CN108998712B - 一种可溶桥塞用复合材料及其制备方法 - Google Patents

一种可溶桥塞用复合材料及其制备方法 Download PDF

Info

Publication number
CN108998712B
CN108998712B CN201810790770.9A CN201810790770A CN108998712B CN 108998712 B CN108998712 B CN 108998712B CN 201810790770 A CN201810790770 A CN 201810790770A CN 108998712 B CN108998712 B CN 108998712B
Authority
CN
China
Prior art keywords
bridge plug
driving wheel
die
composite material
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810790770.9A
Other languages
English (en)
Other versions
CN108998712A (zh
Inventor
李雷
陈玉奇
赵素
苗青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN201810790770.9A priority Critical patent/CN108998712B/zh
Publication of CN108998712A publication Critical patent/CN108998712A/zh
Application granted granted Critical
Publication of CN108998712B publication Critical patent/CN108998712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/065Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/134Bridging plugs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种可溶桥塞用复合材料及其制备方法,包含以下质量百分比的原料组分:石墨烯0.01~20wt%,碳化硅0.01~50wt%,镁或镁合金30~99.5wt%,增强剂0.01~50wt%,余量为不可避免杂质;按配比称取原料并混匀后加入到真空储料箱内,粉料在驱动轮和推料轮反向旋转作用下经料斗,沿驱动轮表面凹槽推入至由驱动轮表面凹槽、弧形槽封块和堵料块形成的储料空间内,在摩擦力作用下粉料由进料通道挤入模腔,经成型模具挤出成型,所得材料强度高,可在水中降解,满足可溶桥塞性能要求。

Description

一种可溶桥塞用复合材料及其制备方法
技术领域
本发明属于油气勘探开发用新材料领域,具体涉及一种可溶桥塞用复合材料及其制备方法。
背景技术
压裂是一项广泛应用的油气井增产措施,油井生产到一定阶段后,产能和渗透率降低,为了增强排油能力,提高油井产量,人们发明了压裂工艺技术。压裂的方法分水力压裂和高能气体压裂两大类,水力压裂是靠地面高压泵车车组将流体高速注入井中,借助井底憋起的高压,使油层岩石破裂产生裂缝。在地层破裂后的注入液体中,混入比地层密度大数倍的砂子,同流体一并进入裂缝,并永久停留在裂缝中,支撑裂缝处于开启状态,便于油气流流动。当前水力压裂技术已经非常成熟,油气井增产效果明显,已成为油气田增产常用技术,特别对于油流通道很小、渗透率较底的油层增产效果特别突出。分段压裂是常用的压裂技术,在完井套管串上封隔器和压裂滑套,将油气储层分成若干段,用同一套泵车依次单段压裂,从而达到最大化储层渗流能力、提高导流性和生产力。压裂液一般采用水基压裂液,在压裂过程中,桥塞需要承受很高的压力,要求桥塞用材料的抗拉强度达到450MPa,屈服强度大于300MPa,延伸率大于3wt%。此外,在压裂过程中,为了扩大裂纹和防止裂纹闭合,常采用酸化压裂。
桥塞是钻完井及增产施工中一项至关重要的部件,实现套管完井水平井不限级数压裂。在压裂过程中,桥塞材料需要在压裂过程中需要同时承受高应力和酸液腐蚀作用而不能破坏,传统桥塞材料采用不锈钢等耐蚀材料制备,这类材料无法溶解,需要下铣刀钻铣,才能打通采油通道,由于是在地下无人状态下作业,目前常用的金属桥塞存在钻铣时间长和成本高的问题。近年来,基于可溶材料的桥塞技术也逐渐备受青睐,国内外石油公司纷纷在可溶桥塞技术上投入大量研发费用,也都取得了显著成果。可溶桥塞材料能够在一定时间内承受酸液腐蚀,且具有高达450MPa的抗拉强度,在压裂结束后能够在水中溶解,从而减少下铣刀钻铣工序,缩短工艺流程,减少施工作业时间,节约大量的成本,而传统的单一材质材料难以满足以上要求,例如不锈钢耐腐蚀,但无法降解;铝合金强度低、且无法在水中快速降解;镁合金能够在水中溶解,但强度一般低于300MPa,无法满足强度需求。
发明内容
为克服现有技术的上述缺陷,本发明的目的在于提供一种可溶桥塞用复合材料及其制备方法,所得材料强度高,可在水中降解,满足可溶桥塞性能要求。
本发明的上述目的通过以下技术方案实现:
一种可溶桥塞用复合材料,包含以下质量百分比的原料组分:石墨烯0.01~20wt%,碳化硅0.01~50wt%,镁或镁合金30~99.5wt%,增强剂0.01-50wt%,余量为不可避免杂质。
优选的,所述增强剂选自铜、铝、铁、钛、碳纳米管、硅、碳化钛、碳化硼、碳化锆、碳化钨、氮化铝、氮化硅、氮化硼、氮化钛、氧化铝、氧化锆、硼化钛或硼化锆中的一种或多种。
优选的,所述原料均为粉末状,且平均粒度不大于500μm。
需要说明的是,本发明上述原料配比的设计基于以下原理:
碱金属族金属能够在水中溶解,但钠、锂、钙等太过活泼,且难以形成高强度的合金,本发明选用金属镁,既能形成一定强度的合金,又能在水中溶解,且溶解速度可通过其它元素来调整。但常用的AZ91D铸造镁合金强度仅200MPa左右,常用变形镁合金强度也仅在300MPa左右,无论铸造或者锻压法制备的镁合金强度均很难达到400MPa,在镁或者镁合金基体内引入石墨烯和碳化硅,可大幅度提高其强度。
石墨烯是已知强度最高的材料之一,同时具有很好的韧性,可以弯曲,石墨烯理论杨氏模量达1.0TPa,固有拉伸强度为130GPa。石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,晶格常数为0.246nm,而镁具有密排六方晶格,密排面晶格常数为0.32nm,由于镁的密排面与石墨烯具有相似的晶格结构,镁和石墨烯之间具有较好的亲和力,在一定的条件下二维的石墨烯能够与镁紧密结合。石墨烯具有极强的耐腐蚀性,贴合在镁或镁合金表面,形成耐腐蚀包络网格,提高镁或镁合金的耐腐蚀性,增强镁基体强度。
由于石墨烯是二维片层结构,在一定程度上会割裂镁或镁合金基体的连续性,故单纯加入石墨烯,对提高镁或镁合金的强度作用有限,石墨烯增强的镁或镁合金强度很难达到350MPa。为了进一步提高材料强度,在加入石墨烯的基础上进一步加入碳化硅,碳化硅晶体具有与金刚石相似的晶胞结构,一个C与四个Si一形成正四面体结构,一个晶胞内有4个碳原子和4个Si原子,具有稳定的化学结构和极高的强度,与石墨烯相比是三维结构,可增强基体而不会割裂基体,加入碳化硅可大幅度提高材料强度,通过调整石墨烯和碳化硅的含量,能够调整合金的耐腐蚀性和强度,得到具有不同腐蚀速率和强度的可溶桥塞用材料。
另外,镁具有密排六方晶格,塑性较差,为了提高合金延展性加入一定量高塑性的铜、铝或铁,以提高其塑性;加入钛有利于提高镁与碳化硅之间的浸润性;加入一定量的碳纳米管,通过碳纳米管形成的纤维网格来进一步增强基体;碳化钛、碳化硼、氧化锆、硼化钛、硼化锆、碳化锆、碳化钨和氮化铝具有较高的韧性,能够提高合金的强度和延伸率;氧化铝抗压强度高,且以球状形态存在,能够进一步提高合金强度;硅硬度大、成本低,进一步提高合金强度。选择性地加入选自铜(Cu)、铝(Al)、铁(Fe)、钛(Ti)、碳纳米管、硅(Si)、碳化钛(TiC)、碳化硼(B4N)、碳化锆(ZrC)、碳化钨(WC)、氮化铝(AlN)、氮化硅(Si3N4)、氮化硼(BN)、氮化钛(TiN)、氧化铝(Al2O3)、氧化锆(ZrO2)、硼化钛(TiB2)或硼化锆(ZrB2)中的一种或多种材料可调整合金的强度、延伸率和耐腐蚀性。
由于在金属镁或镁合金内加入石墨烯、碳化硅等非金属材料,熔点相差极大,镁的熔点只有645℃,而碳化硅的熔点大于2700℃,且二者密度相差较大,难以采用传统熔铸法来生产,本发明采用粉末成型装置制备可溶桥塞材料。本发明的第二方面,上述可溶桥塞用复合材料的加工装置包括:真空储料箱、进料斗、驱动轮、推料轮、堵料块、弧形槽封块和挤压模具;其中,
所述真空储料箱和所述进料斗相连通且中间设有阀门,用于控制开关;
所述驱动轮外表面周向有凹槽,该凹槽和所述推料轮凹凸配合,且可相对旋转;所述驱动轮顶部与所述进料斗底部连接、底部设有所述堵料块、所述凹槽外侧设有所述弧形槽封块,且所述驱动轮、所述堵料块和所述弧形槽封块形成储料空间;
所述挤压模具位于所述驱动轮底部。
优选的,所述挤压模具由进料通道、模腔和成型模具组成。
优选的,上述可溶桥塞用复合材料的加工装置还包括:置于所述料斗内的定量泵、模具安装座,以及位于挤压模具内的若干个模具加热器。
本发明的第三方面,上述可溶桥塞用复合材料的制备方法,包括:
按配比称取所述原料并混匀后加入到所述真空储料箱内,打开通过所述真空储料箱和所述进料斗之间的阀门,粉料进入所述料斗,在所述驱动轮和所述推料轮反向旋转作用下,所述粉料沿所述驱动轮表面凹槽推入至由所述驱动轮表面凹槽、所述弧形槽封块和所述堵料块形成的储料空间内,在摩擦力作用下所述粉料由所述进料通道挤入所述模腔,经所述成型模具挤出成型。
优选的,所述挤出成型为杆材、线材、板材、管材或异型材。
优选的,所述模具加热器对所述挤压模具进行加热至100~500℃。
本发明的第四方面,一种可溶桥塞包括通过上述加工装置和制备方法制得的复合材料。
与现有技术相比,本发明的有益效果在于:
一、本发明通过在镁或镁合金基体中加入石墨烯、碳化硅以及其它陶瓷材料,大幅度提高材料强度,可达600MPa,利用二维石墨烯形成的网络结构,形成腐蚀防护层,提高复合材料的耐腐蚀性,使得易在水中腐蚀溶解的镁或镁合金在一定时间内不被溶解,维持较高强度,在压裂结束后能在水中溶解,获得高强度的可溶桥塞。
二、传统粉末加工成型有热压烧结法、无压烧结法或冷压法等,但这些方法均为单炉间歇式生产,不能实现连续进料和连续出料,不能加工大长度的产品,且生产周期长,成本高;本发明能够实现粉料连续成型,充分利用摩擦生热特点,对非金属含量低的复合材料不需要加热即可实现成型,具有连续化、流程短、成本低、质量高等优点,适合于大规模连续化生产。
附图说明
图1是本发明加工装置的结构示意图;其中:1、真空储料箱,2、进料斗,3、定量泵,4、驱动轮,5、推料轮,6、堵料块,7、弧形槽封块,8、模具安装座,9、挤压模具,10、模具加热器,11、进料通道,12、模腔,13、成型模具。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合附图与具体实施例,进一步阐述本发明。
参见附图1,可溶桥塞用复合材料的加工装置包括:真空储料箱1、进料斗2、驱动轮4、推料轮5、堵料块6、弧形槽封块7和挤压模具9;其中,真空储料箱1和进料斗2相连通且中间设有阀门,用于控制开关;驱动轮4外表面周向有凹槽,和推料轮5外表面齿接,且可相对旋转;驱动轮4顶部与进料斗2底部连接、底部设有堵料块6、凹槽外侧设有弧形槽封块7,且驱动轮4、堵料块6和弧形槽封块7形成储料空间;挤压模具9位于驱动轮4底部。另外还包括:置于料斗2内的定量泵3、模具安装座8,以及位于挤压模具9内的若干个模具加热器10,且挤压模具9由进料通道11、模腔12和成型模具13组成。
采用上述加工装置制备可溶桥塞用复合材料的具体过程为:按配比称取原料并混匀后加入到真空储料箱1内,打开通过真空储料箱1和进料斗2之间的阀门,粉料进入料斗2,在驱动轮4和推料轮5反向旋转作用下,粉料沿驱动轮4表面凹槽推入至由驱动轮4表面凹槽、弧形槽封块7和堵料块6形成的储料空间内,在摩擦力作用下粉料由进料通道11挤入模腔12,经成型模具13挤出成型为杆材、线材、板材、管材或异型材。另外可以通过模具加热器10对挤压模具9进行加热至100~500℃,提高材料塑性,降低挤压成形力。
实施例1-10
按照如表1所示的配料配置原料,且均为平均粒度不大于500um的粉体;按上述加工装置和制备方法制备可溶桥塞用复合材料,加工工艺如表2所示,表1中“/”表示实施例中不含该材料成分。
表1:原料成分
Figure BDA0001734852090000061
表2:加工工艺参数
Figure BDA0001734852090000071
将实施例1-10制备的可溶桥塞用复合材料与纯镁、AZ91D镁合金进行性能测试,其中,抗拉强度、屈服强度、延伸率的测试方法按照GB/T228-2002进行;20%浓度盐酸溶液中降解时间的测试方法如下:先称200g试样,配制1000g20%浓度的盐酸溶液,将所称试样完全浸没所配制盐酸溶液中至试样完全降解,记录降解时间,结果如表3所示。
从表3的测试数据对比可知,本发明制备的可溶桥塞用复合材料强度均大于450MPa,屈服强度大于300Pa,达到桥塞用材料的强度要求,远大于纯镁和AZ91D镁合金的强度,且在20%盐酸溶液中的降解时间远大于纯镁和AZ91D镁合金,达到可降解桥塞耐腐蚀性能要求。
表3:性能测试
Figure BDA0001734852090000081
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (4)

1.一种可溶桥塞用复合材料的制备方法,其特征在于,
包含以下质量百分比的平均粒度均不大于500μm的粉料:石墨烯0.01~20wt%,碳化硅0.01~50wt%,镁或镁合金30~99.5wt%,增强剂0.01-50wt%,余量为不可避免杂质,且所述增强剂选自铜、铝、铁、钛、碳纳米管、硅、碳化钛、碳化硼、碳化锆、碳化钨、氮化铝、氮化硅、氮化硼、氮化钛、氧化铝、氧化锆、硼化钛或硼化锆中的一种或多种;
所述可溶桥塞用复合材料通过加工装置挤出成型得到;其中:
所述加工装置,包括:
真空储料箱和进料斗,两者相互连通且中间设有阀门,用于控制开关;
驱动轮,其底部设有堵料块、顶部与所述进料斗底部连接、外表面周向设有与推料轮凹凸配合且可相对旋转的凹槽,且所述凹槽的外侧设有弧形槽封块,与所述驱动轮和所述堵料块形成储料空间;
还包括位于所述驱动轮底部且由进料通道、模腔和成型模具组成的挤压模具;
按配比称取所述粉料并混匀,加入到所述真空储料箱内,打开所述阀门进入所述进料斗,在所述驱动轮和所述推料轮的反向旋转作用下沿所述凹槽推入至由所述储料空间内,在摩擦力的作用下粉料由所述进料通道挤入所述模腔内经所述成型模具挤出成型。
2.如权利要求1所述可溶桥塞用复合材料的制备方法,其特征在于,所述加工装置还包括:置于所述进料斗内的定量泵和模具安装座,以及位于所述挤压模具内的若干个模具加热器。
3.如权利要求1所述可溶桥塞用复合材料的制备方法,其特征在于,所述挤出成型为杆材、线材、板材、管材或异型材。
4.如权利要求2所述可溶桥塞用复合材料的制备方法,其特征在于,所述模具加热器对所述挤压模具进行加热至100~500℃。
CN201810790770.9A 2018-07-18 2018-07-18 一种可溶桥塞用复合材料及其制备方法 Active CN108998712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810790770.9A CN108998712B (zh) 2018-07-18 2018-07-18 一种可溶桥塞用复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810790770.9A CN108998712B (zh) 2018-07-18 2018-07-18 一种可溶桥塞用复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108998712A CN108998712A (zh) 2018-12-14
CN108998712B true CN108998712B (zh) 2020-09-08

Family

ID=64600389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810790770.9A Active CN108998712B (zh) 2018-07-18 2018-07-18 一种可溶桥塞用复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108998712B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349830B (zh) * 2018-12-20 2021-01-12 中国石油化工股份有限公司 一种铝基复合材料及其制备方法
CN111349832B (zh) * 2018-12-20 2021-01-26 中国石油化工股份有限公司 一种铝基复合材料及其制备方法
CN111057923B (zh) * 2019-12-17 2021-06-15 西安理工大学 GR/N-SiCP复合增强镁基复合材料及其制备方法
CA3109759A1 (en) * 2020-03-20 2021-09-20 Wenhui Jiang Downhole tools comprising degradable components
CN111471883B (zh) * 2020-03-20 2021-04-09 福建省盛荣生态花卉研究院有限责任公司 一种陶瓷金属复合材料及其制备方法
CN111531179B (zh) * 2020-05-07 2022-11-15 有研工程技术研究院有限公司 抗冲刷易分解压裂桥塞系统用镁合金及其制备加工方法
CN112342448A (zh) * 2020-10-28 2021-02-09 泰州科聚新材料技术研究院有限公司 一种氧化物基金属陶瓷材料
CN114350333B (zh) * 2022-01-24 2023-02-03 西南石油大学 一种基于纳米立方氮化硼强吸附封堵剂及油基钻井液

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240251A3 (en) * 1986-04-02 1988-08-17 The British Petroleum Company p.l.c. Preparation of composites
US7279023B2 (en) * 2003-10-02 2007-10-09 Materials And Electrochemical Research (Mer) Corporation High thermal conductivity metal matrix composites
CN103302127B (zh) * 2013-06-26 2016-02-03 温州宏丰电工合金股份有限公司 层状复合电接触材料的连续挤压复合装置
CN107267826A (zh) * 2017-05-16 2017-10-20 苏州莱特复合材料有限公司 一种改性石墨烯增强镁基金属材料及其制备方法
CN107904465B (zh) * 2017-11-20 2019-09-20 河南科技大学 一种增强镁基复合材料及其制备方法
CN107971497B (zh) * 2017-11-20 2019-12-31 上海乔辉新材料科技有限公司 一种金属复合微粉连续挤出成型的方法

Also Published As

Publication number Publication date
CN108998712A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
CN108998712B (zh) 一种可溶桥塞用复合材料及其制备方法
US20210164295A1 (en) Metal Matrix Compositions and Methods for Manufacturing Same
CN106636821B (zh) 一种智能降解镁合金材料及其制备方法和应用
CN109439984B (zh) 一种原生碳化钛与非晶相共强化镁基复合材料的制备方法
US10316380B2 (en) Thermo-mechanical treatment of materials
AU2022224725B2 (en) Preparation method of in-situ synthesized zirconia toughened alumina (ZTA) ceramic particles-reinforced steel matrix structural composite
CN103058662B (zh) 二硼化钛基纳米复合自润滑陶瓷刀具材料及其制备方法
CN107385245B (zh) 基于油气开采用可溶性合金压裂球的制造方法
KR20190108557A (ko) 부식성 다운홀 물품
CN113025857B (zh) 一种用于全金属桥塞胶筒的可溶镁合金材料及其制备方法
KR20190108558A (ko) 부식성 다운홀 물품
Zheng et al. Investigation on preparation and mechanical properties of W–Cu–Zn alloy with low W–W contiguity and high ductility
CN112708813A (zh) 一种油气开采工具用可溶镁合金材料及其制备方法
CN110923531B (zh) 一种低成本高塑性可溶镁合金材料及其制备方法
CN104630591B (zh) 一种长条状三元硼化物增强增韧的Ti(C,N)基金属陶瓷及其制备方法
CN102021473A (zh) 一种Fe3Al-Al2O3复合材料的制备方法
CN102489687A (zh) 一种梯度复合耐磨材料的制备方法
CN109439983B (zh) 一种原生微/纳米级碳化钒和轻金属基非晶合金共强化镁合金复合材料及其制备方法
CN110629087A (zh) 一种速溶镁合金及其制备方法
US7682557B2 (en) Multiple processes of high pressures and temperatures for sintered bodies
CN106086574A (zh) 一种制备硬质合金材料的方法
CN104911385A (zh) 一种以Ti2SnC为前驱体的超细陶瓷颗粒超细化Cu基复合材料及其制备方法
Matveichuk et al. On the interaction of the cobalt melt with polycrystalline tungsten monocarbide
CN100467163C (zh) 地质勘探用聚晶金刚石钻头的制造方法
CN108715980B (zh) 一种耐高温铝合金复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant