CN109004827B - 一种级联变换器自适应不对称死区时间的控制系统 - Google Patents

一种级联变换器自适应不对称死区时间的控制系统 Download PDF

Info

Publication number
CN109004827B
CN109004827B CN201810801478.2A CN201810801478A CN109004827B CN 109004827 B CN109004827 B CN 109004827B CN 201810801478 A CN201810801478 A CN 201810801478A CN 109004827 B CN109004827 B CN 109004827B
Authority
CN
China
Prior art keywords
current
converter
dead time
output
buck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810801478.2A
Other languages
English (en)
Other versions
CN109004827A (zh
Inventor
孙伟锋
胡瑞成
钱钦松
王廷营
廖良闯
唐海瑞
时龙兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Lianyungang Jierui Electronics Co Ltd
Original Assignee
Southeast University
Lianyungang Jierui Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University, Lianyungang Jierui Electronics Co Ltd filed Critical Southeast University
Priority to CN201810801478.2A priority Critical patent/CN109004827B/zh
Publication of CN109004827A publication Critical patent/CN109004827A/zh
Application granted granted Critical
Publication of CN109004827B publication Critical patent/CN109004827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

一种级联变换器自适应不对称死区时间的控制系统,包括电流采样电路、以微控制处理器为核心的控制电路和隔离驱动电路,在变换器的每一个工作周期内,电流采样电路采样变换器的输出电流Io,经过处理后输出给以微控制器为核心的控制电路,微控制处理器根据Io计算得到当前电路状态中前桥臂S1、S2两个开关管ZVS开启的最小电流I1min和I2min,再由I1min和I2min计算得到两个开关管所需的死区时间Tdead1和Tdead2,最后由微控制器为核心的控制电路调整输出驱动信号,实现S1和S2开关管死区时间的自适应不对称控制,减少因死区时间控制不合适导致开关管未完全实现ZVS开启而带来导通损耗和交叉损耗。

Description

一种级联变换器自适应不对称死区时间的控制系统
技术领域
本发明涉及开关电源变换器,尤其涉及一种Buck-Boost LLC级联变换器开关管自适应不对称死区时间的控制系统。
背景技术
Buck-Boost LLC级联变换器集合了Buck-Boost变换器和LLC谐振变化器的优点,因此其被广泛应用于宽输入电压范围的中等功率的开关变化场合。如图3所示,已知的Buck-Boost LLC级联变换器包括前级Buck-Boost变换器和后级半桥LLC谐振变换器,前级Buck-Boost变换器设有上开关管S1和下开关管S2构成的前桥臂、上开关管S3和下开关管S4构成的后桥臂、前后两桥臂之间的连接电感L以及输出电容COUT,后级半桥LLC谐振变换器设有与前级Buck-Boost变换器共用的上开关管S3和下开关管S4构成的桥臂、变压器TR、励磁电感Lm、谐振电感Lr、谐振电容Cr、输出电容Co、负载电阻R1以及二极管D1和D2
随着开关电源频率的不断提高,为了减小开关管在导通和关断阶段的开关损耗,软开关技术应需而生。软开关的基本工作原则是通过谐振电感Lr将开关管S1中输出电容中电荷量转移到互补开关管S2的输出电容上,即开关管S1输出电容的放电对应着互补开关管S2输出电容的充电。这样开关管S2在开通之前IDS为零,开通时不会产生开通损耗。但一般情况下前桥臂的S1、S2两个开关管输出电容并不是相同的,这就意味着它们的死区时间不一样。而现有技术的做法是假设前桥臂S1、S2两个开关管的死区时间相等:Tdead1=Tdead2,这就会带来以下问题:
1.假设实际情况下Tdead1>Tdead2,而软开关控制时以Tdead1时间为基准。那么在开关管S2完成软开关条件下,开关管S2并未马上给到栅驱动电压。此时S2管的体二极管导通,产生相应的导通损耗。
2.假设实际情况下Tdead1>Tdead2,而软开关控制时以Tdead2时间为基准。那么在开关管S1未充分完成软开关条件时,栅极驱动信号已到来。这种情况下将仍会产生开关损耗。
上述两点分析说明了现有控制方法的不足,在变换器中开关管S1、S2软开关的死区时间不对称的而产生的损耗和问题仍需要解决。
发明内容
本发明针对现有技术的缺陷,提供一种级联变换器自适应不对称死区时间的控制系统,对Buck-Boost LLC级联变换器中开关管的死区时间进行自适应不对称控制,能够提高Buck-Boost LLC级联变换器的效率。
本发明为实现上述目的,采用如下技术方案:一种级联变换器自适应不对称死区时间的控制系统,级联变换器包括前级Buck-Boost变换器和后级半桥LLC谐振变换器,两者级联构成Buck-Boost LLC级联变换器,前级Buck-Boost变换器设有原边侧上开关管S1和下开关管S2构成的前桥臂、上开关管S3和下开关管S4构成的后桥臂、前后两桥臂之间的连接电感L以及输出电容COUT,后级半桥LLC谐振变换器设有与前级Buck-Boost变换器共用的上开关管S3和下开关管S4构成的桥臂、变压器TR、励磁电感Lm、谐振电感Lr、谐振电容Cr、输出电容Co、负载电阻R1以及二极管D1和D2
其特征在于:设置包括电流采样电路、以微控制处理器为核心的控制电路以及隔离驱动电路构成的控制系统与级联变换器形成闭环,在级联变换器的每一个工作周期内,电流采样电路采样级联变换器的输出电流Io,经运算放大和低通滤波处理后的输出电流Io’输出给以微控制器为核心的控制电路,以微控制器为核心的控制电路用于执行精确死区时间的计算过程并产生具有一定周期和占空比的原边侧开关管S1和S2的控制信号,包括模数转换器ADC、逻辑控制单元LogicUnit以及定时器Timer,模数转换器ADC的输入端连接输出电流Io’,模数转换器ADC的输出与逻辑控制单元LogicUnit单向连接,逻辑控制单元LogicUnit的输出经过定时器Timer后输出至隔离驱动电路,隔离驱动电路输出两个驱动信号分别至开关管S1和S2的栅极,控制开关管S1和S2开启和关断;
以微控制器为核心的控制电路根据经运算放大和低通滤波处理后的输出电流Io’计算得到级联变换器在当前工作状态下的前桥臂开关管S1在ZVS开启时对应的最小电流I1min和开关管S2和在ZVS开启时对应的最小电流I2min,由最小电流I1min计算得到开关管S1所需的死区时间Tdead1,由最小电流I2min计算得到开关管S2所需的死区时间Tdead2,根据死区时间Tdead1、Tdead2调整输出给隔离驱动电路的占空比信号,调整当前状态所对应开关管的死区时间,对开关管S1和S2的死区时间进行自适应不对称控制,减少因死区时间控制不合适导致开关管S1和S2未完全实现ZVS开启而带来导通损耗和交叉损耗。
所述自适应不对称死区时间的推导过程如下:
前级Buck-Boost变换器输出电压Vout与输入电压Vin之间的关系为:
Figure BDA0001737202710000021
Figure BDA0001737202710000022
为S1管占空比,
Figure BDA0001737202710000023
为S4管占空比;
当开关管S3打开时,前级输入能量通过开关管S3传递到后级励磁电感Lm、谐振电感Lr、谐振电容C所构成的谐振槽,所以一个周期内传递的能量为
Figure BDA0001737202710000031
P为一个周期内传递的能量,T为周期,L为前级电感值,IL为前级电感电流,Imin为前级电感电流最小值;
Buck-Boost LLC输出功率为
Pout=η*P=Vo*Io
假设传输效率为100%,S1相对S4管的相移为x,那么x与输入电压Vin以及后级LLC输出电流Io之间的关系式如下:
Figure BDA0001737202710000032
其中Vo为后级LLC输出电压;
同理得另一关系式:
Figure BDA0001737202710000033
由开关管开启的最小电流计算得到相对应的死区时间:
Figure BDA0001737202710000034
即:
Figure BDA0001737202710000035
IZVS为开关管实现ZVS开启的电流,Coss为开关管对应的输出电容,Tdead为开关实现ZVS开启所需的死区时间,Tdead1为S1管实现ZVS开启所需的死区时间
Figure BDA0001737202710000036
即:
Figure BDA0001737202710000037
Tdead2为S2管实现ZVS开启所需的死区时间。
系统控制过程如下:
(1)当Buck-Boost LLC级联变换器处于工作状态时,在其每一个开关周期内,电流采样电路采样Buck-Boost LLC谐振变换器输出端电流Io,经运算放大和低通滤波处理后得到输出电流Io’,模数转换器ADC将输出电流Io’转换成数字值并存入逻辑控制单元LogicUnit;
(2)同一周期内,以微控制器为核心的控制电路将已以存入逻辑控制单元的输出电流Io’作为已知数据执行运算,计算得到原边侧前桥臂两个开关管S1和S2软开关开启的最小电流I1min和I2min,再由I1min和I2min计算得到开关管S1和S2相对应的死区时间Tdead1和Tdead2,最后以微控制器为核心的控制电路DSP在相应的时钟周期内修正相应死区时间信号从而更新占空比信号然后再输送给隔离驱动电路,隔离驱动电路输出驱动信号控制开关管S1、S2的开启和关断。
本发明具有以下优点及显著效果:
1、在电路状态发生改变时,实时调整Buck-Boost LLC谐振变换器原边侧前桥臂MOS管的死区时间,自适应能力强,控制更加精准。
2、在电路状态发生改变时,通过采样输出电流调整开关管的死区时间,从而有效的减小体二极管的导通和交叉损耗,提高了变换器的工作效率。
3、采用微控制器,无需专用集成电路的复杂控制,成本低,可靠性好。
附图说明
图1为现有技术一种死区时间控制方法;
图2为本发明提供的一种自适应不对称死区时间的控制方法框图;
图3为现有技术Buck-boost LLC级联变换器的原理图;
图4为本发明的电路原理图;
图5为前级电感电流波形图;
图6为本发明方法工作原理图;
图7为本发明与通用方法效率曲线。
具体实施方式
下面结合附图对发明的技术方案进行详细说明。
如图1,现有技术的一种Buck-Boost LLC级联变换器死区时间的控制方法:即通过人工设定前半桥臂两个开关管的死区时间,并由程序执行。
如图2,本发明方法在级联变换器的每一个工作周期内,采样级联变换器系统的输出电流Io,经运算放大和低通滤波处理后输出给以微控制器为核心的控制电路,以微控制器为核心的控制电路根据输出电流Io计算得到当前级联变换器系统在工作状态下的前桥臂开关管S1在ZVS开启的最小电流I1min和开关管S2在ZVS开启的最小电流I2min,由最小电流I1min计算得到开关管S1所需的死区时间Tdead1、由最小电流I2min计算得到开关管S2所需的死区时间Tdead2,以微控制器为核心的控制电路根据死区时间Tdead1、Tdead2对输出驱动信号进行调整,调整当前状态所对应开关管的死区时间,对开关管S1和S2开关管的死区时间进行自适应不对称控制,减少因死区时间控制不合适导致开关管S1和S2未完全实现ZVS开启而带来导通损耗和交叉损耗。与图1现有技术相比较,本发明利用电流采样电路获取输出端电流参数,再由微控制处理器计算出准确的开关管所对应的死区时间,最后通过隔离驱动电路输出驱动Buck-Boost LLC级联变换器前桥臂开关管S1和S2的栅驱动信号。
图3为已知的一种Buck-Boost LLC级联变换器电路图,S1、S2、S3和S4还有电感L组成了Buck-Boost前级电路,半桥LLC由S3和S4、变压器TR、电感Lr、电容Cr、Co、Cout,二极管D1、D2,负载电阻RL组成。半桥LLC通过与Buck-Boost前级电路共用S3和S4结合在一起。
如图4所示,本发明电流采样电路1,用于采集图3中Buck-Boost LLC级联变换器输出端电流Io。以微控制器为核心的控制电路2用于执行精确死区时间计算过程并产生具有一定周期和占空比的原边侧MOS管的控制信号,包括模数转换器ADC、逻辑控制单元LogicUnit以及一个定时器Timer,模数转换器ADC的输入端连接电流采样电路1,模数转换器ADC的输出与逻辑控制单元LogicUnit单向连接,逻辑控制单元LogicUnit的输出经过定时器Timer后,再经过隔离驱动电路3输出控制LLC变换器原边侧的MOS管S1和S2
本发明控制方法的工作原理为:
(1)当Buck-Boost LLC级联变换器处于工作状态时,在其每一个开关周期内,电流采样电路采样Buck-Boost LLC谐振变换器输出端电流Io,经运算放大和低通滤波处理后得到输出电流Io’,模数转换器ADC将输出电流Io’转换成数字值并存入逻辑控制单元LogicUnit;
(2)同一周期内,以微控制器为核心的控制电路DSP将已以存入逻辑控制单元的输出电流Io’作为已知数据执行运算,计算得到原边侧前桥臂两个开关管S1和S2软开关开启的最小电流I1min和I2min,再由I1min和I2min计算得到开关管S1和S2相对应的死区时间Tdead1和Tdead2,最后以微控制器为核心的控制电路DSP在相应的时钟周期内修正相应死区时间信号然后更新占空比信号再输送给隔离驱动电路,隔离驱动电路输出驱动信号控制开关管S1、S2的开启和关断。
由输出电流计算得到相应开关管死区时间的计算推导如下:
前级Buck-Boost变换器输出电压Vout与输入电压Vin之间的关系为:
Figure BDA0001737202710000061
Figure BDA0001737202710000062
为S1管占空比,
Figure BDA0001737202710000063
为S4管占空比.
当开关管S3打开时,前级输入能量通过开关管S3传递到后级励磁电感Lm、谐振电感Lr、谐振电容C所构成的谐振槽,所以一个周期内传递的能量为
Figure BDA0001737202710000064
P为一个周期内传递的能量,T为周期,L为前级电感值,IL为前级电感电流,Imin为前级电感电流最小值。
Buck-Boost LLC输出功率为
Pout=η*P=Vo*Io
假设传输效率为100%,S1相对S4管的相移为x,d1为S1管的死区时间。那么x与输入电压Vin以及后级LLC输出电流Io之间的关系式如下:
Figure BDA0001737202710000065
其中Vo为后级LLC输出电压;
同理可得另一关系式:
Figure BDA0001737202710000066
由开关管开启的最小电流计算得到相对应的死区时间:
Figure BDA0001737202710000067
即:
Figure BDA0001737202710000068
IZVS为开关管实现ZVS开启的电流,Coss为开关管对应的输出电容,Tdead为开关实现ZVS开启所需的死区时间,Tdead1为S1管实现ZVS开启所需的死区时间
Figure BDA0001737202710000071
即:
Figure BDA0001737202710000072
Tdead2为S2管实现ZVS开启所需的死区时间
最后由微控制处理器在相应的时钟周期内修正相应死区时间信号,更新占空比信号再输送给隔离驱动电路控制开关管的开启和关断。
如图5,前级电感电流与占空比信号之间的对应图。t0时刻S1管开启,d1对应于S1管所需死区时间,I1min为S1管软开启所需的最小的电流。t2时刻S2管开启,d2对应于S2管所需死区时间,I2min为S2管软开启所需的最小电流。d11为下一周期S1管的死区时间,d22为下一周期S2管的死区时间。
如图6,修正死区时间从而更新占空比信号的过程图。在上一周期对后级LLC的输出电流进行采样后根据该系统的工作原理从而在下一周期更新占空比信号,图中灰色部分为前移的实际占空比信号,实际上是通过减小该周期的死区时间实现。
如图7,为采用通用控制方法和采取本发明提出的控制方法下电源效率随输出功率的曲线图。不同于通用死区时间控制方法,本发明方法能够实现两个开关管自适应不对称的死去时间控制,减少了通用控制中存在的开关管的导通损耗或者交叉损耗,从而有效的提高了电源的工作效率。

Claims (2)

1.一种级联变换器自适应不对称死区时间的控制系统,级联变换器包括前级Buck-Boost变换器和后级半桥LLC谐振变换器,两者级联构成Buck-Boost LLC级联变换器,前级Buck-Boost变换器设有原边侧上开关管S1和下开关管S2构成的前桥臂、上开关管S3和下开关管S4构成的后桥臂、前后两桥臂之间的连接电感L以及输出电容COUT,后级半桥LLC谐振变换器设有与前级Buck-Boost变换器共用的上开关管S3和下开关管S4构成的桥臂、变压器TR、励磁电感Lm、谐振电感Lr、谐振电容Cr、输出电容Co、负载电阻R1以及二极管D1和D2
其特征在于:设置包括电流采样电路、以微控制处理器为核心的控制电路以及隔离驱动电路构成的控制系统与级联变换器形成闭环,在级联变换器的每一个工作周期内,电流采样电路采样级联变换器的输出电流Io,经运算放大和低通滤波处理后的输出电流Io’输出给以微控制器为核心的控制电路,以微控制器为核心的控制电路用于执行精确死区时间的计算过程并产生具有一定周期和占空比的原边侧开关管S1和S2的控制信号,包括模数转换器ADC、逻辑控制单元LogicUnit以及定时器Timer,模数转换器ADC的输入端连接输出电流Io’,模数转换器ADC的输出与逻辑控制单元LogicUnit单向连接,逻辑控制单元LogicUnit的输出经过定时器Timer后输出至隔离驱动电路,隔离驱动电路输出两个驱动信号分别至开关管S1和S2的栅极,控制开关管S1和S2开启和关断;
以微控制器为核心的控制电路根据经运算放大和低通滤波处理后的输出电流Io’计算得到级联变换器在当前工作状态下的前桥臂开关管S1在ZVS开启时对应的最小电流I1min和开关管S2在ZVS开启时对应的最小电流I2min,由最小电流I1min计算得到开关管S1所需的死区时间Tdead1,由最小电流I2min计算得到开关管S2所需的死区时间Tdead2,根据死区时间Tdead1、Tdead2调整输出给隔离驱动电路的占空比信号,调整当前状态所对应开关管的死区时间,对开关管S1和S2的死区时间进行自适应不对称控制,减少因死区时间控制不合适导致开关管S1和S2未完全实现ZVS开启而带来导通损耗和交叉损耗;
自适应不对称死区时间的推导过程如下:
前级Buck-Boost变换器输出电压Vout与输入电压Vin之间的关系为:
Figure FDA0002340229930000011
Figure FDA0002340229930000012
为开关管S1占空比,
Figure FDA0002340229930000013
为开关管S4占空比;
当开关管S3打开时,前级输入能量通过开关管S3传递到后级励磁电感Lm、谐振电感Lr、谐振电容Cr所构成的谐振槽,所以一个周期内传递的能量为
Figure FDA0002340229930000021
P为一个周期内传递的能量,T为周期,L为前级Buck-Boost变换器中的连接电感,IL为前级Buck-Boost变换器中的连接电感电流,Imin为前级Buck-Boost变换器中的连接电感电流最小值,t1为前级Buck-Boost变换器中的连接电感L的电流值最大的时刻,t2为开关管S2开启时刻,t3为开关管S3关断时刻,I1为前级Buck-Boost变换器中的连接电感t1时刻的电流值,I2为前级Buck-Boost变换器中的连接电感t2时刻的电流值;
Buck-Boost LLC输出功率为
Pout=η*P=Vo*Io
η为Buck-Boost LLC级联变换器的输出效率,假设传输效率为100%,开关管S1相对开关管S4的相移为x,那么x与输入电压Vin以及后级LLC输出电流Io之间的关系式如下:
Figure FDA0002340229930000022
其中Vo为后级LLC输出电压;
同理得另一关系式:
Figure FDA0002340229930000023
由开关管开启的最小电流计算得到相对应的死区时间:
Figure FDA0002340229930000024
即:
Figure FDA0002340229930000025
IZVS为开关管实现ZVS开启的电流,Coss为开关管对应的输出电容,Tdead为开关管实现ZVS开启所需的死区时间,Tdead1为开关管S1实现ZVS开启所需的死区时间
Figure FDA0002340229930000026
即:
Figure FDA0002340229930000027
Tdead2为开关管S2实现ZVS开启所需的死区时间。
2.根据权利要求1所述的级联变换器自适应不对称死区时间的控制系统,其特征在于:控制过程如下:
(1)当Buck-Boost LLC级联变换器处于工作状态时,在其每一个开关周期内,电流采样电路采样Buck-Boost LLC谐振变换器输出端电流Io,经运算放大和低通滤波处理后得到输出电流Io’,模数转换器ADC将输出电流Io’转换成数字值并存入逻辑控制单元LogicUnit;
(2)同一周期内,以微控制器为核心的控制电路将已存入逻辑控制单元的输出电流Io’作为已知数据执行运算,计算得到原边侧前桥臂两个开关管S1和S2软开关开启的最小电流I1min和I2min,再由I1min和I2min计算得到开关管S1和S2相对应的死区时间Tdead1和Tdead2,最后以微控制器为核心的控制电路DSP在相应的时钟周期内修正相应死区时间信号从而更新占空比信号然后再输送给隔离驱动电路,隔离驱动电路输出驱动信号控制开关管S1、S2的开启和关断。
CN201810801478.2A 2018-07-20 2018-07-20 一种级联变换器自适应不对称死区时间的控制系统 Active CN109004827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810801478.2A CN109004827B (zh) 2018-07-20 2018-07-20 一种级联变换器自适应不对称死区时间的控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810801478.2A CN109004827B (zh) 2018-07-20 2018-07-20 一种级联变换器自适应不对称死区时间的控制系统

Publications (2)

Publication Number Publication Date
CN109004827A CN109004827A (zh) 2018-12-14
CN109004827B true CN109004827B (zh) 2020-04-14

Family

ID=64596660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810801478.2A Active CN109004827B (zh) 2018-07-20 2018-07-20 一种级联变换器自适应不对称死区时间的控制系统

Country Status (1)

Country Link
CN (1) CN109004827B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110784112A (zh) * 2019-10-17 2020-02-11 东南大学 升降压谐振变换器副边电流不对称的控制系统及控制方法
CN111342664A (zh) * 2020-02-24 2020-06-26 华中科技大学 一种集成dc-dc变换器及其控制方法
CN112491277B (zh) * 2020-11-25 2023-02-17 青岛鼎信通讯股份有限公司 一种通过死区时间自适应提高电力电子变压器效率的方法
CN113328626B (zh) * 2021-04-29 2022-06-17 武汉麦格米特电气有限公司 一种四开关Buck-Boost变换器的控制方法、控制器及电源设备
CN115149808A (zh) * 2022-07-21 2022-10-04 东南大学 一种四管升降压变换器的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201846233U (zh) * 2010-08-06 2011-05-25 东南大学 死区时间自适应控制的开关级电路
CN103944402A (zh) * 2014-04-15 2014-07-23 广州金升阳科技有限公司 一种零电压开关的它激式推挽变换器的控制方法及变换器
CN106972750A (zh) * 2017-03-16 2017-07-21 合肥工业大学 基于buck‑llc两级dc/dc变换器的三环定频控制方法
CN107818865A (zh) * 2017-09-19 2018-03-20 东南大学 一种半桥llc谐振变换器中的高频中间抽头平面变压器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201846233U (zh) * 2010-08-06 2011-05-25 东南大学 死区时间自适应控制的开关级电路
CN103944402A (zh) * 2014-04-15 2014-07-23 广州金升阳科技有限公司 一种零电压开关的它激式推挽变换器的控制方法及变换器
CN106972750A (zh) * 2017-03-16 2017-07-21 合肥工业大学 基于buck‑llc两级dc/dc变换器的三环定频控制方法
CN107818865A (zh) * 2017-09-19 2018-03-20 东南大学 一种半桥llc谐振变换器中的高频中间抽头平面变压器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
大功率白光 LED 驱动电源的研制;杨剑;《中国优秀硕士学位论文全文数据库 信息科技辑》;20111215;第34-43页 *
集成 Buck-Boost+LLC 级联变换器控制研究;刘梦珠;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20180415(第04期);第13-22、48-49页 *

Also Published As

Publication number Publication date
CN109004827A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
CN109004827B (zh) 一种级联变换器自适应不对称死区时间的控制系统
CN103872920B (zh) 隔离式双向三电平变换器的漏感电流直接斜率控制方法
CN110138225B (zh) 用于电流源型双变压器双向dc-dc变换器的控制方法
CN106655781B (zh) 一种lcc谐振变换器pwm移相混合控制及效率优化方法
CN113691140B (zh) 一种用于llc变换器双向同步整流控制装置的控制方法
CN107370386A (zh) 电流型双向dc‑dc变换器的最优占空比电压不匹配控制方法
CN109120072B (zh) S/sp型无线充电系统恒压及效率优化控制方法
CN106981994A (zh) 一种单管双端逆变隔离型dc‑dc升压变换器
CN109450254B (zh) 一种两级变换器的间歇模式的控制方法
CN107147296A (zh) 一种带下拉有源钳位支路的隔离型dc‑dc升压变换器
CN109742939B (zh) 一种双向pfc软开关及其控制方法
CN107733234A (zh) 一种适用于谐振网络半同步整流器的不对称控制电路及其控制方法
CN115642805A (zh) 基于ZVS的六开关buck-boost变换器
CN112311222A (zh) 一种基于复合预测电流控制的改进型无桥dbpfc变换器及控制方法
CN106877522B (zh) 一种串联补偿双有源无线电能传输系统的控制方法
CN110994982A (zh) 一种软开关方式的buck变换器及其控制方法
CN114726214A (zh) 一种四管Buck-Boost变换器控制方法和控制电路
CN110061624A (zh) 采用脉宽调制控制的软开关谐振buck变换器
CN114157150A (zh) 一种高增益的双向y源-llc隔离直流-直流变换器
CN102111074B (zh) 降低移相全桥变换器开关损耗的方法及装置
CN110224605B (zh) 一种全桥变换电路
CN111596130A (zh) 一种利用谐振频率检测技术提高能量路由器效率的方法
WO2023045416A1 (zh) 一种升降压逆变器及其控制方法
CN109194136A (zh) 一种减小双向llc变换器变压器偏磁控制方法
CN108322054A (zh) 降低二极管电压应力的软开关谐振直流变换器及计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant