棒石复合物;
3、称取1.0000g上述制备的钴酸镨/凹凸棒石和0.0070g石墨炔加入到去离子水中,将混合溶液搅拌4h以获得均匀的悬浮液,在80℃真空干燥,研磨即得钴酸镨/凹凸棒石/石墨炔复合材料。
相比较于钴酸镧,钴酸镨具有更正的价带电位,在Z型催化剂中,将会留下凹凸棒石导带上的电子和钴酸镨价带上的空穴,因而具有更强氧化性能的空穴可以更好地氧化,从而提高催化性能。
脱硝性能评价
在光耦合脱硝装置的石英管中分别加入上述各实施例和对比例制备的复合材料,反应气配比均为:0.1%(体积百分比,下同)NH3,0.1%NO以及3%的O2(相对于气体总流量),N2作为平衡气,空速为50000h-1,气体总流量控制在1.5L/min,所使用的光源为500W的氙灯;通过烟气检测仪检测入口NOx浓度和不同温度下出口NOx浓度。
表1:各实施例制备的钴酸镨/凹凸棒石/石墨炔纳米结构复合材料分别在150℃、240℃对氮氧化物的转化率。
表1
Figure BDA0001742263320000101

Claims (3)

1.一种钴酸镨/凹凸棒石/石墨炔纳米复合材料,其特征在于:所述复合材料由钴酸镨、凹凸棒石和石墨炔组成,以凹凸棒石为载体负载钴酸镨,钴酸镨/凹凸棒石再负载在石墨炔片层上;
所述的钴酸镨/凹凸棒石/石墨炔纳米复合材料的制备方法工艺步骤如下:
(1)、石墨炔的制备:
首先将0.2~0.6mL的四丁基氟化铵(TBAF)和0.044~0.088mmol6-甲基硅炔苯在氮气保护下加入到10~30mL四氢呋喃(THF)中搅拌进行反应,用乙酸乙酯稀释,饱和食盐水洗涤三次,无水硫酸钠干燥,浓缩得到六乙炔基苯单体,氮气保护下,用20~40mL吡啶溶解六乙炔基苯单体,然后慢慢滴入到装有40~60mL吡啶和2~6cm2铜箔基质的三口烧瓶中,进行交叉偶联反应,在铜箔表面上形成石墨炔;
(2)、钴酸镨/凹凸棒石的制备:
按比例称取硝酸镨、硝酸钴、络合剂柠檬酸和凹凸棒石,加入到去离子水中搅拌,并滴加2~6mL乙二醇,然后将其转移到水浴锅中,在70℃~90℃下继续搅拌蒸发16~24h,得到湿凝胶,在70~90℃下干燥,得到干凝胶,然后在600~800℃马弗炉中煅烧,研磨即得钴酸镨/凹凸棒石复合物;
所述镨和钴的摩尔比为1:1~1:5,金属硝酸盐总和与柠檬酸的摩尔比为1:2~1:6,钴酸镨与凹凸棒石的质量比为1:2~1:10;
(3)、钴酸镨/凹凸棒石/石墨炔:
将步骤(2)制备的钴酸镨/凹凸棒石和步骤(1)制备的石墨炔按照质量比加入到去离子水中,将混合溶液再搅拌2-4h以获得均匀的悬浮液,在70℃~90℃真空干燥,研磨即得钴酸镨/凹凸棒石/石墨炔复合材料;
所述钴酸镨/凹凸棒石和石墨炔的质量比为:1:0.001-1:0.1。
2.如权利要求1所述的钴酸镨/凹凸棒石/石墨炔纳米复合材料,其特征在于:步骤(1)所述TBAF和THF的浓度均为:1mol/L,搅拌反应温度为:6~10℃,搅拌反应时间为:8~12min,交叉偶联反应温度60~80℃,反应时间48~72h。
3.一种如权利要求1所述的钴酸镨/凹凸棒石/石墨炔纳米复合材料的应用,其特征在于:所述纳米复合材料用于光耦合脱硝。
CN201810825001.8A 2018-07-25 2018-07-25 一种钴酸镨/凹凸棒石/石墨炔纳米复合材料及其制备方法和应用 Active CN109012150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810825001.8A CN109012150B (zh) 2018-07-25 2018-07-25 一种钴酸镨/凹凸棒石/石墨炔纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810825001.8A CN109012150B (zh) 2018-07-25 2018-07-25 一种钴酸镨/凹凸棒石/石墨炔纳米复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109012150A CN109012150A (zh) 2018-12-18
CN109012150B true CN109012150B (zh) 2021-03-16

Family

ID=64645941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810825001.8A Active CN109012150B (zh) 2018-07-25 2018-07-25 一种钴酸镨/凹凸棒石/石墨炔纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109012150B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001409B (zh) * 2019-12-25 2022-05-17 常州纳欧新材料科技有限公司 一种用于降解金霉素的光催化剂材料及其制备方法
CN112588294A (zh) * 2020-12-12 2021-04-02 莱西市济蓝环境生态科技院 一种空气净化用复合材料
CN116809052B (zh) * 2023-08-29 2023-11-28 北京大学 一种锕系离子-石墨炔复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774570A (zh) * 2010-01-27 2010-07-14 中国科学院化学研究所 一种制备石墨炔薄膜的方法
CN102120571A (zh) * 2011-03-28 2011-07-13 中国科学院化学研究所 一种石墨炔纳米线及其制备方法
CN102225757A (zh) * 2011-03-28 2011-10-26 中国科学院化学研究所 一种石墨炔纳米薄膜及其制备方法
CN107159223A (zh) * 2017-06-23 2017-09-15 常州大学 一种钴酸镧/凹凸棒土/还原氧化石墨烯纳米结构复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774570A (zh) * 2010-01-27 2010-07-14 中国科学院化学研究所 一种制备石墨炔薄膜的方法
CN102120571A (zh) * 2011-03-28 2011-07-13 中国科学院化学研究所 一种石墨炔纳米线及其制备方法
CN102225757A (zh) * 2011-03-28 2011-10-26 中国科学院化学研究所 一种石墨炔纳米薄膜及其制备方法
CN107159223A (zh) * 2017-06-23 2017-09-15 常州大学 一种钴酸镧/凹凸棒土/还原氧化石墨烯纳米结构复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Graphdiyne for high capacity and long-life lithium storage》;YuliangLi etal;《Nano Energy》;20151130;第481-489页 *
《Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors》;Karthikeyan Krishnamoorthy etal;《international journal of hydrogen energy》;20160430;第1672-1678页 *

Also Published As

Publication number Publication date
CN109012150A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
Li et al. Photocatalysis over NH2-UiO-66/CoFe2O4/CdIn2S4 double pn junction: Significantly promoting photocatalytic performance by double internal electric fields
Li et al. Photocatalyst design based on two-dimensional materials
Lan et al. Application of polyoxometalates in photocatalytic degradation of organic pollutants
Cao et al. Recent advances in visible light Bi-based photocatalysts
Jiang et al. Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process
Xu et al. Fabricated hierarchical CdS/Ni-MOF heterostructure for promoting photocatalytic reduction of CO2
Liu et al. Rational design of CeO2/Bi7O9I3 flower-like nanosphere with Z-scheme heterojunction and oxygen vacancy for enhancing photocatalytic activity
CN109012150B (zh) 一种钴酸镨/凹凸棒石/石墨炔纳米复合材料及其制备方法和应用
Zhou et al. Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst
Liu et al. Photocatalytic oxidation removal of elemental mercury from flue gas. A review
CN109012731B (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
Zhang et al. Fabrication of Z-scheme VO-Bi2WO6/g-C3N4 heterojunction composite with visible-light-driven photocatalytic performance for elemental mercury removal
Devarayapalli et al. Microwave synthesized nano-photosensitizer of CdS QD/MoO3–OV/g–C3N4 heterojunction catalyst for hydrogen evolution under full-spectrum light
CN106925304B (zh) Bi24O31Br10/ZnO复合可见光催化剂及其制备方法
Pu et al. Self-assembly of a gC 3 N 4-based 3D aerogel induced by N-modified carbon dots for enhanced photocatalytic hydrogen production
Pi et al. Properly aligned band structures in B-TiO2/MIL53 (Fe)/g-C3N4 ternary nanocomposite can drastically improve its photocatalytic activity for H2 evolution: Investigations based on the experimental results
CN111774083B (zh) 低温磷掺杂氮化碳负载高分散钯的析氢催化剂的制备方法及产品和应用
Liu et al. Construction of TiO2/BiOI1− x Z-scheme heterojunction with iodine vacancy for enhancing photocatalytic oxidation of elemental mercury
Wang et al. Constructing direct Z-scheme heterojunction g-C3N5/BiOBr for efficient photocatalytic CO2 reduction with H2O
Yang et al. Efficient H 2 evolution on Co 3 S 4/Zn 0.5 Cd 0.5 S nanocomposites by photocatalytic synergistic reaction
CN111203256A (zh) 一种SnS2/Au/g-C3N4复合光催化剂的制备方法及其应用
Zhao et al. Rational design bionic flower-like BiOBr0. 5I0. 5/WS2 Z-scheme heterojunction for efficient oxidation of Hg0: Synergistic effect of facets exposed and intrinsic defects
Wang et al. Electronic structure regulation of an S-scheme CuBi2O4/Sr0. 5NaTaO3 heterojunction with efficient carrier spatial transfer
Han et al. Band engineering design of g-C3N4-BiOClxBr1− x direct Z-scheme heterojunctions with remarkable enhancement of photocatalytic performance
Basaleh et al. Mesostructured ellipsoidal capsules barium stannate based perovskite photocatalysts anchored PtO nanoparticles for hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant