CN108993513A - 一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法 - Google Patents

一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法 Download PDF

Info

Publication number
CN108993513A
CN108993513A CN201810791598.9A CN201810791598A CN108993513A CN 108993513 A CN108993513 A CN 108993513A CN 201810791598 A CN201810791598 A CN 201810791598A CN 108993513 A CN108993513 A CN 108993513A
Authority
CN
China
Prior art keywords
ldhs
nitrate
preparation
hydroxide
metal hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810791598.9A
Other languages
English (en)
Other versions
CN108993513B (zh
Inventor
陈立勇
张瀛月
李德芝
王艳鑫
段春迎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810791598.9A priority Critical patent/CN108993513B/zh
Publication of CN108993513A publication Critical patent/CN108993513A/zh
Application granted granted Critical
Publication of CN108993513B publication Critical patent/CN108993513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法,属于多功能材料合成技术领域。通过采用2‑甲基咪唑辅助溶剂热法制备一系列镍基层状双金属氢氧化物Ni‑M LDHs。结果表明:不同金属元素掺入到镍基层状双金属氢氧化物中能够影响其宏观形貌以及微观结构,直接影响到电催化产氧研究中电子传输、离子扩散和物质运输。该方法调控LDHs的合成方法简便易行,合成条件温和,灵活性强,产率高,故是一种相对较为优异的合成方法。

Description

一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法
技术领域
本发明属于多功能材料合成技术领域,涉及一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法。
背景技术
电解水作为一种新能源有利于高效率释放热能及不可再生资源的保存,在能量的转化和储存中起着重要的作用。在水系溶液中氧析出是其中涉及的电化学反应,OER是多电子转移的氧化还原反应,且速控步骤的存在使得其化学反应动力学系数低下,进行速度缓慢,制备高效的OER电催化剂是关系到未来氧析出新能源的重要因素。氧析出催化剂分为贵金属和非贵金属催化剂,前者由于元素稀缺价格昂贵从而限制了应用。在非贵金属中水滑石类双金属氢氧化物作为电催化剂,能够实现碱性环境下高效产氧。
层状双金属氢氧化物(LDHs)是一种离子型层状结构化合物,它一般是由带正电的类水滑石组成,层间含有阴离子以及溶剂小分子,金属阳离子位于中心,然后与六个氧原子配位形成八面体结构,在氢氧根离子构成的层板间相互共边形成无限扩展的二维片层。LDHs的合成方法常见的有以下几种:(1)共沉淀法:在较低温度的条件下通过调节溶液的酸碱度制备出具有一定形貌的LDHs,过程较为简单;(2)水热合成法:在高温高压条件下进行反应,反应速率较快,制备出的LDHs具备很多优良特性;(3)离子交换法:在不破坏层状结构的情况下,通过控制反应条件可以对LDHs层间阴离子的种类和数量进行设计和组装;(4)焙烧还原法:将一定温度下焙烧后的LDHs(LDO)加入到含有某种阴离子的溶液中可使其层状结构重新组建,溶液中的阴离子可以进入层间形成新的LDHs材料。除此之外,还有溶胶-凝胶法,微波辅助法等。
我们期望发展更加简单、高效的合成策略用于构筑层状双金属氢氧化物,并使用该方法合成基于镍的不同元素的LDHs用于电解水中高效产氧,这对于构筑新型的功能材料提供极其有意义的借鉴作用。
发明内容
本发明要解决的技术问题是在温和条件下,提供一种新型的2-甲基咪唑辅助溶剂热法制备不同金属掺杂镍基双金属氢氧化物(NiM-LDHs)的合成方法。
本发明的技术方案:
一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法,步骤如下:
在2-甲基咪唑辅助溶剂热法中,将硝酸镍和掺杂金属元素的硝酸盐按摩尔比为50:1,同时加入与硝酸镍相同摩尔量的2-甲基咪唑作为诱导剂,其目的在于辅助Ni2+形成具有不同组装结构的镍基层状双金属氢氧化物(Ni-M LDHs ),随后在反应釜中加入无水甲醇,控制硝酸镍浓度为0.3-0.35mol/L,充分搅拌超声至溶解,于80℃条件下反应4小时;待反应釜降至室温后进行 8000-12000rpm离心3-10min收集沉淀,甲醇洗涤沉淀数次至上清液澄清,沉淀置于真空干燥箱50-80℃干燥,最终得到镍基双金属氢氧化物,分别为Ni-MgLDHs、Ni-Mn LDHs、Ni-Zn LDHs以及Ni-Al LDHs粉末。
所述的硝酸盐为硝酸镁、硝酸锰、硝酸锌或硝酸铝。
将制备得到的不同元素组成的产物进行X射线衍射分析(XRD)测试、高分辨透射电子显微镜(TEM)和场发射扫描电子显微镜(SEM)表征;实验结果表明不同的元素掺杂可以通过该方法简易快速的合成镍基LDHs,同时对其形貌有一定修饰作用。
本发明的有益效果:采用元素周期表中不同区域元素的掺杂以调控修饰镍基LDHs的形貌、尺寸以及结构,在改变微观结构基础上改善电催化中产氧( OER)性能,为电催化领域中提供一种新型可调可控的非贵金属氧析出电催化剂。
附图说明
图1是Ni LDHs、Ni-Mg LDHs、Ni-Mn LDHs、Ni-Zn LDHs以及Ni-Al LDHs 五种材料的XRD表征,其中掺杂金属元素与镍元素摩尔比为1:50。有图可知,通过2-甲基咪唑辅助溶剂热法可以成功制备LDHs,同时(003)衍射峰表明其由多层片组装而形成。
图2是掺杂镁、锰、锌、铝元素的镍基LDHs其摩尔比为1:50时的SEM、 TEM和原子力显微镜(AFM)表征,其中(a,b,k,p)为Ni-Mg LDHs,(c,d,l,q) 为Ni-Mn LDHs,(e,f,m,r)为Ni-Zn LDHs,(g,h,n,s)为Ni-Al LDHs,(i,j,o,t) 为Ni LDHs,图中非常直观的可以观察到,Ni-Al LDHs与其他层状双金属材料形貌存在差异。
图3(a)是五种材料的N2吸附解吸等温线,图3(b)是五种材料的相应空孔径分布表征。由图可知,不同元素的掺入会导致LDHs多孔花状结构孔隙存在差异。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1:
(1)称取5mmol硝酸镍、0.1mmol硝酸镁和5mmol 2-甲基咪唑于 20ml聚四氟乙烯釜中。
(2)向釜内加入一定量无水甲醇溶液,使硝酸镁浓度为1.71g/L,超声或搅拌至完全溶解。
(3)将聚四氟乙烯釜置于不锈钢反应釜中,旋紧釜帽。
(4)不锈钢反应釜置于烘箱内设置80℃反应4小时,反应停止,待其降至室温。
(5)在离心机为10000-12000rpm的转速下离心3-5min收集反应溶液中的沉淀,沉淀使用甲醇溶液反复洗涤至上清液无色透明,随后将沉淀放入真空干燥箱60℃干燥8h,最终得到Ni-Mg LDHs粉末。
实施例2:
(1)称取5mmol硝酸镍、0.1mmol硝酸锰和5mmol 2-甲基咪唑于 20ml聚四氟乙烯釜中。
(2)向釜内加入一定量无水甲醇溶液,使硝酸锰浓度为1.67g/L,,超声或搅拌至完全溶解。
(3)将聚四氟乙烯釜置于不锈钢反应釜中,旋紧釜帽。
(4)不锈钢反应釜置于烘箱内设置80℃反应4小时,反应停止,待其降至室温。
(5)在离心机为8000-9000rpm的转速下离心8-10min收集反应溶液中的沉淀,沉淀使用甲醇溶液反复洗涤至上清液无色透明,随后将沉淀放入真空干燥箱50℃干燥10h,最终得到Ni-Mn LDHs粉末。
实施例3:
(1)称取5mmol硝酸镍、0.1mmol硝酸锌和5mmol 2-甲基咪唑于 20ml聚四氟乙烯釜中。
(2)向釜内加入一定量无水甲醇溶液,使硝酸锌浓度为1.98g/L,超声或搅拌至完全溶解。
(3)将聚四氟乙烯釜置于不锈钢反应釜中,旋紧釜帽。
(4)不锈钢反应釜置于烘箱内设置80℃反应4小时,反应停止,待其降至室温。
(5)在离心机为10000-12000rpm的转速下离心3-5min收集反应溶液中的沉淀,沉淀使用甲醇溶液反复洗涤至上清液无色透明,随后将沉淀放入真空干燥箱80℃干燥4h,最终得到Ni-Zn LDHs粉末。
实施例4:
(1)称取5mmol硝酸镍、0.1mmol硝酸铝和5mmol 2-甲基咪唑于 20ml聚四氟乙烯釜中。
(2)向釜内加入一定量无水甲醇溶液,使硝酸铝浓度为2.5g/L,超声或搅拌至完全溶解。
(3)将聚四氟乙烯釜置于不锈钢反应釜中,旋紧釜帽。
(4)不锈钢反应釜置于烘箱内设置80℃反应4小时,反应停止,待其降至室温。
(5)在离心机为9000-10000rpm的转速下离心5-8min收集反应溶液中的沉淀,沉淀使用甲醇溶液反复洗涤至上清液无色透明,随后将沉淀放入真空干燥箱70℃干燥6h,最终得到Ni-Al LDHs粉末。
实施例5:
(1)称取5mmol硝酸镍和5mmol 2-甲基咪唑于20ml聚四氟乙烯釜中。
(2)向釜内加入一定量无水甲醇溶液,使硝酸镍浓度为96.93g/L,,超声或搅拌至完全溶解。
(3)将聚四氟乙烯釜置于不锈钢反应釜中,旋紧釜帽。
(4)不锈钢反应釜置于烘箱内设置80℃反应4小时,反应停止,待其降至室温。
(5)在离心机为10000-12000rpm的转速下离心3-5min收集反应溶液中的沉淀,沉淀使用甲醇溶液反复洗涤至上清液无色透明,随后将沉淀放入真空干燥箱70℃干燥6h,最终得到Ni LDHs粉末。
如图1所示为五种材料的XRD表征,可以看出某些峰强度存在差异,片层结构组装不同,图2中SEM、TEM和AFM图,除Ni-Al LDHs之外的层状双金属氢氧化物有几个微米的直径,超声剥离的纳米片层厚度 10-20nm不等,而Ni-Al LDHs的尺寸较于其他LDHs尺寸更小,结合图 3BET表征,五种材料比表面积悬殊,孔径分布存在差异,进一步证明不同元素掺杂制备镍基层状双金属氢氧化物能够对其结构产生一定的影响。
显然,本发明所列举的上述实施例在此仅仅是为了更加清楚地说明本发明所做的技术方案,而并非是对本发明的实施方式的限制。对于所属领域的一般技术人员来说,在上述说明的基础上还可以做出不同形式的变动。在此本发明不可能将所有实施方式一一列举。但凡是属于本发明所作的技术方案能延展的一些明显的变化将仍然处于本发明的保护范围之中。

Claims (3)

1.一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法,其特征在于,步骤如下:
在2-甲基咪唑辅助溶剂热法中,将硝酸镍和掺杂金属元素的硝酸盐按摩尔比为50:1,同时加入与硝酸镍相同摩尔量的2-甲基咪唑作为诱导剂,其目的在于辅助Ni2+形成具有不同组装结构的镍基层状双金属氢氧化物(Ni-M LDHs),随后在反应釜中加入无水甲醇,控制硝酸镍浓度为0.3-0.35mol/L,充分搅拌超声至溶解,于80℃条件下反应4小时;待反应釜降至室温后进行8000-12000rpm离心3-10min收集沉淀,甲醇洗涤沉淀数次至上清液澄清,沉淀置于真空干燥箱50-80℃干燥,最终得到镍基双金属氢氧化物。
2.根据权利要求1所述的制备方法,其特征在于,所述的硝酸盐为硝酸镁、硝酸锰、硝酸锌或硝酸铝。
3.根据权利要求1所述的制备方法,其特征在于,所述的镍基双金属氢氧化物为Ni-MgLDHs、Ni-Mn LDHs、Ni-Zn LDHs以及Ni-Al LDHs粉末。
CN201810791598.9A 2018-07-18 2018-07-18 一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法 Active CN108993513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810791598.9A CN108993513B (zh) 2018-07-18 2018-07-18 一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810791598.9A CN108993513B (zh) 2018-07-18 2018-07-18 一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法

Publications (2)

Publication Number Publication Date
CN108993513A true CN108993513A (zh) 2018-12-14
CN108993513B CN108993513B (zh) 2021-02-26

Family

ID=64600502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810791598.9A Active CN108993513B (zh) 2018-07-18 2018-07-18 一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法

Country Status (1)

Country Link
CN (1) CN108993513B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817999A (zh) * 2019-01-23 2019-05-28 西北工业大学 银催化镁铝层状氢氧化物膜甲酸盐燃料电池及制备方法
CN111604053A (zh) * 2020-06-07 2020-09-01 重庆工商大学 三元水滑石光催化剂及其制备方法与应用
CN113943950A (zh) * 2021-11-18 2022-01-18 西安工业大学 一种多金属氢氧化物预催化剂及其制备方法和应用
CN114849716A (zh) * 2022-05-18 2022-08-05 福州大学 一种基于NiZn-LDH的1D/2D复合材料及其制备方法和应用
CN115845792A (zh) * 2022-10-21 2023-03-28 黑龙江省科学院高技术研究院 一种过渡金属掺杂镁铝层状双金属氢氧化物材料的制备方法及应用
CN117643891A (zh) * 2024-01-30 2024-03-05 西南石油大学 硼掺杂金属氧化物/氢氧化物析氧催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018303A (zh) * 2012-12-29 2013-04-03 国家烟草质量监督检验中心 一种镍铝层状双金属氢氧化物修饰电极的制备方法
CN104607191A (zh) * 2015-01-06 2015-05-13 中国科学院理化技术研究所 一种水滑石量子点电催化剂及其制备方法和电催化分解水产氧应用
CN105845951A (zh) * 2016-03-24 2016-08-10 青岛科技大学 离子液体共价修饰石墨烯-剥离类水滑石双功能氧催化剂及其制备方法和应用
CN107604381A (zh) * 2017-08-02 2018-01-19 吉林大学 铁基层状双金属氢氧化物纳米薄膜材料、制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018303A (zh) * 2012-12-29 2013-04-03 国家烟草质量监督检验中心 一种镍铝层状双金属氢氧化物修饰电极的制备方法
CN104607191A (zh) * 2015-01-06 2015-05-13 中国科学院理化技术研究所 一种水滑石量子点电催化剂及其制备方法和电催化分解水产氧应用
CN105845951A (zh) * 2016-03-24 2016-08-10 青岛科技大学 离子液体共价修饰石墨烯-剥离类水滑石双功能氧催化剂及其制备方法和应用
CN107604381A (zh) * 2017-08-02 2018-01-19 吉林大学 铁基层状双金属氢氧化物纳米薄膜材料、制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIYONG CHEN,ET.AL.: "Imidazolate-mediated assembled structures of Co-LDH sheets for efficient electrocatalytic oxygen evolution", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817999A (zh) * 2019-01-23 2019-05-28 西北工业大学 银催化镁铝层状氢氧化物膜甲酸盐燃料电池及制备方法
CN111604053A (zh) * 2020-06-07 2020-09-01 重庆工商大学 三元水滑石光催化剂及其制备方法与应用
CN111604053B (zh) * 2020-06-07 2022-09-02 重庆工商大学 三元水滑石光催化剂及其制备方法与应用
CN113943950A (zh) * 2021-11-18 2022-01-18 西安工业大学 一种多金属氢氧化物预催化剂及其制备方法和应用
CN114849716A (zh) * 2022-05-18 2022-08-05 福州大学 一种基于NiZn-LDH的1D/2D复合材料及其制备方法和应用
CN115845792A (zh) * 2022-10-21 2023-03-28 黑龙江省科学院高技术研究院 一种过渡金属掺杂镁铝层状双金属氢氧化物材料的制备方法及应用
CN115845792B (zh) * 2022-10-21 2024-02-23 黑龙江省科学院高技术研究院 一种过渡金属掺杂镁铝层状双金属氢氧化物材料的制备方法及应用
CN117643891A (zh) * 2024-01-30 2024-03-05 西南石油大学 硼掺杂金属氧化物/氢氧化物析氧催化剂及其制备方法
CN117643891B (zh) * 2024-01-30 2024-04-09 西南石油大学 硼掺杂金属氧化物/氢氧化物析氧催化剂及其制备方法

Also Published As

Publication number Publication date
CN108993513B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN108993513A (zh) 一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法
Huang et al. Cost-effective mechanochemical synthesis of highly dispersed supported transition metal catalysts for hydrogen storage
Kong et al. Noble metal-free 0D–1D NiCoP/Mn0. 3Cd0. 7S nanocomposites for highly efficient photocatalytic H2 evolution under visible-light irradiation
Huang et al. Hierarchical CoFe LDH/MOF nanorods array with strong coupling effect grown on carbon cloth enables efficient oxidation of water and urea
CN108807986B (zh) 一种碱式氯化铅微纳结构晶体的制备方法
CN108526481A (zh) 一种多枝状纳米合金电催化剂的制备方法
CN105016399A (zh) 由纳米薄片组装的镍铁氢氧化物多级微球及其制备方法
Parkash Copper doped zeolitic imidazole frameworks (ZIF-8): a new generation of single-atom catalyst for oxygen reduction reaction in alkaline media
Zhuang et al. MOF derived high-density atomic platinum heterogeneous catalyst for C–H bond activation
CN109516447A (zh) 一种深度低共熔溶剂辅助合成石墨烯封装Ni2P材料
CN109999845A (zh) 一种全铁基析氧催化剂及其制备方法与应用
CN112701280A (zh) 中空双晶相过硒化钴镍微球材料的制备方法
Li et al. Three-dimensional MnCo2O4. 5 mesoporous networks as an electrocatalyst for oxygen reduction reaction
He et al. Nickel nitrate hydroxide holey nanosheets for efficient oxygen evolution electrocatalysis in alkaline condition
El-Hallag et al. The effect of electrodeposition potential on catalytic properties of Ni nanoparticles for hydrogen evolution reaction (HER) in alkaline media
CN102320669B (zh) 一种珊瑚状β-氢氧化钴电极材料的制备方法
Abid et al. Facile synthesis of scheelite-type NdOsO4 directly grown on carbon cloth for oxygen evolution reaction
Devi et al. One-Pot Hydrothermal Synthesis of Ti3C2 (MXene)-CoS2 Nanocomposite as a Bifunctional Electrocatalyst (HER/OER) for a Clean Environment
CN113265666A (zh) 一维Fe掺杂α-Ni(OH)2纳米带催化剂及其制备方法和应用
CN110124658B (zh) 一种可控制备铈铝氧化物固溶体纳米立方体的方法
Vissurkhanova et al. Thermal and electrochemical reduction of nickel (II) ferrite under the influence of polymer stabilizers
Zide et al. The influence of copper and carbon black on electrochemical behavior of nickel positive electrode
Zhao et al. Double etch strategy induced morphologic transformation engineering of Fe–Ni hydroxide for the efficient and stable oxygen evolution
Parkash et al. Nickel-Iron-Zinc Phosphide with Three-Dimensional Petal-Like Nanostructure as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction in Alkaline Electrolytes
Dang et al. Nanoflower electrocatalysts derived from mixed metal (Fe/Co/Ni) organic frameworks for the electrochemical oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant