CN108998753A - 一种铝基复合陶瓷涂层电极板及其制备方法 - Google Patents

一种铝基复合陶瓷涂层电极板及其制备方法 Download PDF

Info

Publication number
CN108998753A
CN108998753A CN201810665946.8A CN201810665946A CN108998753A CN 108998753 A CN108998753 A CN 108998753A CN 201810665946 A CN201810665946 A CN 201810665946A CN 108998753 A CN108998753 A CN 108998753A
Authority
CN
China
Prior art keywords
aluminum
electrode plate
base composite
ceramic coating
composite ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810665946.8A
Other languages
English (en)
Inventor
周生刚
徐阳
竺培显
曹勇
焦增凯
罗开亮
泉贵岭
马双双
彭斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201810665946.8A priority Critical patent/CN108998753A/zh
Publication of CN108998753A publication Critical patent/CN108998753A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开一种铝基复合陶瓷涂层电极板及其制备方法,属于电极材料制备技术领域。本发明所述铝基复合陶瓷涂层电极板包括基体铝板和复合陶瓷薄膜,复合陶瓷薄膜由TiB2和Ti4O7构成,其中Ti4O7的质量百分比为5%‑20%,TiB2的质量百分比为80%‑95%。本发明采用等离子喷涂技术,在高温下将TiB2和Ti4O7的混合熔融或半熔融态粒子以较高的速度射向经过预处理的铝板表面,最终在铝板表面形成结合牢固的表面涂层。采用本发明方法所制备的铝基复合陶瓷涂层电极板具有导电性好、析氧电位低、耐腐蚀性强、机械强度高和成本低的特点,该铝基复合陶瓷涂层电极板可用作电积锌,金属回收,电解氧化锰等电化学过程中的极板。

Description

一种铝基复合陶瓷涂层电极板及其制备方法
技术领域
本发明涉及一种铝基复合陶瓷涂层电极板及其制备方法,属于电极材料制备技术领域。
背景技术
随着有色金属矿石品位的不断降低和对“绿色矿业”的要求逐渐提高,湿法电解生产有色金属的冶炼方法已占据首要地位,而作为湿法电解工业电化学体系中“心脏”器官的电极材料,其选择和制备一直是学术界的难题和研究热点。目前用于湿法冶金的不溶性阳极材料主要以铅基合金电极(简称铅电极)和钛基涂层电极(简称钛电极)为主。然而铅的内阻大、析氧电位高、电能消耗大、质量重以及易溶解,不仅电极消耗大,且污染电解液和阴极析出产品,导致阴极电沉积产品中的杂质铅含量增加;而钛电极的内阻大,是其作为电极材料的主要缺陷,且钛电极主要以铱、钌、钽等稀贵金属氧化物作为活性催化涂层原料,不仅成本昂贵,且在硫酸电解过程中涂层易脱落失效。因此,选择何种材料和制备技术是开发新型节能电极的关键因素。
铝因为其良好的导电性,以及即使在电沉积过程中被浸蚀也不会毒化电解液、污染阴极析出产品,因此铝基电极受到了研究者们的广泛关注。然而,所有的研究均未能解决在长期电沉积过程中的新生态氧原子、电解液等沿着涂层孔隙扩散到基体表面,形成氧化物绝缘层或造成基体被浸蚀,从而阳极失效等问题。因此,如何进一步的提升新型电极的性能,就需从如何降低涂层电极基体的电阻率,同时保护低电阻率的基体在电沉积过程中不被浸蚀的问题入手。
发明内容
本发明的目的在于克服铝电极在长期电沉积过程中的新生态氧原子、电解液等沿着涂层孔隙扩散到基体表面,形成氧化物绝缘层或基体被浸蚀,造成阳极失效的问题。根据材料的性能叠加效应和性能可设计性,采用等离子喷涂的方法,通过在铝电极表面沉积具有良好的润湿性、导电性的二硼化钛(TiB2)陶瓷粉末和具有催化活性高、耐腐蚀性强的Magneli 相亚氧化钛(Ti4O7)粉末,制备出新型铝基复合陶瓷涂层电极板。所制备的电极板具有导电性好、析氧电位低、耐腐蚀性强、机械强度高和成本低的特点,可用作电积锌,金属回收,电解氧化锰等电化学过程中的极板。
本发明通过以下技术方案实现:
一种铝基复合陶瓷涂层电极板,所述铝基复合陶瓷涂层电极板包括基体铝板和复合陶瓷薄膜,复合陶瓷薄膜由TiB2和Ti4O7构成,其中Ti4O7的质量百分比为5%-20%,TiB2的质量百分比为80%-95%。
优选的,本发明所述复合陶瓷薄膜的厚度为90-170μm。
本发明的另一目的在于提供所述铝基复合陶瓷涂层电极板的制备方法,具体包括以下步骤:
(1)对基体铝板进行清洗、喷砂处理;
(2)在基体铝板表面采用等离子喷涂法制备复合陶瓷薄膜,将TiB2粉末和Ti4O7粉末混合均匀,将混合粉末的混合熔融或半熔融态粒子以较高的速度射向经过预处理的基体铝板表面,最终在基体铝板表面形成结合牢固的陶瓷薄膜。
优选的,本发明步骤(1)所述喷砂处理中砂(石英砂)的粒度为200-500μm。
优选的,本发明步骤(2)中所述等离子喷涂法的条件为:喷涂功率为 30~33k W,送粉电位为8~10V,喷涂距离为11~13cm,喷射角为90°;保护气为氩气、氮气和氢气的混合气体,其中,氩气流速为1800~2200L/h,氮气流速为 2000~2300L/h,氢气流速为10~20L/h。
优选的,本发明步骤(2)中所述TiB2粉末和Ti4O7粉末的粒径为325~400目,两种粉末的均匀混合采用混料机干混1h得到。
优选的,本发明所述清洗是将铝板放在10%的NaOH溶液中,利用超声波进行清洗10min,然后用蒸馏水清洗表面。
本发明所述铝基复合陶瓷涂层电极板可用作电积锌,金属回收,电解氧化锰等电化学过程中的极板。
本发明的有益效果
(1)本发明采用等离子喷涂将将TiB2和Ti4O7的混合熔融或半熔融态粒子以较高的速度射向经过预处理的铝板表面,最终在铝板表面形成结合牢固的表面涂层;由于铝的内阻小,可以降低再生产过程中的电能损耗,从而实现节能的目的;铝的密度比铅合金的小,从而可以减轻电极板的质量;铝的价格比钛合金、铅合金的低,从而可以大大降低原材料的成本。
(2)本发明所采用的工艺较为简单,直接在铝金属板载体表面进行喷涂,即可获得与铝板结合良好、高导电、机械强度高和耐蚀性好的复合陶瓷薄膜,该铝基复合陶瓷涂层电极板可用作电积锌,金属回收,电解氧化锰等电化学过程中的极板。
附图说明
图1是铝基复合陶瓷涂层电极板的制备流程示意图。
图2是实施例 1~3制备的陶瓷薄膜的XRD 图谱。
图3是实施例 1~3制备的陶瓷薄膜的SEM图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
(1)将基体铝板进行清洗、喷砂处理,将其放在10%的NaOH溶液中并进行超声处理10min,然后用蒸馏水清洗表面,将其浸泡于无水乙醇溶液中备用;用吹风机吹干后进行喷砂处理(石英砂的粒度为200μm),获得表面粗化的基体铝板。
(2)采用等离子喷涂法在表面粗化的基体铝板上制备复合陶瓷薄膜:将表面粗化的基体铝板固定在工作架上,将粒径为325目的TiB2和Ti4O7的混合粉末放入送粉器中,设定氩气流速为1800L/h,氮气流速为2000L/h,氢气流速为10L/h,喷涂功率为30k W,送粉电位为8V,喷涂距离为11cm,喷射角为90°;检查设定参数无误和送粉器送粉均匀连续后,点击电脑上预先编程好的喷涂路径进行喷涂,利用复合陶瓷薄膜和铝板之间具有良好的结合力从而获得高导电性、机械性能好的铝基复合陶瓷涂层电极板(如图1所示)。
(3)对喷涂的铝基复合陶瓷涂层电极板进行物相表征,图2中曲线a为薄膜的XRD图谱,分析可知:混合喷涂层组织中除了TiB2和Ti4O7外,还出现了少量的TiO2衍射峰,对薄膜的成分进行定量分析,可知Ti4O7的含量为10%。从图3(a)薄膜的SEM分析可知,该复合陶瓷薄膜厚度为95μm,且致密,铝基和复合陶瓷薄膜结合良好。
实施例2
(1)将铝板进行清洗、喷砂处理,将其放在10%的NaOH溶液中并进行超声处理10min,然后用蒸馏水清洗表面,然后将其浸泡于无水乙醇溶液中备用;用吹风机吹干后进行喷砂处理(石英砂的粒度为300μm),获得表面粗化的基体铝板。
(3)采用等离子喷涂法在表面粗化的基体铝板上制备复合陶瓷薄膜:将表面粗化的基体铝板固定在工作架上,将粒径为400目的TiB2和Ti4O7的混合粉末放入送粉器中,设定氩气流速为2000L/h,氮气流速为2100L/h,氢气流速为20L/h,喷涂功率为32kW,送粉电位为10V,喷涂距离为11cm,喷射角为90°;检查设定参数无误和送粉器送粉均匀连续后,点击电脑上预先编程好的喷涂路径进行喷涂,利用复合陶瓷薄膜和铝板之间具有良好的结合力从而获得高导电性、机械性能好的铝基复合陶瓷涂层电极板。
(3)对喷涂的铝基复合陶瓷涂层电极板进行物相表征,图2中曲线b为薄膜的XRD图谱,分析可知,Ti4O7物相的XRD峰略微升高,对薄膜的成分进行定量分析,可知Ti4O7的含量为15%;从图3(b)的SEM分析可知,该复合陶瓷薄膜厚度为140μm,且致密,铝基和复合陶瓷薄膜结合良好;因此采用此发明可制备出高导电、机械性强的铝基复合陶瓷薄膜。
实施例3
(1)将铝板进行清洗、喷砂处理,将其放在10%的NaOH溶液中并进行超声处理10min,然后用蒸馏水清洗表面,然后将其浸泡于无水乙醇溶液中备用;用吹风机吹干后进行喷砂处理(石英砂的粒度为400μm),获得表面粗化的基体铝板。
(2)采用等离子喷涂法在表面粗化的基体铝板上制备复合陶瓷薄膜:将表面粗化的基体铝板固定在工作架上,将粒径为400目的TiB2和Ti4O7的混合粉末放入送粉器中,设定氩气流速为2200L/h,氮气流速为2200L/h,氢气流速为15L/h,喷涂功率为33kW,送粉电位为10V,喷涂距离为13cm,喷射角为90°;检查设定参数无误和送粉器送粉均匀连续后,点击电脑上预先编程好的喷涂路径进行喷涂,利用复合陶瓷薄膜和铝板之间具有良好的结合力从而获得高导电性、机械性能好的铝基复合陶瓷涂层电极板。
对喷涂的铝基复合陶瓷涂层电极板进行物相表征,图2中曲线c为薄膜的XRD图谱分析可知,TiO2衍射峰明显减弱,TiB2峰明显升高,表明其晶相含量升高,且具有更良好的结晶度,对薄膜的成分进行定量分析,可知Ti4O7的含量为5%;从图3(c)的SEM分析可知,该复合陶瓷薄膜厚度为170μm,且致密,铝基和复合陶瓷薄膜结合良好;因此采用此发明可制备出高导电、机械性强的铝基复合陶瓷薄膜。

Claims (6)

1.一种铝基复合陶瓷涂层电极板,其特征在于:所述铝基复合陶瓷涂层电极板包括基体铝板和复合陶瓷薄膜,复合陶瓷薄膜由TiB2和Ti4O7构成,其中Ti4O7的质量百分比为5%-20%,TiB2的质量百分比为80%-95%。
2.根据权利要求1所述铝基复合陶瓷涂层电极板,其特征在于:复合陶瓷薄膜的厚度为90-170μm。
3.权利要求1或2所述铝基复合陶瓷涂层电极板的制备方法,其特征在于,具体包括以下步骤:
(1)对基体铝板进行清洗、喷砂处理;
(2)在基体铝板表面采用等离子喷涂法制备复合陶瓷薄膜:将TiB2粉末和Ti4O7粉末混合均匀,将混合粉末的混合熔融或半熔融态粒子以较高的速度射向经过预处理的基体铝板表面,最终在基体铝板表面形成结合牢固的陶瓷薄膜。
4.根据权利要求3所述的铝基复合陶瓷涂层电极板的制备方法,其特征在于:步骤(1)所述喷砂处理中砂的粒度为200-500μm。
5.根据权利要求3所述的铝基复合陶瓷涂层电极板的制备方法,其特征在于:步骤(2)中所述等离子喷涂法的条件为:喷涂功率为 30~33k W,送粉电位为8~10V,喷涂距离为11~13cm,喷射角为 90°;保护气为氩气、氮气和氢气的混合气体,其中,氩气流速为1800~2200L/h,氮气流速为 2000~2300L/h,氢气流速为10~20L/h。
6.根据权利要求3所述的铝基复合陶瓷涂层电极板的制备方法,其特征在于:步骤(2)中所述TiB2粉末和Ti4O7粉末的粒径为325~400目,两种粉末的均匀混合采用混料机干混1h得到。
CN201810665946.8A 2018-06-26 2018-06-26 一种铝基复合陶瓷涂层电极板及其制备方法 Pending CN108998753A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810665946.8A CN108998753A (zh) 2018-06-26 2018-06-26 一种铝基复合陶瓷涂层电极板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810665946.8A CN108998753A (zh) 2018-06-26 2018-06-26 一种铝基复合陶瓷涂层电极板及其制备方法

Publications (1)

Publication Number Publication Date
CN108998753A true CN108998753A (zh) 2018-12-14

Family

ID=64601192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810665946.8A Pending CN108998753A (zh) 2018-06-26 2018-06-26 一种铝基复合陶瓷涂层电极板及其制备方法

Country Status (1)

Country Link
CN (1) CN108998753A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195435A (zh) * 2020-10-14 2021-01-08 昆明理工大学 一种类核壳结构Al@(TiB2+Ti4O7)-PbO2阳极板及其制备方法
CN112962119A (zh) * 2021-01-19 2021-06-15 昆明理工大学 一种有色金属电积用复合电极板及其制备方法
CN114275857A (zh) * 2021-12-06 2022-04-05 澳门大学 一种电化学废水处理装置及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105297073A (zh) * 2015-10-30 2016-02-03 昆明理工大学 一种铜基亚氧化钛电极板的制备方法
CN105523761A (zh) * 2016-01-22 2016-04-27 江苏联合金陶特种材料科技有限公司 一种污水污泥处理用耐蚀导电陶瓷电极材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105297073A (zh) * 2015-10-30 2016-02-03 昆明理工大学 一种铜基亚氧化钛电极板的制备方法
CN105523761A (zh) * 2016-01-22 2016-04-27 江苏联合金陶特种材料科技有限公司 一种污水污泥处理用耐蚀导电陶瓷电极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
范农杰等: ""等离子喷涂法制备Ti/Ti4O7+TiB2/PbO2阳极材料的性能研究"", 《热加工工艺》 *
郭晓亮等: ""等离子喷涂法制备Al/TiB2复合电极及电化学性能研究"", 《材料导报B:研究篇》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195435A (zh) * 2020-10-14 2021-01-08 昆明理工大学 一种类核壳结构Al@(TiB2+Ti4O7)-PbO2阳极板及其制备方法
CN112962119A (zh) * 2021-01-19 2021-06-15 昆明理工大学 一种有色金属电积用复合电极板及其制备方法
CN114275857A (zh) * 2021-12-06 2022-04-05 澳门大学 一种电化学废水处理装置及其应用

Similar Documents

Publication Publication Date Title
CN101736369B (zh) 锌电积用新型铝基复合二氧化铅-二氧化锰阳极的制备方法
EP2644721B1 (en) Method for producing highly corrosion-resistant porous Ni-Sn body
CN102212849B (zh) 一种有色金属电积用新型阳极板制备方法
CN108998753A (zh) 一种铝基复合陶瓷涂层电极板及其制备方法
CN102888625B (zh) 有色金属电积用栅栏型阳极板
CN105058916A (zh) 一种具有亚氧化钛中间涂层的电极材料
CN101922024A (zh) 一种有色金属电沉积用轻质复合电催化节能阳极及其制备方法
TW201207161A (en) Method of manufacturing aluminum structure, and aluminum structure
CN107502945A (zh) 一种石墨烯铝合金导线及制备方法
CN104313652B (zh) 一种铝基多相惰性复合阳极材料的制备方法
CN105297073A (zh) 一种铜基亚氧化钛电极板的制备方法
CN103552312A (zh) 一种具有二硼化钛中间涂层的复合材料
CN109338269A (zh) 一种铜基导电陶瓷涂层电极材料的制备方法
CN112962119A (zh) 一种有色金属电积用复合电极板及其制备方法
CN109023420A (zh) 一种镍电积用铝基复合阳极及其制备方法
CN111074317B (zh) 一种铜箔的表面处理方法及铜箔材料
Kumar et al. Electrodeposition and characterization of Ni-ZrO2 nanocomposites by direct and pulse current methods
Han et al. Preparation and electrochemical properties of Al/TiB2/β-PbO2 layered composite electrode materials for electrowinning of nonferrous metals
CN110656352A (zh) 一种废铅酸蓄电池的固相电解再生铅的循环利用方法
CN108774737B (zh) 一种泡沫金属基铅合金复合阳极材料的制备方法
CN112195435A (zh) 一种类核壳结构Al@(TiB2+Ti4O7)-PbO2阳极板及其制备方法
CN102433581B (zh) 一种有色金属电积用新型阳极材料的制备方法
CN101997107B (zh) 一种镁电池用镁电极及其制备方法
CN101195926B (zh) 铝合金表面获得TiAl/Al2O3复合材料陶瓷膜层的方法
CN114250489B (zh) 一种基于电沉积法制备铜铁合金的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181214

RJ01 Rejection of invention patent application after publication